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Abstract. This paper proposes an appealing framework for analyzing total variation min-
imization (TV-min) and extends Candès, Romberg and Tao’s proof of exact recovery of
piecewise constant objects with noiseless incomplete Fourier data to the case of noisy data.
The approach is based on reformulation of TV-min as compressed sensing of constrained
joint sparsity (CJS). TV- and 2-norm error bounds, independent of the ambient dimension,
are derived for Basis Pursuit and for Orthogonal Matching Pursuit for CJS.

1. Introduction

One of the most promising developments in imaging and signal processing of the last
decade is compressive sensing (CS) which promises reconstruction with fewer data than the
ambient dimension. The CS capability [5, 15] hinges on favorable sensing matrices and
enforcing a key prior knowledge, i.e. sparseness of the object.

Consider the linear inverse problem Y = ΦX+E where X ∈ Cm is the sparse object vector
to be recovered, Y ∈ Cn is the measurement data vector and E ∈ Cn represents the (model
or external) errors. The great insight of CS is that the sparseness of X, as measured by the
sparsity ‖X‖0 ≡ # nonzero elements in X, can be effectively enforced by `1-minimization
[10, 17]

min ‖Z‖1 subject to (s.t.) ‖ΦZ − Y ‖2 ≤ ‖E‖2.(1)

The idea of `1-minimization dates back to geophysics research in 1970’s [12, 29]. The `1-
minimizer is often a much better approximation to the sparse object than the traditional
minimum energy solution via `2-minimization because 1-norm is closer to ‖ · ‖0 than the 2-
norm. Moreover, the `1-min principle is a convex optimization problem and can be efficiently
computed. The `1-min principle is effective in recovering the sparse object with the number
of data n much less than the ambient dimension m if the sensing matrix Φ satisfies some
favorable conditions such as the restricted isometry property (RIP) [5]: Φ is said to satisfy
RIP of order k if

(1− δk)‖Z‖2
2,2 ≤ ‖ΦZ‖2

2 ≤ (1 + δk)‖Z‖2
2(2)

for any k-sparse vector Z where δk is the restricted isometry constant (RIC) of order k. RIP
has been directly established for only a few special types of matrices including independently
and identically distributed (i.i.d.) random matrices and random partial Fourier matrix which
is the randomly selected row submatrices of the discrete Fourier transform. Alternatively, CS
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techniques also enjoy performance guarantee under incoherence as measured by the mutual
coherence defined by

µ(Φ) = max
i 6=j

|
∑

k Φ∗ikΦkj|√∑
k |Φki|2

√∑
k |Φkj|2

.(3)

[15, 16]
A parallel development in image denoising pioneered by Osher and coworkers [27, 28] seeks

to enforce edge detection by total variation minimization (TV-min)

min

∫
|∇g| s.t.

∫
|g − f |2 ≤ ε2(4)

where f is the noisy image and ε is the noise level. The idea is that for the class of piecewise
constant functions, the gradient is sparse and can be effectively enforced by TV-minimization.

For digital images, TV-minimization approach to deblurring can be formulated as follows.
Let f ∈ Cp×q be a noisy complex-valued data of p × q pixels. Let T be the transforma-
tion from the true object to the noiseless measurement, modeling physical processes such
as propagation and diffraction. Replacing the total variation in (4) by the discrete total
variation

‖g‖TV ≡
∑
i,j

√
|∆1g(i, j)|2 + |∆2g(i, j)|2,

∆g = (∆1g,∆2g)(i, j) ≡ (g(i+ 1, j)− g(i, j), g(i, j + 1)− g(i, j))

we obtain

min ‖g‖TV s.t. ‖Tg − f‖2 ≤ ε(5)

cf. [7, 9].
In a breakthrough paper [3], Candès et al. show the equivalence of (5) to (1) for a random

partial Fourier matrix with noiseless data (ε = 0) and obtain a performance guarantee of
exact reconstruction of piece-wise constant objects from (5).

The main purpose of this note is to extend the result of [3] to inverse scattering with noisy
data. In this context it is natural to work with the continuum setting in which the object is
a vector in an infinite dimensional function space, e.g. `2(Rd). To tap into CS techniques,
we discretize the object function by pixelating the ambient space with a regular grid of
equal spacing `. The grid spacing ` can be thought of as the resolution length and the most
fundamental parameter of the discrete model from which all other parameters are derived.
For example, the total number of resolution cells is proportional to `−d. As we assume
that the original object is well approximated by the discrete model in the limit ` → 0, the
sparsity s of the edges of a piecewise constant object is proportional to `1−d, i.e. the object
is non-fractal. It is important to keep in mind the continuum origin of the discrete model in
order to avoid confusion about the small ` limit throughout the paper.

