MAT 17A Fall 2023
 Solutions to homework 3

1. (10 points) Compute the limit $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x}{x^{2}-3 x-4}$.

Solution: We divide the numerator and the denominator of the fraction by x^{2} which is the highest power of x :

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\lim _{x \rightarrow \infty} \frac{1-4 / x}{1-3 / x-4 / x^{2}}=\frac{1-0}{1-0-0}=1 .
$$

Here we used that $\lim _{x \rightarrow \infty} 1 / x=\lim _{x \rightarrow \infty} 1 / x^{2}=0$.
2. (10 points) Compute the limit $\lim _{x \rightarrow 0} \frac{x^{2}-4 x}{x^{2}-3 x-4}$.

Solution: The function is continuous at $x=0$, so we can simply write

$$
\lim _{x \rightarrow 0} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\frac{0^{2}-4 \cdot 0}{0^{2}-3 \cdot 0-4}=\frac{0}{-4}=0 .
$$

3. (10 points) For the function $f(x)=\frac{x^{2}+2}{x^{2}-1}$:
a) Find the domain.
b) Find the vertical asymptotes.
c) Find the horizontal asymptotes.

Solution: a) The function is defined when $x^{2}-1 \neq 0$, so $x^{2} \neq 1$ and $x \neq \pm 1$. Therefore the domain is $(-\infty,-1) \cup(-1,1) \cup(1,+\infty)$.
b) We have

$$
\lim _{x \rightarrow 1}\left(x^{2}+2\right)=3, \lim _{x \rightarrow 1}\left(x^{2}-1\right)=0, \text { so } \lim _{x \rightarrow 1} \frac{x^{2}+2}{x^{2}-1}=\infty .
$$

Similarly,

$$
\lim _{x \rightarrow-1}\left(x^{2}+2\right)=3, \lim _{x \rightarrow-1}\left(x^{2}-1\right)=0, \text { so } \lim _{x \rightarrow-1} \frac{x^{2}+2}{x^{2}-1}=\infty .
$$

Therefore $f(x)$ has vertical asymptotes $x=1$ and $x=-1$.
c) We have

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{1+2 / x^{2}}{1-1 / x^{2}}=\frac{1+0}{1-0}=1
$$

and similarly $\lim _{x \rightarrow-\infty} \frac{x^{2}+2}{x^{2}-1}=1$. Therefore $f(x)$ has a horizontal asymptote $y=1$ at $+\infty$ and at $-\infty$.

