## MAT 17A Fall 2023 <br> Solutions to homework 6

1. (10 points) Find the derivative of $f(x)=(\arcsin (x))^{5}$.

Solution: By Chain Rule we have

$$
f^{\prime}(x)=5(\arcsin (x))^{4} \cdot(\arcsin (x))^{\prime}=5(\arcsin (x))^{4} \cdot \frac{1}{\sqrt{1-x^{2}}}
$$

2. ( 10 points) When a cold drink is taken from a refrigerator, its temperature is $5^{\circ} \mathrm{C}$. After 25 minutes in a $20^{\circ} \mathrm{C}$ room its temperature has increased to $10^{\circ} \mathrm{C}$. What is the temperature of the drink after 50 minutes?

Solution: Let $T(x)$ be the temperature after $x$ minutes, then $T(x)=$ $T_{s}+A e^{-k x}$. Here $T_{s}=20$ is the room temperature, and $T(0)=5=$ $T_{S}+A=20+A$, so $A=-15$. We get $T(x)=20-15 e^{-k x}$. To find $k$, we plug in $x=25$ and get

$$
\begin{gathered}
10=T(25)=20-15 e^{-25 k}, \quad 15 e^{-25 k}=20-10=10, \\
e^{-25 k}=\frac{10}{15}=\frac{2}{3},-25 k=\ln (2 / 3),
\end{gathered}
$$

and $k=-\frac{1}{25} \ln (2 / 3)$. Now $-50 k=\frac{50}{25} \ln (2 / 3)=2 \ln (2 / 3)$, so

$$
e^{-50 k}=e^{2 \ln (2 / 3)}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}
$$

Finally,

$$
T(50)=20-15 e^{-50 k}=20-15 \cdot \frac{4}{9}=20-\frac{60}{9}=\frac{120}{9}=\frac{40}{3} .
$$

Answer: $\frac{40}{3} \approx 13.3$.
3. (10 points) Use linear approximation to estimate $\arctan (0.1)$.

Solution: We have $f(x)=\arctan (x)$ and $f^{\prime}(x)=\frac{1}{1+x^{2}}$, so $f(0)=0$ and $f^{\prime}(0)=1$. Therefore $f(x) \approx 0+1(x-0)=x$ for $x$ close to 0 , and $\arctan (0.1) \approx 0.1$.