Specifically we aim at the following error bounds: Let V be the discretized object and V̂ a
reconstruction of V . We will propose a compressive sampling scheme that leads to the error
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bound for the TV-minimizer V̂ (Theorem 3, Section 4)

‖V − V̂ ‖TV = O(ε), `→ 0(6)

implying via the discrete Poincare inequality that

‖V − V̂ ‖2 = O(
ε

`
)(7)

independent of the ambient dimension.
If V̂ is the reconstruction by using a vectorial version of the greedy algorithm, Orthogonal

Matching Pursuit (OMP), then in addition to (6) we also have

‖V − V̂ ‖2 = O(
ε√
`
)(8)

independent of the ambient dimension (Section 6). We do not know if the bound (8) applies
to the TV-minimizer. A key advantage of the greedy algorithm, which is used to prove (8), is
the exact recovery of the gradient support (i.e. the edge location) under suitable conditions
(Theorem 4, Section 6). On the one hand, TV-min requires fewer data for recovery: O(s)
for TV-min under RIP versus O(s2) for the greedy algorithm under incoherence where the
sparsity s of the object gradient is proportional to `1−d for ` � 1. On the other hand, the
greedy algorithm is computationally more efficient and moreover incoherent measurement is
easier to design and verify in practice.

We emphasize that the scope of our approach is general and by no means limited to
inverse scattering discussed in detail in the present work. At heart our theory is based on
reformulation of TV-min as CS of joint sparsity with linear constraints (such as curl-free
constraint in the case of TV-min): For Y ∈ Cm×p define the notation

‖Y‖b,a =
( m∑
j=1

‖rowj(Y)‖ba
)1/b

, a, b ≥ 1(9)

where rowj(Y) is the jth row of Y. The 2,2-norm is exactly the Frobenius norm. To avoid
confusion with the subordinate matrix norm [20], it is best to view Y as multiple vectors
rather than a matrix.

BPDN for constrained joint sparsity (CJS) is

min ‖Z‖1,2, s.t. ‖Y − ϕ(Z)‖2,2 ≤ ε, LZ = 0(10)

where

ϕ(Z) = [Φ1Z1, . . . ,ΦdZd] , Z = [Zj].

Without loss of generality, we assume the matrices {Φj} all have unit-norm columns.
In connection to TV-min, Zj is the j-th directional gradient of the object V . And from

the definition of discrete gradients, it is clear that every measurement of Zj can be deduced
from two measurements of the object V , slightly shifted in the j-th direction with respect
to each other. For inverse scattering Φj = Φ,∀j and L is the curl-free constraint. Our
results, Theorem 2 and Theorem 4, constitute performance guarantees for CJS and hinge
respectively on RIP and incoherence of the measurement matrices Φj.
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1.1. Comparison of existing theories. The gradient-based method of [23] modifies the
original Fourier measurements to obtain Fourier measurements of the corresponding vertical
and horizontal edge images which are separately reconstructed by the standard CS algo-
rithms. This approach attempts to take advantage of usually lower separate sparsity and is
different from TV-min. Nevertheless, a similar 2-norm error bound (Proposition V.2, [23])
to (7) is obtained.

Needell and Ward [22] obtain interesting results for the anisotropic total variation (ATV)
minimization in terms of the objective function

‖g‖ATV ≡
∑
i,j

|∆1g(i, j)|+ |∆2g(i, j)|.

While for real-valued objects in two dimensions, the isotropic TV semi-norm is equivalent
to the anisotropic version. The two semi-norms are, however, not the same in dimension
≥ 3 and/or for complex-valued objects. A rather remarkable result of [22] is the bound

‖V − V̂ ‖2 = O(ε), modulo a logarithmic factor, for dimension d = 2. This is achieved
by proving a strong Sobolev inequality for two dimensions under the additional assumption
of RIP with respect to the bivariate Haar transform. Unfortunately, this latter assumption
prevents the results in [22] from being directly applicable to structured measurement matrices
such as Fourier-like matrices which typically have high mutual coherence with any compactly
supported wavelet basis when adjacent subbands are present. Their approach also does not
guarantee exact recovery of the gradient support.

It is worthwhile to further compare our formulation with the existing ones but unlike
[22, 23] we will consider the case of arbitrary dimensions. From our perspective, the approach
of [23] is equivalent to solving d standard BPDN’s

min ‖Zτ‖1, s.t. ‖Yτ −ΦZτ‖2 ≤ ε, τ = 1, . . . , d.

separately without the curl-free constraint L where Zτ and Yτ are, respectively, the τ -th
columns of Z and Y. To recover the original image from the directional gradients, an
additional step of consistent integration is necessary and becomes an important part of the
approach in [23].

From our perspective, the ATV-min considered in [22] can be reformulated as follows. Let
Z̃ ∈ Cdn be the image gradient vector by stacking the d directional gradients where n is the
number of image pixels and let Ỹ ∈ Cdm be the similarly concatenated data vector. Likewise
let Φ̃ = diag(Φ1, . . . ,Φd) ∈ Cdm×dn be the block-diagonal matrix with blocks Φj ∈ Cm×n.
Then ATV-min is equivalent to BPDN for a single constrained sparse vector

min ‖Z̃‖1, s.t. ‖Ỹ − Φ̃Z̃‖2 ≤ ε, L̃Z̃ = 0.(11)

where L̃ is the same constrain L reformulated for concatenated vectors. Repeating verbatim
the proofs of Theorems 2 and 4 we obtain the same error bounds as (6)-(8) for ATV-min as
formulated in (11) under the same conditions for Φj separately.

