Math 17A, Fall 2023
 Solutions to practice problems for Midterm 1

1. Consider the functions:

$$
f(x)=\frac{x^{2}+1}{x^{2}-1}, g(x)=||x+1|-1|, h(x)=\frac{1}{\ln x}
$$

For each of them:
a) Find the domain
b) Determine the intersection points of the graph with the coordinate axis
c) Find all vertical and horizontal asymptotes (if any)
d) Sketch the graph

Solution: 1) The function $f(x)$ is defined for $x^{2}-1 \neq 0$, so that $x \neq \pm 1$. The domain is

$$
(-\infty,-1) \cup(-1,1) \cup(1,+\infty)
$$

The intesection with the y-axis is at $f(0)=-1$. The intersection with the x-axis is where $f(x)=0$ which is not possible since $x^{2}+1>0$. Note that $f(x)>0$ for $x>1$ and $x<-1$, and $f(x)<0$ on $(-1,1)$.

At $x= \pm 1$ we have $x^{2}+1 \rightarrow 2$ and $x^{2}-1 \rightarrow 0$, so there are vertical asymptotes at $x= \pm 1$. For the horizontal asymptote, we have

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{2}+1}{x^{2}-1}=\lim _{x \rightarrow \pm \infty} \frac{1+1 / x^{2}}{1-1 / x^{2}}=1
$$

Therefore we have a horizontal asymptote $y=1$.

2) The function $g(x)$ is defined everywhere, so the domain is $(-\infty,+\infty)$. There are no vertical asymptotes. We can write

$$
g(x)=\left\{\begin{array}{l}
x, x \geq 0 \\
-x,-1 \leq x \leq 0 \\
2+x,-2 \leq x \leq-1 \\
-2-x, x \leq-2
\end{array}\right.
$$

So there are no horizontal asymptotes either.

3) The function $h(x)$ is defined where $\ln x$ is defined (so $x>0$) and $\ln x \neq 0($ so $x \neq 1)$. Therefore the domain is $(0,1) \cup(1,+\infty)$. To find the vertical asymptotes, let us compute the limits at 0 and at 1 :

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \ln x=-\infty, \lim _{x \rightarrow 0} \frac{1}{\ln x}=0 \\
& \lim _{x \rightarrow 1} \ln x=0, \lim _{x \rightarrow 0} \frac{1}{\ln x}=\infty
\end{aligned}
$$

To find the horizontal asymptotes, we get

$$
\lim _{x \rightarrow+\infty} \ln x=+\infty, \lim _{x \rightarrow+\infty} \frac{1}{\ln x}=0
$$

2. For which c the function

$$
f(x)= \begin{cases}\sin x, & \text { if } x<c \\ \cos x, & \text { if } x \geq c\end{cases}
$$

is continuous?
Solution: The function is clearly continuous for $x \neq c$. At $x=c$, we have the following one-sided limits:

$$
\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}} \cos x=\cos (c), \lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{-}} \sin x=\sin (c)
$$

The function has a limit at c (and is continuous at c) if these one-sided limits agree:

$$
\cos (c)=\sin (c), c=\frac{\pi}{4}+\pi k, k \text { integer. }
$$

3. Compute the limits:
a)

$$
\lim _{x \rightarrow 0}\left(\sin ^{3} x-\cos x\right)
$$

Solution:

$$
\lim _{x \rightarrow 0}\left(\sin ^{3} x-\cos x\right)=\sin ^{3}(0)-\cos (0)=0^{3}-1=-1 .
$$

b)

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}}{\sqrt{x}}
$$

Solution: We have $\lim _{x \rightarrow 0} \sqrt{x+1}=\sqrt{0+1}=1, \lim _{x \rightarrow 0} \sqrt{x}=0$, so

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}}{\sqrt{x}}=\infty .
$$

c)

$$
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{2}-3 x}
$$

Solution: We have

$$
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{2}-3 x}=\lim _{x \rightarrow 3} \frac{(x-3)(x+1)}{x(x-3)}=\lim _{x \rightarrow 3} \frac{x+1)}{x}=\frac{4}{3}
$$

d)

$$
\lim _{x \rightarrow 0} \frac{7 x^{3}+8 x^{2}+9 x}{11 x+12 x^{2}-13 x^{3}} .
$$

