

MATH 21B, practice problems for Midterm 2

This practice sheet contains more problems than the actual exam.

1. Consider the function $f(x) = \frac{1}{2}(e^x + e^{-x})$.
 - a) Find the length of the curve given by the equation $y = f(x)$, $-1 \leq x \leq 1$.
 - b) Let R be the region bounded by the graph of $f(x)$ and the lines $x = 1, x = -1$ and $y = 0$. Find the area of R .
 - c) Find the coordinates of the center of mass of R .
 - d) Consider the solid obtained by rotation of R about the x -axis. Find its volume and surface area.
 - e) Consider the solid obtained by rotation of R about the y -axis. Find its volume.
2. A plate is bounded by the parabola $y = x^2$ and the line $y = 1$. Find its center of mass.
3. Compute the following integrals:
 - a)
$$\int \frac{3x+5}{x^2+2x} dx$$
 - b)
$$\int \frac{3x+5}{x^2+2x+2} dx$$
 - c)
$$\int \sin(3x) \cos(5x) dx$$
 - d)
$$\int x \sqrt{4-x^2} dx$$
 - e)
$$\int x^2 \ln x dx$$
4. Compute the following definite integrals:
 - a)
$$\int_2^3 \frac{3x+5}{x^2+2x+1} dx$$
 - b)
$$\int_0^\pi x \sin(5x) dx$$

c)

$$\int_0^1 \frac{x^3 + 2x^2 + 3x + 4}{x + 1} dx$$

d)

$$\int_0^1 \frac{x^3 + 2x^2 + 3x + 4}{x^2 + 1} dx$$

e)

$$\int_0^{\pi} \sin^3 x \cos^5 x dx$$