ATV-min is formulated differently in [22]. Instead of image gradient, it is formulated in
terms of the image to do without the curl-free constraint. But the concatenated matrix
[Φ1, . . . ,Φd] ∈ Cm×nd is assumed to satisfy RIP of higher order and 2dm measurement data
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are used. For d = 2, RIP of order 5s with δ5s < 1/3 is assumed for [Φ1,Φ2] in [22] which
is much more stringent than RIP of order 2s with δ2s <

√
2 − 1 for Φ1,Φ2 separately in

(11) (cf. Theorem 2). In particular, Φ1 = Φ2 is allowed for (11) (and our constrained joint
sparsity framework) but not for [22]. To get the favorable O(ε) 2-norm error bound for
d = 2, additional measurement matrix satisfying RIP with respect to the bivariate Haar
basis is needed, which, as commented above, excludes Fourier measurements.

1.2. Organization. The rest of the paper is organized as follows. In Section 2, we review the
scattering problem starting from the continuum setting and introduce the discrete model.
In Section 3, we discuss various sampling schemes including the forward and backward
sampling schemes for inverse scattering for point objects. In Section 4 we formulate TV-min
for piecewise constant objects as BPDN for CJS. In Section 5, we present a performance
guarantee for BPDN for CJS and obtain error bounds. In Section 6, we analyze the greedy
approach to sparse recovery of CJS and derive error bounds, including an improved 2-norm
error bound. We present numerical examples and conclude in Section 7. We present the
proofs in the Appendices.

2. Scattering theory

A monochromatic wave u propagating in a heterogeneous medium characterized by a
variable refractive index n2(r) = 1 + V (r) is governed by the Helmholtz equation

∇2u(r) + ω2(1 + V (r))u(r) = 0(12)

where V describes the medium inhomogeneities. For simplicity, the wave velocity is assumed
to be unity and hence the wavenumber ω equals the frequency.

Consider the scattering of the incident plane wave

ui(r) = eiωr·d̂(13)

where d̂ is the incident direction. The scattered field us = u− ui then satisfies

∇2us + ω2us = −ω2νu(14)

which can be written as the Lippmann-Schwinger equation:

us(r) = ω2

∫
Rd

ν(r′)
(
ui(r′) + us(r′)

)
G(r, r′)dr′(15)

where G is the Green function for the operator −(∇2 + ω2).
The scattered field necessarily satisfies Sommerfeld’s radiation condition

lim
r→∞

r(d−1)/2
( ∂
∂r
− iω

)
us = 0

reflecting the fact that the energy which is radiated from the sources represented by the
right hand side of (14) must scatter to infinity. Thus the scattered field has the far-field
asymptotic

us(r) =
eiω|r|

|r|(d−1)/2

(
A(r̂, d̂, ω) +O(|r|−1)

)
, r̂ = r/|r|,(16)
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where A is the scattering amplitude and d the spatial dimension. In inverse scattering theory,
the scattering amplitude is the measurement data determined by the formula [13]

A(r̂, d̂, ω) =
ω2

4π

∫
dr′V (r′)u(r′)e−iωr

′·r̂

which under the Born approximation becomes

A(r̂, d̂, ω) =
ω2

4π

∫
dr′V (r′)eiωr

′·(d̂−r̂)(17)

For the simplicity of notation we consider the two dimensional case in detail. Let L ⊂ Z2

be a square sublattice of m integral points. Suppose that s point scatterers are located in a
square lattice of spacing `

`L =
{

(xj, zj) = `(p1, p2) : j = (p1 − 1)
√
m+ p2,p = (p1, p2) ∈ L

}
.(18)

In the context of inverse scattering, it is natural to treat the size of the discrete ambient
domain `L being fixed independent of the resolution length `. In particular, m ∼ `−2 in two
dimensions.

First let us motivate the inverse scattering sampling scheme in the case of point scatterers
and let Vj, j = 1, ...,m be the strength of the scatterers. Let S =

{
rij : j = 1, ..., s

}
be the

locations of the scatterers. Hence Vj = 0,∀rj 6∈ S.
For point objects the scattering amplitude becomes a finite sum

A(r̂, d̂, ω) =
ω2

4π

m∑
j=1

Vje
iωrj ·(d̂−r̂).(19)

In the Born approximation the exciting field u(rj) is replaced by the incident field ui(rj).

3. Sampling schemes

Let d̂l, r̂l, l = 1, ..., n be various incident and sampling directions for the frequencies ωl, l =
1, ..., n to be determined later. Define the measurement vector Y = (Yl) ∈ Cn with

Yl =
4π

ω2
√
n
A(r̂l, d̂l, ωl), l = 1, ..., n.(20)

The measurement vector is related to the object vector X = (Vj) ∈ Cm by the sensing matrix
Φ as

Y = ΦX + E(21)

where E is the measurement error. Let θl, θ̃l be the polar angles of d̂l, r̂l, respectively. The
(l, j)-entry of Φ ∈ Cn×m is

n−1/2e−iωlr̂l·rjeiωld̂l·rj = n−1/2eiωl`(p2(sin θl−sin θ̃l)+p1(cos θl−cos θ̃l)), j = (p1 − 1) + p2.(22)

