MAT 17A Fall 2023

Solutions to homework 8

1. Use L'Hospital Rule to compute the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}} .
$$

Solution: By L'Hospital Rule we get

$$
\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{2 x} .
$$

At $x=0$ the numerator equals $e^{0}-e^{0}=1-1=0$, and the denominator equals 0 , so we can apply L'Hospital Rule again:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{2}=\frac{1+1}{2}=1 .
$$

2. For a fish swimming at a speed v relative to the water, the energy expenditure per unit time is proportional to v^{3}. It is believed that migrating fish try to minimize the total energy required to swim a fixed distance. If the fish are swimming against a current $u(u<v)$, then the time required to swim a distance L is $L /(v-u)$ and the total energy E required to swim the distance is given by

$$
E(v)=a v^{3} \cdot \frac{L}{v-u} .
$$

where a is the proportionality constant. Determine the value of v that minimizes $E(v)$.

Solution: We compute the derivative $E^{\prime}(v)$ by Quotient Rule keeping in mind that a, L and u are constant:

$$
\begin{gathered}
E^{\prime}(v)=a L\left(\frac{v^{3}}{v-u}\right)^{\prime}=a L \frac{3 v^{2}(v-u)-v^{3} \cdot 1}{(v-u)^{2}}= \\
a L \frac{v^{2}(3 v-3 u-v)}{(v-u)^{2}}=a L \frac{v^{2}(2 v-3 u)}{(v-u)^{2}} .
\end{gathered}
$$

The critical points satisfy $v=0$ (which makes no sense, fish is not moving) and $2 v=3 u$, so $v=\frac{3}{2} u$.
3. A box with a square base and open top must have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.

Solution: Let x be the side of the base and h is the height of the box. Then $x^{2} h=32000$, and $h=\frac{32000}{x^{2}}$. Now the area without the top equals

$$
S(x)=x^{2}+4 x h=x^{2}+4 x \cdot \frac{32000}{x^{2}}=x^{2}+\frac{128000}{x} .
$$

Now

$$
S^{\prime}(x)=2 x-\frac{128000}{x^{2}}=0
$$

is equivalent to $2 x^{3}=128000, x^{3}=64000$, and $x=40 \mathrm{~cm}$. Now

$$
h=\frac{32000}{x^{2}}=\frac{32000}{1600}=20 \mathrm{~cm} .
$$

