MAT 17A Fall 2023
 Solutions to homework 5

Find the derivatives of the following functions:

1. (10 points)

$$
f(x)=\sqrt{\frac{x}{x^{2}+4}}
$$

Solution: First, we conpute the derivative of the inside function using the Quotient Rule:

$$
\left(\frac{x}{x^{2}+4}\right)^{\prime}=\frac{1\left(x^{2}+4\right)-x(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{x^{2}+4-2 x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}} .
$$

Now we apply Chain Rule

$$
\left(\sqrt{\frac{x}{x^{2}+4}}\right)^{\prime}=\left(\left(\frac{x}{x^{2}+4}\right)^{1 / 2}\right)^{\prime}=\frac{1}{2}\left(\frac{x}{x^{2}+4}\right)^{-1 / 2} \cdot \frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}
$$

2. (10 points)

$$
f(x)=\frac{\ln x}{x^{2}}
$$

Solution: We apply Quotient Rule:

$$
\left(\frac{\ln x}{x^{2}}\right)^{\prime}=\frac{\frac{1}{x} \cdot x^{2}-\ln x \cdot 2 x}{x^{4}}=\frac{x-2 x \ln x}{x^{4}}=\frac{1-2 \ln x}{x^{3}} .
$$

3. (10 points) A curve is given by the equation $2 x^{3}+x^{2} y-x y^{3}=2$.

Find the equation of the tangent line to this curve at the point $(1,1)$.
Solution: We take the derivatives of the both sides of the equation:

$$
6 x^{2}+2 x y+x^{2} y^{\prime}-1 \cdot y^{3}-x \cdot 3 y^{2} y^{\prime}=0 .
$$

Next we solve for y^{\prime} :

$$
6 x^{2}+2 x y-y^{3}=y^{\prime}\left(-x^{2}+3 x y^{2}\right), \quad y^{\prime}=\frac{6 x^{2}+2 x y-y^{3}}{-x^{2}+3 x y^{2}} .
$$

At $x=y=1$ we get $y^{\prime}=\frac{6+2-1}{-1+3}=\frac{7}{2}$. Therefore the slope of the tangent line equals $7 / 2$ and the equation of the tangent line is

$$
y=\frac{7}{2}(x-1)+1 .
$$