Note that Φ has unit-norm columns.
The crux of the method is to transform the scattering matrix into the random Fourier

matrix by suitable sampling schemes so that X can be effectively and efficiently reconstructed
as the solution of the `1-minimization (1).
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Let (ξl, ζl) be i.i.d. uniform random variables on [−1, 1]2 and let ρl, φl be the polar coor-
dinates as in

(ξl, ζl) = ρl(cosφl, sinφl), ρl =
√
ξ2
l + ζ2

l ≤
√

2(23)

Let the sampling angle θ̃l be related to the incident angle θl via

θl + θ̃l = 2φl + π,(24)

and set the frequency ωl to be

ωl =
Ωρl√

2 sin θl−θ̃l
2

(25)

where Ω is a control parameter. Then the entries (22) of the sensing matrix Φ have the form

ei
√

2Ω`(p1ξl+p2ζl), l = 1, ..., n, p1, p2 = 1, ...,
√
m.(26)

We consider two particular sampling schemes: The first one employs multiple frequencies
with the sampling angle always in the back-scattering direction resembling the imaging
geometry of synthetic aperture radar (SAR); the second employs only single high frequency
with the sampling angle in the forward direction, resembling the imaging geometry of X-ray
tomography.

I. Backward Sampling This scheme employs Ω−band limited probes, i.e. ωl ∈ [−Ω,Ω].
This and (25) lead to the constraint:∣∣∣∣∣sin θl − θ̃l2

∣∣∣∣∣ ≥ ρl√
2
.(27)

A simple way to satisfy (24) and (27) is to set

φl = θ̃l = θl − π,(28)

ωl =
Ωρl√

2
(29)

l = 1, ..., n. In this case the scattering amplitude is sampled exactly in the backward direc-
tion, resembling SAR imaging. In contrast, the exact forward sampling with θ̃l = θl almost
surely violates the constraint (27).

II. Forward Sampling This scheme employs single frequency probes no less than Ω:

ωl = γΩ, γ ≥ 1, l = 1, ..., n.(30)

We set

θl = φl + arcsin
ρl

γ
√

2
(31)

θ̃l = φl − arcsin
ρl

γ
√

2
.(32)
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The difference between the incident angle and the sampling angle is

θl − θ̃l = 2 arcsin
ρl

γ
√

2
(33)

which diminishes as γ →∞. In other words, in the high frequency limit, the sampling angle
approaches the incident angle, resembling X-ray tomography [21].

A following performance guarantee then follows from a general result in compressive sens-
ing [18].

Theorem 1. Let the probe frequencies ωl, the incident angles θl and the sampling angles θ̃l
satisfy (24) and (25), for example, by the Backward or Forward Sampling scheme.

Suppose

Ω` = π/
√

2(34)

and suppose

n

lnn
≥ C0δ

−2s ln2 s lnm ln
1

α
, α ∈ (0, 1)(35)

holds for some constant C0 and any δ <
√

2 − 1. Then the Basis Pursuit minimizer X̂
satisfies

‖X̂ −X‖2 ≤ C1s
−1/2‖X −X(s)‖1 + C2ε(36)

for some constants C1 and C2. with probability at least 1− α.

When V = (Vj) is not sparse, but ∆V = (∆1V,∆2V ) is, as in the case of piecewise
constant objects, then it is natural to consider the TV-min formulation (5).

Our goal is to extend the error bound (36) to the case of piecewise constant objects.

4. Inverse scattering as TV-min

Let us consider the following class of piecewise constant object:

V (r) =
∑
p∈L

Vp I�(
r

`
− p), � =

[
−1

2
,
1

2

]2

(37)

where I� is the indicator function of the unit square �. As remarked in the Introduction,
we think of the pixelated V as discrete approximation of some compactly support function
on R2 and having a well-defined limit as `→ 0.

Let the discrete total variation ‖V ‖TV be defined by

‖V ‖TV =
∑
p∈L

√
|Vp+e1 − Vp|2 + |Vp+e2 − Vp|2, e1 = (1, 0), e2 = (0, 1).(38)

The discrete version of (17) is, however, not exactly (19) since extended objects have
different scattering properties from those of point objects.
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The integral on the right hand side of (17), modulo the discretization error, is∫
dr′V (r′)eiωr

′·(d̂−r̂) =
∑
p∈L

Vpe
iω`p·(d̂−r̂)

∫
eiωr′·(d̂−r̂) I�(

r′

`
)dr′.

Now letting d̂l, r̂l, ωl, l = 1, · · · , n be selected according to Scheme I or II under the condition
(34) and substituting them in the above equation, we obtain∫

dr′V (r′)eiωlr
′·(d̂l−r̂l) = `2

∑
p∈L

Vpe
iπ(p1ξl+p2ηl)

∫
�
eiπ(xξl+yηl)dxdy

= `2
∑
p∈L

Vpe
iπ(p1ξl+p2ηl)

2 sin (πξl/2)

πξl

2 sin (πηl/2)

πηl
.

Let

Xj = `2Vp, j = (p1 − 1)
√
m+ p2

and

Yl =
4π

ω2
l g̃l
√
n
A(r̂l, d̂l, ωl) + El, l = 1, · · · , n

where

g̃l =
2 sin (πξl/2)

πξl

2 sin (πηl/2)

πηl
where E = (El) is the measurement error.

