MAT 21B, Fall 2016 Solutions to Homework Assignment 4

Section 6.1: 62. (10 points) The arch $y=\sin x, 0 \leq x \leq \pi$ is revolved about the line $y=c, 0 \leq c \leq 1$ to generate a solid.
a) Find the value of c which minimizes the volume of the solid.
b) Find the value of c which maximizes the volume of the solid.

Solution: The volume of the solid is given by the equation:

$$
V(c)=\int_{0}^{\pi} \pi(\sin x-c)^{2} d x=\pi \int_{0}^{\pi}\left(\sin ^{2} x-2 c \sin x+c^{2}\right) d x .
$$

Now

$$
\begin{gathered}
\int_{0}^{\pi} c^{2} d x=\pi \cdot c^{2}, \int_{0}^{\pi} 2 c \sin x d x=-\left.2 c \cos x\right|_{0} ^{\pi}=-2 c(-1-1)=4 c \\
\int_{0}^{\pi} \sin ^{2} x d x=\int_{0}^{\pi} \frac{1-\cos (2 x)}{2} d x=\left.\left(\frac{x}{2}-\frac{1}{4} \sin (2 x)\right)\right|_{0} ^{\pi}=\frac{\pi}{2}
\end{gathered}
$$

Therefore

$$
V(c)=\pi\left(\frac{\pi}{2}-4 c+\pi c^{2}\right)
$$

To find the minimal and maximal values of c, we need to compute the values of V at the critical points and at the endpoints. Since $V^{\prime}(c)=\pi(-4+2 \pi c)$, the only critical point is given by the equation $V^{\prime}(c)=0 \Leftrightarrow c=2 / \pi$. We have:

$$
\begin{gathered}
V(0)=\pi^{2} / 2 \approx 4.93, V(1)=\pi\left(\frac{\pi}{2}-4+\pi\right)=\pi(3 \pi / 2-4) \approx 2.23 \\
V(2 / \pi)=\pi\left(\frac{\pi}{2}-8 / \pi+2 \pi / \pi^{2}\right)=\pi(\pi / 2-6 / \pi) \approx 0.93
\end{gathered}
$$

Therefore the minimal volume is at $c=2 / \pi$ and the maximal volume is at $c=0$.
63. (10 points) Consider the region R bounded by the graphs of $y=$ $f(x)>0, x=a, x=b$ and $y=0$. If the volume of the solid formed by revolving R about the x-axis is 4π and the volume of the solid formed by revolving R about the line $y=-1$ is 8π, find the area of R.

Solution: We have

$$
\int_{a}^{b} \pi f(x)^{2} d x=4 \pi, \quad \int_{a}^{b} \pi\left((f(x)+1)^{2}-1^{2}\right) d x=8 \pi
$$

so

$$
\int_{a}^{b} f(x)^{2} d x=4, \int_{a}^{b}\left(f^{2}(x)+2 f(x)+1-1\right) d x=\int_{a}^{b}\left(f^{2}(x)+2 f(x)\right) d x=8
$$

Therefore $\int_{a}^{b} 2 f(x) d x=4$, and the area of R equals $\int_{a}^{b} f(x) d x=2$.
Section 6.2: 6.(10 points) Find the volume of the solid generated by revolving around the y-axis the region bounded by the graph of $y=\frac{9 x}{\sqrt{x^{3}+9}}$, $y=0$ and $x=3$.

Solution: By the shell method we get

$$
V=\int_{0}^{3} 2 \pi x \cdot \frac{9 x}{\sqrt{x^{3}+9}} d x=\int_{0}^{3} \frac{18 \pi x^{2}}{\sqrt{x^{3}+9}} d x
$$

Let $u=x^{3}+9$, then $d u=3 x^{2} d x$, so

$$
V=\int_{9}^{36} \frac{6 \pi d u}{\sqrt{u}}=\left.12 \pi \sqrt{u}\right|_{9} ^{36}=12 \pi(6-3)=36 \pi
$$

Section 6.3: 26.(10 points) The astroid is given by the equation

$$
x^{2 / 3}+y^{2 / 3}=1 .
$$

Find the length of the astroid.
Solution: In the first quadrant the astroid is given by the equation

$$
y^{2 / 3}=1-x^{2 / 3} \Leftrightarrow y=\left(1-x^{2 / 3}\right)^{3 / 2} .
$$

By Chain Rule

$$
y^{\prime}=\frac{3}{2}\left(1-x^{2 / 3}\right)^{1 / 2} \cdot\left(-\frac{2}{3} x^{-1 / 3}\right)=-x^{-1 / 3}\left(1-x^{2 / 3}\right)^{1 / 2}
$$

Now

$$
1+\left(y^{\prime}\right)^{2}=1+x^{-2 / 3}\left(1-x^{2 / 3}\right)=1+x^{-2 / 3}-1=x^{-2 / 3}
$$

The length of one quarter of the astroid equals

$$
\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{1} x^{-1 / 3} d x=\left.\frac{3}{2} x^{2 / 3}\right|_{0} ^{1}=\frac{3}{2} .
$$

The total length of the astroid equals $4 \cdot \frac{3}{2}=6$.

