Applications of $\pi^{\prime}\left(s^{\prime}\right)=\mathbb{Z}$
$2 / 6$

Fundamental Theorem of Alsebra

- If $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ then $p(z)$ has a complex roots

Proof: Fix a large circle of radius R
exercise: For R sufficiently large $+|z|=R, \quad|z|^{n}=R^{n}>|e(z)|$

BWOC suppose $p(z) \neq 0 \forall z$.

$$
f(z)=\frac{p(z)}{\|p(z)\|}: s_{R}^{\prime} \rightarrow s^{\prime}
$$

Claim: $f(z)$ has degree w

$$
\text { Pos : } f \in(z)=\frac{z^{n}+t \varphi(z)}{\left\|z^{n}+t \varphi(z)\right\|}: s_{R}^{\prime} \rightarrow s^{\prime}
$$

when $t=0 \quad \frac{z^{n}}{\| z^{n}-11}=\left(\frac{z}{2}\right)^{n}$

$$
t=1 \quad \frac{p(2)}{\|p(z)\|}=f(z)
$$

and well-defined since $|z|^{n}>|e(z)| \geq|t e(z)|$
s. $z^{n}+t e(z) \neq 0$.
$\Rightarrow f_{0} \sim f_{1}$ homatopic $\Longleftrightarrow \operatorname{des} f_{1}=\operatorname{des} f_{2}=w$

Consider a family of circles with radius $\rightarrow 0$ and fixed point (R, O)

Then $g_{e}(z)=\left.f(z)\right|_{\text {vince of }} ^{\text {vale } t z}$

$$
g_{1}(z)=f(z) \quad \text { and } \quad g_{0}(z)=\text { constant mop }
$$

s. $f(z) \sim$ constant map \Rightarrow des $f(z)=0$

Vector Fields on \mathbb{R}^{2}

$$
V: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

- drank - vector at eves pout $p \longrightarrow$ Veep)
- Singular point $v=0$

$\gamma=$ smooth closed curve in \mathbb{R}^{2}

$$
\gamma \longleftrightarrow \text { me } \quad \gamma: s^{\prime} \rightarrow \mathbb{R}^{2}
$$

An invanaut of the vector field using γ is:

Def The index of a vector fielat v along γ is the degree of the map

$$
\frac{v(\gamma(t))}{\|v(\gamma(t))\|}: s^{\prime} \longrightarrow s^{\prime}
$$

assume no singular points of v on γ

Properties of the Index
(1) Invariant under homotopy of γ for fixed v.
(assuming we donct cross a singular point)

- By Sardis Theorem y singular points are belated imeavure 0 , and $\operatorname{deg} \gamma(v)=\operatorname{deg}_{\rho^{\prime}}(v)$ if $\left.\gamma \sim \gamma\right)$
(2) Invariant under homotipy of V for fixed γ (assuming $V(\gamma(t)) \neq 0$ everywhere)
(3) Index is Additive

$$
\operatorname{deg}_{\gamma}(v)=\operatorname{deg} \gamma^{\prime}(v)+\operatorname{deg} \gamma^{\prime \prime}(v)
$$

\rightarrow shank γ to © r

Use homotopy of $\gamma+$ composition of loops in $\pi_{1}\left(s^{\prime}\right)$ deg : $\pi_{1}\left(s^{\prime}\right) \rightarrow \mathbb{Z}$ is a soup homomorphism
(4) Index does not depend on parametrization
(as long as you so in the same direction)
(5) If there are no singular points of v inside γ then $\operatorname{deg} \gamma(v)=0 \quad$ (assuming γ bounds a disk)

Def The index of a singular point p of v is the index of v along a small circle around P (onented c.c., radius doesn't matter)

Thu For any $\gamma, \quad \operatorname{deg} \gamma(V)=\underset{\gamma}{\gamma} \underset{\text { inside } \gamma}{ } \gamma$

corollary

- If $\operatorname{deg} \gamma(v) \neq 0$ then V has a singular point inside γ
- If v always points outside of γ then $\operatorname{deg} \gamma(v)=1$ and v must have a singular point inside γ

Idea: outward angle between $v(\gamma(t))$ and hormel vector $\bar{n}(\gamma(t))$ is $\mid=11$ than $\pi / 2$. $v_{t}=v_{t}+\bar{n}(1-t) \neq 0$ since $\left(v_{t}, \bar{n}\right)>0$

Brouwers Fixed Point Theorem
Any continuous map $D^{2} \xrightarrow{\varphi} D^{2}$ has a fixed point $\binom{\exists}{\varphi(p)=p}$

Poof: Construct a vector field V. on $\partial D^{2}=s^{\prime}$, this v.f. points inwards.
So der $\partial p^{2}(v)=1$
$\Rightarrow v$ has a singular point inside D^{2}. Hence $\varphi(p)=p$