Define the sensing matrix Φ = [φkp] as

φkp =
1√
n
eiπ(p1ξk+p2ηk), p = (p1 − 1)

√
m+ p2, p1, p2 = 1, ...,

√
m.(39)

Then (17) can be written as

Y = ΦX + E.(40)

Our goal is to establish the performance guarantee for TV-min

min ‖Z‖TV, subject to ‖Y −ΦZ‖2 ≤ ‖E‖2.(41)

To this end, we need to transform (40) into the form suitable for compressive sensing.
Define

X = `2((∆1V )p, (∆2V )p) ∈ Cm×2, (∆1V )p = Vp+e1 − Vp, (∆2V )p = Vp+e2 − Vp.

Suppose the support of {Vp+e1 , Vp+e2} is contained in L. Simple calculation yields that

Yl =
`2

√
n
eiπξl

∑
p∈L

Vp+e1e
iπ(p1ξl+p2ηl)

=
`2

√
n
eiπηl

∑
p∈L

Vp+e2e
iπ(p1ξl+p2ηl)
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Figure 1. Consistency among cells C,C ′ and C ′′.

and thus

(e−iπξl − 1)Yl =
`2

√
n

∑
p∈L

(Vp+e1 − Vp)eiπ(p1ξl+p2ηl)(42)

(e−iπηl − 1)Yl =
`2

√
n

∑
p∈L

(Vp+e2 − Vp)eiπ(p1ξl+p2ηl).(43)

Define the n× 2 data matrix

Y =
(
(e−iπξl − 1)Yl, (e

−iπηl − 1)Yl
)n
l=1
∈ Cn×2

and the n× 2 error matrix

E =
(
(e−iπξl − 1)El, (e

−iπηl − 1)El
)n
l=1
∈ Cn×2.(44)

We rewrite (40) in the form

Y = ΦX + E.(45)

subject to the constraint

(∆1∆2V )p = (∆2∆1V )p, ∀p ∈ L(46)
10



which is the discrete version of curl-free condition. This ensures that the reconstruction by
line integration of (Vp) from X is consistent.

To see that (46) is necessary and sufficient for the recovery of (Vp), consider, for example,
the notations in Figure 1 and suppose V0,0 is known. By definition of the difference operators
∆1,∆2 we have

V1,0 = V0,0 + (∆1V )0,0

V0,1 = V0,0 + (∆2V )0,0

In general, we can determine V (p),p ∈ L iteratively from the relationship

Vp+e1 = Vp + (∆1V )p

Vp+e2 = Vp + (∆2V )p

and the knowledge of V at any grid point. The path-independence in evaluating Vp1+1,p2+1

Vp1+1,p2+1 = Vp1,p2 + (∆1V )p1,p2 + (∆2V )p1+1,p2

= Vp1,p2 + (∆2V )p1,p2 + (∆1V )p1,p2+1

implies that

(∆2V )p1+1,p2 − (∆2V )p1,p2 = (∆1V )p1,p2+1 − (∆1V )p1,p2

which is equivalent to (46).

5. BPDN for constrained joint sparsity

Now eq. (40) is equivalent to (45) with the constraint (46) provided that the value of V
at (any) one grid point is known. Our analysis is based on the constrained joint sparsity
formulation (45)-(46) and the extension of BPDN to CJS.

Consider the linear inversion problem

Y = ϕ(X) + E, LX = 0(47)

where

ϕ(X) = [Φ1X1,Φ2X2, . . . ,ΦdXd], Φj ∈ Cm×n

and the corresponding BPDN

min ‖Z‖1,2, s.t. ‖Y − ϕ(Z)‖2,2 ≤ ε = ‖E‖2,2, LZ = 0.(48)

For TV-min in d dimensions, p = d, Φj = Φ,∀j, Z represents the discrete gradient of the
underlying object and L is the curl-free constraint. Without loss of generality, we assume
the matrices {Φj} all have unit-norm columns.

The equivalence between the original TV-min (41) and the gradient-based formulation
(48) hinges on the equivalence of their respective feasible sets. When E in (40) is Gaussian
noise, then so is E and their variances are precisely related to each other. If if ε can not be
precisely derived, then by the simple observation

‖E‖2,2 ≤ 2
√

2‖E‖2
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in the case of Fourier measurement, we can use the larger feasible set

‖Y −ΦZ‖2,2 ≤ 2
√

2‖E‖2

instead to capture the TV minimizer in (41).
CS method relies on the sparseness of the object which is represented by a matrix in the

gradient-based formulation (45). We say that X is s-row sparse if the number of nonzero
rows in X is exactly s.

In the following theorems, we let the object gradient X be general, not necessarily s-
row-sparse. Let X(s) consist of s largest rows in the 2-norm of X. Then X(s) is the best
s-row-sparse approximation of X.

Theorem 2. Suppose that the linear map ϕ satisfies the RIP of order 2s

(1− δ2s)‖Z‖2
2,2 ≤ ‖ϕ(Z)‖2

2,2 ≤ (1 + δ2s)‖Z‖2
2,2(49)

for any 2s-row-sparse Z with
δ2s <

√
2− 1.

