Review of cahomology
More info: Hatcher, Chapter3.
(1) Defirition $\rightarrow C_{i}(x, G) \xrightarrow{\partial} C_{i-1}(x, G) \rightarrow \ldots$

Your farounite (cellular, siguclar, simplicial..) chain complex computing $H_{*}(X, G)$ with nefficients in G. Define

$$
\begin{aligned}
& C^{i}(x, G)=C_{i}(x, G)^{2}=\operatorname{Hom}\left(C_{i}(x, G), G\right) \\
& \rightarrow C^{i-1}(x, G) \xrightarrow{\partial^{*}} C^{i}(y, G) \rightarrow \ldots \\
&\left(\partial^{*}\right)^{2}=\left(\partial^{2}\right)^{*}=0 \Rightarrow \text { complex } \\
& H^{i}(x, G)=\text { howology of }\left(C^{i}(x, \sigma), \partial^{*}\right)=
\end{aligned}
$$

colononology of $\left(X_{1}, B\right)$.
Ex $X=\mathbb{R} P^{2}, G=\mathbb{R}$ oot

$$
\begin{array}{rl}
C_{2} & \rightarrow C_{1} \rightarrow C_{0} \\
{ }^{1} & 2 \\
\mathbb{Z} & \longrightarrow \\
H_{2}=0 & H_{1}=E_{2}
\end{array} H_{0}=\mathbb{Z}
$$

$$
C^{2} \leftarrow c^{\prime} \longleftarrow C^{0}
$$

$$
\stackrel{1}{2} \leftarrow \stackrel{\|}{\gtrless} \div \|
$$

$$
H^{2}=\mathbb{Z} \quad H^{\prime}=0 \quad H^{0}=\mathbb{Z}
$$

$\underline{\underline{R x}} X=\mathbb{R} P^{n}, G=\mathbb{Z}_{2}$ cof
$C_{x}: \mathbb{K}_{2} \xrightarrow{0} \mathbb{K}_{2} \rightarrow \ldots \mathbb{Z}_{2}{\underset{\sim}{2}}^{\rightarrow} \mathbb{Z}_{2}$

$$
c^{*}: x_{1} t^{\circ} x, \ldots \ldots c
$$

R्x $X=\mathbb{C} P^{n}, G=\mathbb{Z}$ enen irmensinal alls

$$
\begin{aligned}
& C_{*}: \mathbb{Z} \rightarrow 0 \rightarrow \mathbb{K} \rightarrow 0 \rightarrow \ldots \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \mathbb{Z} \\
& C^{*}: \mathbb{Z} \leftarrow 0 \in \mathbb{K} \in 0 \in \ldots . \mathbb{Z} \in 0 \in \mathbb{Z} \\
& H^{i}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)=\left\{\begin{array}{l}
\mathbb{Z}, i=0,2,4, \ldots 2 n \\
0, \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

(2) Projerties:

- Functriality $x \xrightarrow[f]{Y} f^{*}=H^{i}(y) \rightharpoonup H^{\prime}(x)$
- Cup product: $\alpha \in H^{i}(x), \beta \in H^{j}(x)$

$$
\alpha u \beta \in H^{i+j}(x)
$$

Associative, super commutative

$$
\beta \cup \alpha=(-1)^{i j} \alpha \cup \beta
$$

Functorial: $f^{*}(\alpha \cup \beta)=f^{*} \alpha \cup \delta^{*} \beta$.

- Poincavé duality
$V(: X=$ snwoth u-dimensional connact manifold

$$
P D: H^{i}\left(x, x_{2}\right) \xrightarrow{\sim} H_{n-i}\left(x, x_{2}\right)
$$

$$
H D: H\left(X, K_{2}\right) \rightarrow H_{n-i}\left(X, K_{2}\right)
$$

v_{2} : all \& the above + oriented

$$
P D: H i(x, \mathbb{Z}) \simeq H_{n-i} \overline{(x, \mathbb{Z})} \text {. }
$$

If $X_{\text {is }}$ connected then $H^{h}\left(x, \mathbb{Z}_{2}\right) \simeq H_{0}\left(x_{1}, z_{2}\right)$ \mathbb{Z}_{2}
If x is convected then $H^{n}(x, x) \simeq H_{0}\left(x, Z_{C}\right)$ \simeq Z.
Fundamental class $[x] \in H_{n}(x, \mathbb{Z})$ if riented

$$
1 \in H^{0}(x) \stackrel{P D}{\longleftrightarrow}[x] \in H_{n}(x) \quad H_{n}\left(x, Z_{2}\right) \text { any. }
$$

(3) Computations X smooth, $\operatorname{dim} X=n$ $Y \subset X$ smooth subvariety dur ${ }^{2} d_{1}$
tU

$$
i_{y}: Y \longrightarrow X
$$ to dented

$[Y]=i_{Y}[Y] \in H_{d}(X)$ fund. class \& Y

$$
[z] \leqslant H_{a}(x)
$$

$$
\alpha=P D[Y] \in H^{h-d}(X)
$$

($\mathbb{Z}_{2} \operatorname{cost} / \mathbb{Z}$ if rentable) $\quad \beta=P D[z] \in H^{n-\alpha}(x)$
Fact Assume Y and Z are transversal. Then

$$
\alpha \cup \beta=P D[y \cap Z]
$$

aup-1メL「いふ」

$$
d+h_{2}-h
$$

Thm（a）$H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2}[a] /\left(a^{n+1}=0\right) \quad a \in H^{\prime}$
as a ring
（b）$H^{*}\left(\mathbb{C} P^{n}, \mathbb{Z}\right) \simeq \mathbb{Z}[b]\left(b^{n+\pi}=0\right) \quad b \in H^{2}$ ．
Pf：We do（b），（a）is similar．

$$
H^{2 i}\left(\mathbb{C} P^{n}, \mathbb{Z}\right) \stackrel{P D}{=} H_{2 n-2 i}\left(\mathbb{C} P^{4}, \mathbb{Z}\right) \simeq \mathbb{Z}
$$

$P D\left[Y_{n-i}\right] \subset \longrightarrow$ spanned by $(n-i)$ plane Y_{n-i}

$$
H_{\lambda^{\prime \prime}}^{H^{2}} \longleftrightarrow H_{2 n-2}\left(C P^{h}, \lambda\right] \text { spauned by }
$$

$\left\langle b^{\prime \prime}\right\rangle$
a hyjerplave H

$$
b=P D[H]
$$

$$
b^{i}=b v-\quad v b=P D(H \cap H \cap \ldots \cap H)=
$$

$$
=P D\left(H_{w} \cap \ldots H_{i}\right)=\begin{aligned}
& \text { int transerse, } \\
& \text { ferturb }
\end{aligned}
$$

i trausvere horerplams

$$
=P D\left[Y_{n-i}\right]=\text { generator of } H^{i i}
$$

So $b^{i} \neq 0$ for $i=0, \ldots h$ and geverades $H^{2 i}\left(C p^{4}\right)$ ．

