MAT 215C, Spring 2021 Homework 6

Due before $3: 10$ on Monday, May 10

Please write the homework solutions in connected sentences and explain your work. Mark the answers to each question. Scan or take pictures of your homework and upload it to Gradescope before due time.

In the problems below $\left[x_{0}: x_{1}: x_{2}\right]$ denote the homogeneous coordinates on $\mathbb{C P}^{2}$.

1. (a) Compute the intersection index of $\mathbb{C P}^{1} \subset \mathbb{C P}^{2}$ with itself.
(b) Use part (a) to describe the intersection form on $H_{2}\left(\mathbb{C P}^{2}\right)$.
2. Let $f\left(x_{0}, x_{1}, x_{2}\right)$ be a homogeneous polynomial of degree d which defines a smooth complex 1-submanifold (and hence smooth real 2submanifold) $M_{f}=\{f=0\}$ of $\mathbb{C P}^{2}$.
(a) Compute the intersection index of M_{f} with a generic line $\left(\mathbb{C P}^{1}\right)$.
(b) Use part (a) to compute the image of the fundamental class $\left[M_{f}\right]$ in $H_{2}\left(\mathbb{C P}^{2}\right)$.
3. Let $f\left(x_{0}, x_{1}, x_{2}\right)$ and $g\left(x_{0}, x_{1}, x_{2}\right)$ be two homogeneous polynomials of degrees p and q. Assume that M_{f} and M_{g} are smooth and transversal to each other. In how many points do they intersect?
4. Choose a basis in H_{1} of the genus g orientable surface, and compute the intersection form in this basis.