Let X̂ be the minimizer of (48). Then

‖X̂−X‖2,2 ≤ C1s
−1/2‖X−X(s)‖1,2 + C2ε(50)

for absolute constants C1, C2 depending only on δ2s.

Remark 1. Note that the RIP for joint sparsity (49) follows straightforwardly from the
assumption of separate RIP

(1− δ2s)‖Z‖2
2 ≤ ‖ΦjZ‖2

2 ≤ (1 + δ2s)‖Z‖2
2, ∀j

for any 2s-sparse vector Z.

The proof of Theorem 2 is given in Appendix A.
To conclude our result about TV-min, let us quote the following useful estimate for RIC

[25].

Proposition 1. Suppose

n

lnn
≥ Cδ−2k ln2 k lnm ln

1

α
, α ∈ (0, 1)(51)

for given sparsity k where C is an absolute constant. Then the restricted isometry constant
of the matrix (26) with (34) satisfies

δk ≤ δ

with probability at least 1− α.

Using Theorem 2 and Proposition 1 with Φj = Φ, k = 2s and δ <
√

2− 1, we obtain the
error bound for inverse scattering.

Theorem 3. Let the probe frequencies ωl, the incident angles θl and the sampling angles θ̃l
are determined by by the Backward or Forward Sampling scheme.

Suppose

Ω` = π/
√

2(52)
12



and suppose

n

lnn
≥ C0δ

−2s ln2 s lnm ln
1

α
, α ∈ (0, 1)(53)

holds for some constant C0 and any δ <
√

2 − 1. Then the estimate (50) holds true with
probability at least 1− α.

Now suppose the object gradient is s-row-sparse. Theorem 3 says that the number of
data needed for an accurate TV-min solution is O(s), modulo logarithmic factors, which is
O(`−1) for piecewise constant objects in two dimensions. See [23] for a discussion of practical

methods of reconstructing the original object from the recovered gradient X̂.
The error bound (50) implies (6) for a s-row-sparse gradient since X, X̂ are exactly the

gradients of V and V̂ , respectively. For the 2-norm bound (7), we apply the discrete Poincare
inequality [11]

‖f‖2
2 ≤

m2/d

4d
‖∆f‖2

2

to get

‖V − V̂ ‖2 ≤
m1/d

2d1/2
C2ε = O(

ε

`
).(54)

For an improved 2-norm error bound, we turn to the greedy algorithm in the next section.

6. OMP for constrained joint sparsity

One idea to improve the error bound is through exact recovery of the support of the object
gradient. This can be achieved by greedy algorithms such as Orthogonal Matching Pursuit
(OMP) [14, 16, 24, 30]. As before, we first consider the general linear inversion with joint
sparsity (47), except that we assume

∑
j ‖Ej‖2 = ε.

Algorithm 1. OMP for joint sparsity
Input: {Φj},Y, η > 0
Initialization: X0 = 0,R0 = Y and S0 = ∅
Iteration:

1) imax = arg maxi
∑

j |Φ∗j,iR
k−1
j |

2) Sk = Sk−1 ∪ {imax}
3) Xk = arg minZ

∑
j ‖ΦjZj − Yj‖2 s.t. supp(Z) ∈ Sk

4) Rk = Y − ϕ(Xk)
5) Stop if

∑
j ‖Rk

j‖2 ≤ ε.
Output: Xk.

A natural indicator of the performance of OMP is the mutual coherence defined in (3).
Let

µmax = max
j
µ(Φj).

13



Then analogous to Theorem 5.1 of [16], we have the following performance guarantee.

Theorem 4. Let Xk = rowk(X) be the k-th row of X. Suppose
∑

j ‖Ej‖2 = ε. Suppose the

gradient sparsity s (i.e. the number of nonzero rows) satisfies

s <
1

2
(1 +

1

µmax

)− ε

µmaxXmin

, Xmin = min
k
‖Xk‖1.(55)

Let Z be the output of OMP as applied to the linear inverse problem (47) without the
constraint, with the stopping rule that the residual drops to the level ε or below. Then
supp(Z) = supp(X).

Let X̂ solve the least squares problem

X̂ = arg min
B

∑
j

‖Yj −ΦjBj‖2, s.t. supp(B) ⊆ supp(X), LB = 0.(56)

Then ∑
j

‖Xj − X̂j‖2 ≤
2ε√

1− µmax(s− 1)
.(57)

Remark 2. The least squares solution X̂ is not necessarily the discrete gradient of the
following least squares solution on the level of object itself

X̂ = arg min
Z
‖Y −ΦZ‖2(58)

where the gradient of Z is supported on supp(X), since the objective functions are different.

Remark 3. For the random partial Fourier measurement matrix, the mutual coherence µ
behaves like O(n−1/2) [19]. Therefore (55) impies the sparsity constraint s = O(

√
n) which

is more stringent than (53).

