MAT 17A Fall 2023 Solutions to homework 7

In all problems:

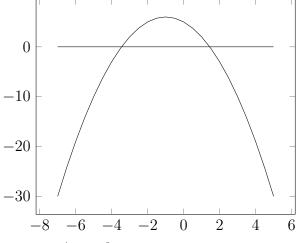
- Find the domain, vertical and horizontal asymptotes
- Find the intervals where the function is increasing or decreasing
- Find all local maximums and minimums
- Find the intervals where the function is concave up or down, and the inflection points
- Graph the function using this information

1. $f(x) = 5 - 2x - x^2$

Solution: The function is defined and continuous for all real numbers, so there are no vertical asymptotes. At $x \to \pm \infty$ we get $f(x) \to -\infty$, so there are no horizontal asymptotes either.

Next, f'(x) = -2 - 2x = -2(x+1). If $x \ge -1$ then $x+1 \ge 0$ and f'(x) < 0, so f(x) is decreasing on $[-1, +\infty)$. If $x \le -1$, then $x+1 \le 0$ and f'(x) > 0, so f(x) is increasing on $(-\infty, -1]$. The function has a local maximum at x = -1.

The second derivative equals f''(x) = -2, so f(x) is concave down everywhere. There are no inflection points.

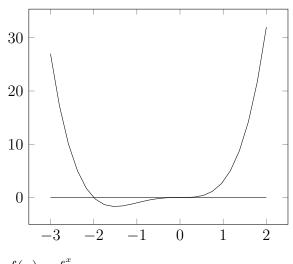


2. $f(x) = x^4 + 2x^3$

Solution: The function is defined and continuous for all real numbers, so there are no vertical asymptotes. At $x \to \pm \infty$ we get $f(x) \to \infty$, so there are no horizontal asymptotes either.

Next, $f'(x) = 4x^3 + 6x^2 = x^2(4x+6)$. Note that $x^2 \ge 0$ for all x, and $4x+6 \ge 0$ for $x \ge -\frac{3}{2}$. Therefore f(x) is increasing on $[-\frac{3}{2}, +\infty)$ and decreasing on $(-\infty, -\frac{3}{2}]$. The function has a local minimum at $x = -\frac{3}{2}$.

The second derivative equals $f''(x) = 12x^2 + 12x = 12x(x+1)$. We have $f''(x) \ge 0$ for $x \ge 0$ and $x \le -1$, and $f''(x) \le 0$ for $-1 \le x \le 0$. Therefore the function is concave down on [-1, 1] and concave up on $(-\infty, -1] \cup [0, +\infty)$. There are inflection points at x = -1 and x = 0.



3.
$$f(x) = \frac{e^x}{x}$$

Solution: The function is defined for $x \neq 0$. Since $\lim_{x\to 0} \frac{e^x}{x} = \infty$, there is a vertical asymptote at x = 0. To find horizontal asymptotes, we compute the limits at $\pm \infty$:

1) $\lim_{x\to+\infty} \frac{e^x}{x} = (L'Hospital Rule) = \lim_{x\to+\infty} \frac{e^x}{1} = +\infty.$ 2) $\lim_{x\to-\infty} e^x = 0$, so $\lim_{x\to-\infty} \frac{e^x}{x} = 0.$ Therefore the function has a horizontal asymptote y = 0 at $x \to -\infty$. The first derivative equals (by Quotient Rule):

$$f'(x) = \frac{e^x \cdot x - e^x \cdot 1}{x^2} = \frac{e^x(x-1)}{x^2}$$

Since $e^x > 0$ and $x^2 > 0$ for all $x \neq 0$, we have f'(x) > 0 for x > 1 and f'(x) < 0 for x < 1. Therefore the function is decreading on $(-\infty, 0) \cup (0, 1]$ and increasing on $[1, +\infty)$. There is a local minimum at x = 1.

The second derivative equals

$$f''(x) = \frac{\left[e^x(x-1) + e^x \cdot 1\right] \cdot x^2 - e^x(x-1) \cdot 2x}{x^4} = \frac{e^x(x^3 - x^2 + x^2 - 2x^2 + 2x)}{x^4} = \frac{e^x(x^3 - 2x^$$

Here we used that $[e^x(x-1)]' = e^x(x-1) + e^x \cdot 1$ by Product Rule. Now $x^3 - 2x^2 + 2x = x(x^2 - 2x + 2)$ and $x^2 - 2x + 2 = (x-1)^2 + 1 > 0$, also $e^x > 0$ and $x^4 > 0$ for all $x \neq 0$. Therefore f''(x) > 0 for x > 0 and f''(x) < 0 for x < 0, so f(x) is concave down on $(-\infty, 0)$ and concave up on $(0, +\infty)$

