In all problems:

- Find the domain, vertical and horizontal asymptotes
- Find the intervals where the function is increasing or decreasing
- Find all local maximums and minimums
- Find the intervals where the function is concave up or down, and the inflection points
- Graph the function using this information

1. \(f(x) = 5 - 2x - x^2 \)

 Solution: The function is defined and continuous for all real numbers, so there are no vertical asymptotes. At \(x \to \pm \infty \) we get \(f(x) \to -\infty \), so there are no horizontal asymptotes either.

 Next, \(f'(x) = -2 - 2x = -2(x + 1) \). If \(x \geq -1 \) then \(x + 1 \geq 0 \) and \(f'(x) < 0 \), so \(f(x) \) is decreasing on \([-1, +\infty)\). If \(x \leq -1 \), then \(x + 1 \leq 0 \) and \(f'(x) > 0 \), so \(f(x) \) is increasing on \((-\infty, -1]\). The function has a local maximum at \(x = -1 \).

 The second derivative equals \(f''(x) = -2 \), so \(f(x) \) is concave down everywhere. There are no inflection points.

![Graph of f(x) = 5 - 2x - x^2](image)

2. \(f(x) = x^4 + 2x^3 \)

 Solution: The function is defined and continuous for all real numbers, so there are no vertical asymptotes. At \(x \to \pm \infty \) we get \(f(x) \to \infty \), so there are no horizontal asymptotes either.

 Next, \(f'(x) = 4x^3 + 6x^2 = x^2(4x + 6) \). Note that \(x^2 \geq 0 \) for all \(x \), and \(4x + 6 \geq 0 \) for \(x \geq -\frac{3}{2} \). Therefore \(f(x) \) is increasing on \([-\frac{3}{2}, +\infty)\) and decreasing on \((-\infty, -\frac{3}{2}]\). The function has a local maximum at \(x = -\frac{3}{2} \).

 The second derivative equals \(f''(x) = 12x^2 + 12x = 12x(x + 1) \). We have \(f''(x) \geq 0 \) for \(x \geq 0 \) and \(x \leq -1 \), and \(f''(x) \leq 0 \) for \(-1 \leq x \leq 0 \). Therefore the function is concave down on \([-1, 1]\) and concave up on \((-\infty, -1] \cup [0, +\infty)\). There are inflection points at \(x = -1 \) and \(x = 0 \).
3. \(f(x) = \frac{e^x}{x} \)

Solution: The function is defined for \(x \neq 0 \). Since \(\lim_{x \to 0} \frac{e^x}{x} = \infty \), there is a vertical asymptote at \(x = 0 \). To find horizontal asymptotes, we compute the limits at \(\pm \infty \):

1) \(\lim_{x \to \infty} \frac{e^x}{x} = (\text{L'Hospital Rule}) = \lim_{x \to \infty} \frac{e^x}{1} = +\infty. \)
2) \(\lim_{x \to -\infty} e^x = 0, \) so \(\lim_{x \to -\infty} \frac{e^x}{x} = 0. \)

Therefore the function has a horizontal asymptote \(y = 0 \) at \(x \to -\infty \).

The first derivative equals (by Quotient Rule):

\[
 f'(x) = \frac{e^x \cdot x - e^x \cdot 1}{x^2} = \frac{e^x (x-1)}{x^2}.
\]

Since \(e^x > 0 \) and \(x^2 > 0 \) for all \(x \neq 0 \), we have \(f'(x) > 0 \) for \(x > 1 \) and \(f'(x) < 0 \) for \(x < 1 \). Therefore the function is decreasing on \((-\infty, 0) \cup (0, 1]\) and increasing on \([1, +\infty)\).

There is a local minimum at \(x = -1 \).

The second derivative equals

\[
 f''(x) = \frac{e^x (x-1) + e^x \cdot 1 \cdot x^2 - e^x (x-1) \cdot 2x}{x^4} = \frac{e^x (x^3 - 2x^2 + 2x)}{x^4} = \frac{e^x (x^3 - 2x^2 + 2x)}{x^4}
\]

Here we used that \([e^x (x-1)]' = e^x (x-1) + e^x \cdot 1 \) by Product Rule. Now \(x^3 - 2x^2 + 2x = x(x^2 - 2x + 2) \) and \(x^2 - 2x + 2 = (x-1)^2 + 1 > 0 \), also \(e^x > 0 \) and \(x^4 > 0 \) for all \(x \neq 0 \). Therefore \(f''(x) > 0 \) for \(x > 0 \) and \(f''(x) < 0 \) for \(x < 0 \), so \(f(x) \) is concave down on \((-\infty, 0)\) and concave up on \((0, +\infty)\).