Remark 4. For the standard Lasso with a particular choice of regularization parameter,
Theorem 1.3 of [4] guarantees exact support recovery under a favorable sparsity constraint
similar to (53). In our setting and notation, their TV-min principle corresponds to

min
LZ=0

λσ‖Z‖1,2 +
1

2
‖Y − ϕ(Z)‖2

2,2, λ = 2
√

2 logm(59)

where σ2 = ε2/(2n) is the variance of the assumed Gaussian noise in each entry of Y.
Unfortunately, even if the result of [4] can be extended to (59), it is inadequate for our
purpose because [4] assumes independently selected support and signs, which is clearly not
satisfied by the gradient of a piecewise constant object.

The proof of Theorem 4 is given in Appendix B. The main advantage of Theorem 4 over
Theorem 3 is the guarantee of exact recovery of the gradient support. Not only the edges of
the object can be exactly recovered, a better 2-norm error bound follows because now the
gradient error is guaranteed to vanish outside a set of O(`1−d) cardinality: First we have

|Vp − V̂p| ≤
∑
q

‖∆Vq −∆V̂q‖2(60)

14



Figure 2. The original 256 × 256 Shepp-Logan phantom (left), the Shepp-
Logan phantom and the magnitudes of its gradient with sparsity s = 2184.

where the summation runs along any path connecting the given point p0 to p.
Let `Ll ⊆ `L, l = 1, ..., L be the level sets of the object V such that

V (r) =
L∑
l=1

vl I`Ll(r)

where Ll ∩ Lk = ∅, l 6= k,L = ∪lLl. The reconstructed object V̂ corresponding to X̂ in (57)
also takes the same form

V̂ (r) =
L∑
l=1

v̂l I`Ll(r).

To fix the undetermined constant, we may assume that v1 = v̂1. Since∑
j

‖∆j(V − V̂ )‖2 = O(ε)

and the gradient error occurs on the perimeter of `Ll whose length is O(`1−d), we have

|vl − v̂l| = O(ε`(d−1)/2), ∀l.

The path in (60) goes through O(1) number of level sets and thus

‖V − V̂ ‖∞ = O(ε`(d−1)/2)

and

‖V − V̂ ‖2 = O(
ε√
`
).

15



Figure 3. Noiseless `1-min reconstructed image (left) and the differences
(middle) from the original image. The plot on the right is the gradient of the
reconstructed image.

7. Conclusion

We have developed a general CS theory (Theorems 2 and 4) for constrained joint sparsity
and obtained performance guarantees parallel to those for the CS theory for single mea-
surement vector. From the general theory we have derived TV- and 2-norm error bounds,
independent of the ambient dimension, for TV-min (Theorem 3) and OMP (Theorem 4)
approaches to inverse scattering of piecewise constant objects.

In addition, OMP can recover exactly the gradient support (i.e. the edges of the object)
leading to an improved 2-norm error bound. Although OMP needs a higher number of
measurement data than TV-min for Fourier measurements the incoherence property required
for OMP is much easier to check and often the only practical way to verify RIP when the
measurement matrix is not i.i.d. or Fourier.

We end by presenting a numerical example demonstrating the noise stability of the TV-
min. Efficient algorithms for TV-min denoising/deblurring exist [1, 31]. We use the open
source code L1-MAGIC (http://users.ece.gatech.edu/~ justin/l1magic/) for our sim-
ulation.

Figure 2 shows the 256× 256 image of the Shepp-Logan Phantom (left) and the modulus
of its gradient (right). Clearly the sparsity (s = 2184) of the gradient is much smaller than
that of the original image. We take 10000 Fourier measurement data for the `1-min (1) and
TV-min (5) reconstructions.

Because the image is not sparse, `1-min reconstruction produces a poor result even in the
absence of noise, Figure 3. The relative error is 66.8% in the `2 norm and 72.8% in the TV
norm. Only the outer perimeter is reasonably recovered.

Figure 4 shows the results of TV-min reconstruction in the presence of 5% (top) or 10%
(bottom) noise. Evidently, the performance is greatly improved.
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Figure 4. TV-reconstructed image with 5% (top left) and 10% (bottom left)
and the respective differences (middle) from the original image. The plots on
the right column are the magnitudes of the reconstructed image gradients.

Appendix A. Proof of Theorem 2

The argument is patterned after [2] with adaptation to the setting of constrained joint
sparsity.

Proposition 2. We have

|< 〈ϕ(Z), ϕ(Z′)〉| ≤ δs+s′‖Z‖2,2‖Z′‖2,2

for all Z,Z′ supported on disjoint subsets T, T ′ ⊂ {1, ...,m} with |S| ≤ s, |S ′| ≤ s′.

Proof. Without loss of generality, suppose that ‖Z‖2,2 = ‖Z′‖2,2 = 1. Since Z ⊥ Z′, ‖Z ±
Z′‖2

2,2 = 2. Hence we have from the RIP (49)

2(1− δs+s′) ≤ ‖ϕ(Z± Z′)‖2
2,2 ≤ 2(1 + δs+s′)(61)

By the parallelogram identity and (61)

|< 〈ϕ(Z), ϕ(Z′)〉| = 1

4

∣∣‖ϕ(Z) + ϕ(Z′)‖2
2,2 − ‖ϕ(Z)− ϕ(Z′)‖2

2,2

∣∣ ≤ δs+s′

which proves the proposition.
�
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By the triangle inequality and the fact that X is in the feasible set we have

‖ϕ(X̂−X)‖2,2 ≤ ‖ϕ(X̂)−Y‖2,2 + ‖Y − ϕ(X)‖2,2 ≤ 2ε.(62)

Set X̂ = X + D and decompose D into a sum of DS0 ,DS1 ,DS2 , ..., each of row-sparsity at
most s. Here S0 corresponds to the locations of the s largest rows of X; S1 the locations of
the s largest rows of DSc

0
; S2 the locations of the next s largest rows of DSc

0
, and so on.