Solution: We have

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{7 x^{3}+8 x^{2}+9 x}{11 x+12 x^{2}-13 x^{3}}=\lim _{x \rightarrow 0} \frac{x\left(7 x^{2}+8 x+9\right)}{x\left(11+12 x-13 x^{2}\right)}= \\
\lim _{x \rightarrow 0} \frac{\left(7 x^{2}+8 x+9\right)}{\left(11+12 x-13 x^{2}\right)}=\frac{9}{11} .
\end{gathered}
$$

e)

$$
\lim _{x \rightarrow+\infty} e^{-x^{2}}
$$

Solution: If $x \rightarrow+\infty$ then $x^{2} \rightarrow+\infty,-x^{2} \rightarrow-\infty$ and hence $\lim _{x \rightarrow+\infty} e^{-x^{2}}=$ 0 (since $\lim _{x \rightarrow-\infty} e^{x}=0$).
f)

$$
\lim _{x \rightarrow+\infty}(\ln (x+1)-\ln x)
$$

Solution: We have

$$
\lim _{x \rightarrow+\infty}(\ln (x+1)-\ln x)=\lim _{x \rightarrow+\infty} \ln \left(\frac{x+1}{x}\right) .
$$

Now $\lim _{x \rightarrow+\infty} \frac{x+1}{x}=\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)=1$, so

$$
\lim _{x \rightarrow+\infty} \ln \left(\frac{x+1}{x}\right)=\ln (1)=0
$$

g)

$$
\lim _{x \rightarrow+\infty} \frac{7 x^{2}+8 x+9}{11+12 x-13 x^{2}}
$$

Solution: Let us divide the numerator and the denominator of this fraction by x^{2}, which is the highest power of x here:

$$
\lim _{x \rightarrow+\infty} \frac{7 x^{2}+8 x+9}{11+12 x-13 x^{2}}=\lim _{x \rightarrow+\infty} \frac{7+8 / x+9 / x^{2}}{11 / x^{2}+12 / x-13}=\frac{7+0+0}{0+0-13}=-\frac{7}{13}
$$

h)

$$
\lim _{x \rightarrow+\infty} \frac{2 x^{3}+\sqrt{x^{4}+7}}{3 x^{3}-5}
$$

Solution: Let us divide the numerator and denominator by x^{3} :

$$
\begin{gathered}
\frac{2 x^{3}+\sqrt{x^{4}+7}}{3 x^{3}-5}=\frac{2+\frac{1}{x^{3}} \sqrt{x^{4}+7}}{3-5 / x^{3}}= \\
\frac{2+\frac{1}{\sqrt{x^{6}}} \sqrt{x^{4}+7}}{3-5 / x^{3}}=\frac{2+\sqrt{1 / x^{2}+7 / x^{6}}}{3-5 / x^{3}}
\end{gathered}
$$

Therefore

$$
\lim _{x \rightarrow+\infty} \frac{2 x^{3}+\sqrt{x^{4}+7}}{3 x^{3}-5}=\frac{2+\sqrt{0+0}}{3-0}=\frac{2}{3} .
$$

4. Find $\lim _{x \rightarrow 1} f(x)$, where

$$
f(x)=\left\{\begin{array}{l}
x^{2}+3 x+4, \quad \text { if } x \geq 1 \\
7 x^{2}+1, \text { if } x<1
\end{array}\right.
$$

Solution: We find one-sided limits:

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+3 x+4\right)=8 \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(7 x^{2}+1\right)=8
\end{gathered}
$$

so $\lim _{x \rightarrow 1} f(x)=8$.
5. Plot the graph of the function

$$
\operatorname{sgn}(x)=\left\{\begin{array}{l}
\frac{|x|}{x}, \quad \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.
$$

Is it continuous?
Solution: The function equals 1 for $x>0,-1$ for $x<0$ and 0 at $x=0$. It is not continuous at $x=0$.
6. For the function

$$
f(x)=\left\{\begin{array}{l}
x^{2}+x-9, \quad \text { if }|x| \geq 3 \\
x, \text { if }|x|<3,
\end{array}\right.
$$

find one-sided limits at $x=-3, x=0, x=3$. Is this function continuous?
Solution: We find one-sided limits:

$$
\begin{gathered}
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{2}+x-9\right)=9+3-9=3, \\
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} x=3, \\
\lim _{x \rightarrow(-3)^{+}} f(x)=\lim _{x \rightarrow(-3)^{+}} x=-3, \\
\lim _{x \rightarrow(-3)^{-}} f(x)=\lim _{x \rightarrow(-3)^{-}}\left(x^{2}+x-9\right)=9-3-9=-3,
\end{gathered}
$$

so the function is continuous both at $x=3$ and at $x=-3$. Since it is clearly continuous for $x \neq \pm 3$, it is continuous everywhere. The limit at $x=0$ equals 0 .
7^{*}. Use the Intermediate Value Theorem to show that the equation

$$
x^{3}+x-3=0
$$

has a solution on the interval $[1,2]$.
Solution: Let $f(x)=x^{3}+x-3$, then $f(1)=1+1-3=-1<0$, $f(2)=8+2-3=7>0$. By Intermedate Value theorem, there is a point x on $[1,2]$ such that $f(x)=0$.

