Characteristic classes, Fall 2023 Homework 2

1. Compute $\omega_i(TM)$ where M is a genus g surface.

2. Suppose that an *n*-dimensional manifold M can be immersed in \mathbb{R}^{n+1} . Show that $\omega_i(TM) = (\omega_1(TM))^i$.

3. Consider the standard embedding of \mathbb{RP}^k into \mathbb{RP}^n for k < n. Find all Stiefel-Whitney classes of the normal bundle for this embedding.

4. Prove the following theorem of Stiefel. If $n+1 = 2^r m$ with m odd, then there do not exist 2^r vector fields on the projective space \mathbb{RP}^n which are everywhere linearly independent.

5. A manifold M is said to admit a field of tangent k-planes if its tangent bundle admits a sub-bundle of dimension k.

a) Show that \mathbb{RP}^n admits a field of tangent 1-planes if and only if n is odd. b) Show that \mathbb{RP}^4 and \mathbb{RP}^6 do not admit fields of tangent 2-planes.