MAT 17A Fall 2023
Solutions to homework 6

1. (10 points) Find the derivative of \(f(x) = (\arcsin(x))^5 \).

 Solution: By Chain Rule we have

 \[
 f'(x) = 5(\arcsin(x))^4 \cdot (\arcsin(x))' = 5(\arcsin(x))^4 \cdot \frac{1}{\sqrt{1-x^2}}.
 \]

2. (10 points) When a cold drink is taken from a refrigerator, its temperature is 5° C. After 25 minutes in a 20° C room its temperature has increased to 10° C. What is the temperature of the drink after 50 minutes?

 Solution: Let \(T(x) \) be the temperature after \(x \) minutes, then \(T(x) = T_s + Ae^{-kx} \). Here \(T_s = 20 \) is the room temperature, and \(T(0) = 5 = T_s + A = 20 + A \), so \(A = -15 \). We get \(T(x) = 20 - 15e^{-kx} \). To find \(k \), we plug in \(x = 25 \) and get

 \[
 10 = T(25) = 20 - 15e^{-25k}, \quad 15e^{-25k} = 20 - 10 = 10,
 \]

 \[
 e^{-25k} = \frac{10}{15} = \frac{2}{3}, \quad -25k = \ln(2/3),
 \]

 and \(k = -\frac{1}{25} \ln(2/3) \). Now \(-50k = \frac{50}{25} \ln(2/3) = 2 \ln(2/3) \), so

 \[
 e^{-50k} = e^{2\ln(2/3)} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}
 \]

 Finally,

 \[
 T(50) = 20 - 15e^{-50k} = 20 - 15 \cdot \frac{4}{9} = 20 - \frac{60}{9} = \frac{120}{9} = \frac{40}{3}.
 \]

 Answer: \(\frac{40}{3} \approx 13.3 \).

3. (10 points) Use linear approximation to estimate \(\arctan(0.1) \).

 Solution: We have \(f(x) = \arctan(x) \) and \(f'(x) = \frac{1}{1+x^2} \), so \(f(0) = 0 \) and \(f'(0) = 1 \). Therefore \(f(x) \approx 0 + 1(x - 0) = x \) for \(x \) close to 0, and \(\arctan(0.1) \approx 0.1 \).