Recap: $X=$ smooth, projective
curve ($\operatorname{dim} x=1)$
$X(\mathbb{C})=$ smooth complex $1-$ dim manifold
= smooth, correct, ovientable surface
\Rightarrow genes os surface
Def The geometric genus of X :

$$
P_{s}(x)=\operatorname{dim}\left\{\begin{array}{c}
\text { global regular } \\
\text { i-firunular } \\
\text { on } x
\end{array}\right\}=\Gamma\left(\Omega_{x}^{\prime}\right)
$$

Fact $p_{g}(x)=\operatorname{genns}(X(\mathbb{C}))$
Ex $X=\mathbb{P}^{\prime} \quad x(\mathbb{E})=\left(P^{\prime} \sim s^{2} \quad g=0\right.$

$$
X x=\left\{y^{2}=x(x-1)(x-2)\right\} \subset \mathbb{P}^{2}
$$

Last time: $p_{5}(x)=1$, so $X(\mathbb{C})$ is a toms. Why? How th see this typologically?
Recall: $X=$ top -grace (CN complex) $x(X)=\sum(-1)^{i} \neq(i-c e l l s)$ Enter characteristic

- Does nat de emend an cell docarmacition
- Does not depend or cell decouprition \Rightarrow invariant \& X !
- If $z \subset X$ closed then

$$
x(x)=x(z)+x(x \backslash z) \quad \text { (additive) }
$$

- If $Y \xrightarrow{\pi} X$ degree n covering map then $X(Y)=n X(X)$
- X(ggnus g surface $)=2-2 g$

So we can determine the genus from $X \prod_{0}$
Ex $X \cap A \|^{2}=\left\{y^{2}=\underset{\downarrow_{1}^{\pi}}{x(x-1)(x-2)\}}\right.$

1) $\pi^{-1}(\{0\}), \pi^{-1}(\{1\}), \pi^{-1}(\{2\})=1$ point
2) $\pi^{-1}(x)= \pm \sqrt{x(x-1)(x-2)}=2$ points for $x \neq 0,1,2$ (2 complex roots)
In fact, π is a degree 2 covering map over $\mathbb{C} \backslash\{0,1,2\}$ (prove it!)
over $\mathbb{C} \backslash\{0,1,2\}$ (prose it!)
Now we can compute:

$$
\begin{aligned}
& x(\mathbb{C})=(-1)^{2}=1 \\
& x(\mathbb{C} \backslash\{0,1,2\})=x(\mathbb{C})-3=1-3=-2 \\
& \left.x\left(\pi^{-1}(\mathbb{C} \backslash\{a,, 2\})\right)=2 \chi(\mathbb{C} \backslash 0,1,2\}\right)=2 \cdot(-2)=-4 \\
& \left.x\left(\left.X \cap A\right|^{2}\right)=x\left(\pi^{-1}(\mathbb{C} \backslash 0,1,2\}\right)\right)+3=-4+3=-1
\end{aligned}
$$

Finally, veecall that X has one point $[0: 1: 0]$ at ∞, so $X(X)=-1+1=0$.
Now $0=2-2 \mathrm{~g}$, so $g=1$.
Hyperelliptic curves Choose $p(x)=$ polynomial of epee d with distinct roots.
Today: assume d is even, odd is similar.
X is covered by two charts:

Transition functions: $u=1 / x, z=y / x^{2 / 2}$
Equations: $y^{2}=p(x)$ in chart (x, y)

$$
\begin{equation*}
z^{2}=u^{d} p(1 / u) \tag{4}
\end{equation*}
$$

Compatibititychere: on $U \cap V$ we get

$$
z^{2}=\left(\frac{y}{x^{d / 2}}\right)^{2}=\frac{y^{2}}{x^{d}}=\frac{p(x)}{x^{d}}=u^{d} p(/ / u) v
$$

Claim X is smooth
Pros: Che ce Jacobian in charts
$(x, y): J=\left(-p^{\prime}(x) 2 y\right) \quad n=1$
If $y=0$ then $p=0 \Rightarrow \delta(x) \neq 0$ (simple
(u, \not) : same! Note usp $p(1 / \delta)$ also las distinct root.
Gens from X: In chart (x, y) we get

$$
\begin{aligned}
x(x \cap u) & =2 x(\mathbb{C} \backslash\{\text { roth At } p\})+x(\text { root it } p) \\
& =2(1-d)+d=2-d
\end{aligned}
$$

How many points we missed?
Points "at " are when $u=0$. Note $p(x)=x^{d}+\ldots$ $\Rightarrow x_{1}^{d} p(1 / n)=\ldots+1$. At $n=0$ we get $z^{2}=1$
Two points at ∞ so $z= \pm 1$.
Finally, $x(x)=2-d+2=2-2 g$

$$
g=\frac{d-2}{2}
$$

Genus from aljelva:

$$
y^{2}=p(x) \quad 2 y d y=p^{\prime}(x) d x
$$

So rejuitor evoryblene in U.
Change coords to the other clout:

$$
\lambda x \quad \lambda(1 / 4) \quad-1 u \quad i^{d / 2} \quad z=y \quad d .
$$

$$
\begin{aligned}
& \omega=\frac{d x}{y}= \frac{d(1 / u)}{\left(z / u^{d / 2}\right)}=-\frac{d u}{u^{2}} \cdot \frac{u^{d / 2}}{z} \quad z=\frac{y}{x^{3 / 2}}=u^{\frac{d}{2}} y \\
&=-\frac{u^{\frac{d}{2}-2} d u}{z} \leftarrow \underset{(u \text { regular when }}{z \neq 0, \text { covers pts }} \\
& \text { at } \infty \\
&(u, z)=(0, \pm 1)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& x^{k} \omega=\frac{x^{k} d x}{y}=-\frac{u^{\frac{d}{2}-2} d u}{z \cdot u^{k}} \\
& \text { Tivegular } \\
& \text { in (} u, z \text {) chart } \\
& \text { when } k \leq \frac{d}{2}-2
\end{aligned}
$$

$y \omega=d x=-\frac{d u}{u^{2}} \leftarrow$ notregulan!

$$
\begin{aligned}
& \text { So } T\left(\Omega_{x}^{\prime}\right)=\operatorname{Span}\left(\omega, x \omega, \ldots x^{\frac{d}{2}-2} \omega\right) \\
& -\operatorname{Pg}(x)=\frac{d}{2}-1=\frac{d-2}{2}=g
\end{aligned}
$$

Rank there we did not we any specific embedding

Kunkthere we did not use any specific enntreding of X in \mathbb{P}^{N}. But this is OK.
Rank We can consider the homogenized equation

$$
\begin{aligned}
& x_{1}^{2} x_{2}^{d-2}=\tilde{p}\left(x_{0}, x_{2}\right) \quad \text { homogenization } \\
& u=\left(x=\frac{x_{0}}{x_{2}}, y=\frac{x_{1}}{x_{2}}\right) \\
& v=\left(u=\frac{x_{2}}{x_{0}}, z=\frac{y}{x^{1 / 2}}=\frac{x_{1} x_{2}^{\partial}-1}{x_{0}^{d / 2}}\right)
\end{aligned}
$$

