$2 / 3$

Theorem $\quad \pi_{1}\left(s^{\prime}\right)=\mathbb{Z}$

$$
\pi_{1}\left(S^{\prime}\right)=\left\{\text { loop } \quad \gamma:\{0,1] \rightarrow S^{\prime} \quad \mid \gamma(0)=\gamma(1)=(1,0)\right\} / \sim
$$

Want a degree map, deg: $\left\{\right.$ loops in $\left.5^{\prime}\right\} \rightarrow \mathbb{Z}$
suck that - Two loops of different degrees are not homotpic

- Two loops of the same desiree are homotopic

$$
\cdot \operatorname{deg}\left(\gamma_{1} * \gamma_{2}\right)=\operatorname{deg}\left(\gamma_{1}\right)+\operatorname{deg}\left(\gamma_{2}\right)
$$

Consider the map

$$
\begin{aligned}
p: \mathbb{R} & \longrightarrow S^{\prime} \\
\varphi & \longmapsto(\cos \varphi, \sin \varphi) \quad \text { in } \mathbb{R}^{2} \approx e^{i \varphi}
\end{aligned}
$$

infinite \# of points in $\mathbb{R} \longleftrightarrow$ point in $s 1$

$$
e+2 \pi k \quad \longmapsto p(e)
$$

Key Lemma
(1) Given a loop $\gamma:[0,1] \rightarrow S^{\prime}$ such that $\partial(0)=\gamma(1)=(1,0)$

There is a unique lift $f_{\gamma}:[0,1] \rightarrow \mathbb{R}$ of γ
such that

$$
\begin{aligned}
\gamma(s) & =p_{0} f_{\gamma}(s) \\
& =\left(\cos f_{\gamma}(s), \sin f_{\gamma}(s)\right) \\
& =e^{i f_{\gamma}(s)}
\end{aligned}
$$

and $f_{\gamma}(0)=0$
γ is a loop $\Longleftrightarrow \gamma(1)=(1,0)$

$$
\Longleftrightarrow f_{\gamma}(1)=2 \pi K
$$

for some k

Def the degree of $~$ loop γ is K defined above
(1.0) loop around twice
desire $\gamma=2$

Lemma cont.
(2) Given a homotopy of loops γt,
\exists homotory of lifts $f_{r t}$ continuous in t

Lemma \Rightarrow Theorem
Proof: If γ_{t} is a homotopy of loops, $f_{r e}:[0,1] \rightarrow \mathbb{R}$ is a homotopy of lifts and fret $(1)=2 \pi K(t)$ So $k(t):[0,1]_{t} \rightarrow \mathbb{Z}$ is a continuous function hence $k(t)$ is a constant map.

Conclusion: $\gamma_{0} \sim \gamma_{1} \Longrightarrow$ dea $\gamma_{0}=$ deg γ_{1}

Conversely, suppose we know deg $\gamma_{0}=\operatorname{deg} \gamma_{1}=k$

Define $f_{t}(s)=t f_{r_{0}}(s)+(1-t) f_{\gamma_{1}}(s)$
then $f_{t}(0)=0$ and $f(c)=2 \pi k$

Define $\gamma_{t}(s)=\left(\cos f_{t}(s), \sin f_{t}(s)\right)$
$\Rightarrow \gamma_{t}$ is a homotopy between γ_{0}, γ_{1}
so $\partial_{0} \sim \gamma_{1}$ iff $\operatorname{dg} \gamma_{0}=\operatorname{deg} \gamma_{1}$

Note we can consider linear function $f_{k}(s)=2 \pi k s$ $\gamma_{k}(s)=(\cos (2 \pi k s), \sin (2 \pi k s))$ is a map of degree K

for $t<8$,
$r(t) \in u$

Claim: $p^{-1}(u)=\bigsqcup_{k \in \mathbb{Z}} V_{k}, \quad V_{k}$ open in \mathbb{R}
and each V_{K} homeomorphic to U

* Example of a covering space
- Suppose $\gamma(t)=[0,1] \rightarrow s^{\prime}$ st. $\gamma\left(\left[t, t^{\prime}\right]\right) \leq M$ for some $t<t^{\prime}$ If $\gamma(t) \in U$ and $t^{\prime}-t<\delta$ for rome δ, then $\gamma\left(\left[t, t^{\prime}\right]\right) \in U$
- For each $k \exists$ Unique lift \exists of $\gamma\left(\left[t, t^{\prime}\right]\right)$ contained in V_{k} $f\left(\left[t, t^{\prime}\right]\right) \subset V_{k}, \gamma=(\cos f, \sin f)$
- Use a homes $V_{k} \cong U$

Since $f\left(\left[t, \epsilon^{\prime}\right]\right)$ is connected, it is contained in only one V_{k}

Winding Number (\# of times a loup wraps amend the ongin)

$$
\gamma: S^{1} \longrightarrow \mathbb{R}^{2} \backslash \text { So } \quad\left(\text { loop in } \mathbb{R}^{2} \backslash(0)\right)
$$

$\frac{\gamma}{\|\gamma\|}: S^{\prime} \rightarrow s^{\prime}$ has a winding number $\operatorname{deg}\left(\frac{r}{\|a\|}\right)$

Vector Field on $\mathbb{R} n$vector at every point

$$
\frac{v}{\|v\|}: s^{\prime} \rightarrow s^{\prime}
$$

