MAT 17A Fall 2023 Solutions to homework 3

1. (10 points) Compute the limit $\lim_{x\to\infty} \frac{x^2-4x}{x^2-3x-4}$.

Solution: We divide the numerator and the denominator of the fraction by x^2 which is the highest power of x:

$$\lim_{x \to \infty} \frac{x^2 - 4x}{x^2 - 3x - 4} = \lim_{x \to \infty} \frac{1 - 4/x}{1 - 3/x - 4/x^2} = \frac{1 - 0}{1 - 0 - 0} = 1$$

Here we used that $\lim_{x\to\infty} 1/x = \lim_{x\to\infty} 1/x^2 = 0.$

2. (10 points) Compute the limit $\lim_{x\to 0} \frac{x^2-4x}{x^2-3x-4}$.

Solution: The function is continuous at x = 0, so we can simply write

$$\lim_{x \to 0} \frac{x^2 - 4x}{x^2 - 3x - 4} = \frac{0^2 - 4 \cdot 0}{0^2 - 3 \cdot 0 - 4} = \frac{0}{-4} = 0.$$

3. (10 points) For the function $f(x) = \frac{x^2+2}{x^2-1}$:

a) Find the domain.

b) Find the vertical asymptotes.

c) Find the horizontal asymptotes.

Solution: a) The function is defined when $x^2 - 1 \neq 0$, so $x^2 \neq 1$ and $x \neq \pm 1$. Therefore the domain is $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$. b) We have

$$\lim_{x \to 1} (x^2 + 2) = 3, \ \lim_{x \to 1} (x^2 - 1) = 0, \ \text{so} \ \lim_{x \to 1} \frac{x^2 + 2}{x^2 - 1} = \infty.$$

Similarly,

$$\lim_{x \to -1} (x^2 + 2) = 3, \ \lim_{x \to -1} (x^2 - 1) = 0, \ \text{so} \ \lim_{x \to -1} \frac{x^2 + 2}{x^2 - 1} = \infty.$$

Therefore f(x) has vertical asymptotes x = 1 and x = -1. c) We have

$$\lim_{x \to \infty} \frac{x^2 + 2}{x^2 - 1} = \lim_{x \to \infty} \frac{1 + 2/x^2}{1 - 1/x^2} = \frac{1 + 0}{1 - 0} = 1,$$

and similarly $\lim_{x\to\infty} \frac{x^2+2}{x^2-1} = 1$. Therefore f(x) has a horizontal asymptote y = 1 at $+\infty$ and at $-\infty$.