Step (i). Define the norm

‖Z‖∞,2 = max
j
‖rowj(Z)‖2.

For j ≥ 2,

‖DSj
‖2,2 ≤ s1/2‖DSj

‖∞,2 ≤ s−1/2‖DSj−1
‖2,2

and hence ∑
j≥2

‖DSj
‖2,2 ≤ s−1/2

∑
j≥1

‖DSj
‖1,2 ≤ s−1/2‖DSc

0
‖1,2.(63)

This yields by the Cauchy-Schwarz inequality

‖D(S0∪S1)c‖2,2 = ‖
∑
j≥2

DSj
‖2,2 ≤

∑
j≥2

‖DSj
‖2,2 ≤ s−1/2‖DSc

0
‖1,2.(64)

Also we have

‖X‖1,2 ≥ ‖X̂‖1,2

= ‖XS0 + DS0‖1,2 + ‖XSc
0

+ DSc
0
‖1,2

≥ ‖XS0‖1,2 − ‖DS0‖1,2 − ‖XSc
0
‖1,2 + ‖DSc

0
‖1,2

which implies

‖DSc
0
‖1,2 ≤ 2‖XSc

0
‖1,2 + ‖DS0‖1,2.(65)

Note that ‖XSc
0
‖1,2 = ‖X − X(s)‖1,2 by definition. Applying (64), (65) and the Cauchy-

Schwartz inequality to ‖DS0‖1,2 gives

‖D(S0∪S1)c‖2,2 ≤ ‖DS0‖2,2 + 2e0(66)

where e0 ≡ s−1/2‖X−X(s)‖1,2.
Step (ii). Define the inner product

〈A,B〉 =
∑
i,j

A∗ijBij
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Observe

‖ϕ(DS0∪S1)‖2
2,2(67)

= 〈ϕ(DS0∪S1), ϕ(D)〉 −

〈
ϕ(DS0∪S1),

∑
j≥2

ϕ(DSj
)

〉
= < 〈ϕ(DS0∪S1), ϕ(D)〉 −

∑
j≥2

<
〈
ϕ(DS0∪S1), ϕ(DSj

)
〉

= < 〈ϕ(DS0∪S1), ϕ(D)〉 −
∑
j≥2

[
<
〈
ϕ(DS0), ϕ(DSj

)
〉

+ <
〈
ϕ(DS1), ϕ(DSj

)
〉]
.

From (62) and the RIP (49) it follows that

| 〈ϕ(DS0∪S1), ϕ(D)〉 | ≤ ‖ϕ(DS0∪S1)‖2,2‖ϕ(D)‖2,2 ≤ 2ε
√

1 + δ2s‖DS0∪S1‖2,2.

Moreover, it follows from Proposition 2 that∣∣< 〈ϕ(DS0), ϕ(DSj
)
〉∣∣ ≤ δ2s‖DS0‖2,2‖DSj

‖2,2(68) ∣∣< 〈ϕ(DS1), ϕ(DSj
)
〉∣∣ ≤ δ2s‖DS0‖2,2‖DSj

‖2,2(69)

for j ≥ 2. Since S0 and S1 are disjoint

‖DS0‖2,2 + ‖DS1‖2,2 ≤
√

2
√
‖DS0‖2

2,2 + ‖DS1‖2
2,2 =

√
2‖DS0∪S1‖2,2.

Also by (67)-(69) and RIP

(1− δ2s)‖DS0∪S1‖2
2,2 ≤ ‖ϕ(DS0∪S1)‖2

2,2 ≤ ‖DS0∪S1‖2,2

(
2ε
√

1 + δ2s + δ2s

∑
j≥2

‖DSj
‖2,2

)
.

Therefore from (63) we obtain

‖DS0∪S1‖2,2 ≤ αε+ ρs−1/2‖DSc
0
‖1,2, α =

2
√

1 + δ2s

1− δ2s

, ρ =

√
2δ2s

1− δ2s

and moreover by (65) and the definition of e0

‖DS0∪S1‖2,2 ≤ αε+ ρ‖DS0‖2,2 + 2ρe0

after applying the Cauchy-Schwartz inequality to bound ‖DS0‖1,2 by s1/2‖DS0‖2,2. Thus

‖DS0∪S1‖2,2 ≤ (1− ρ)−1(αε+ 2ρe0)

if (49) holds.
Finally,

‖D‖2,2 ≤ ‖DS0∪S1‖2,2 + ‖D(S0∪S1)c‖2,2

≤ 2‖DS0∪S1‖2,2 + 2e0

≤ 2(1− ρ)−1(αε+ (1 + ρ)e0)

which is the desired result.
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Appendix B. Proof of Theorem 4

We prove the theorem by induction.
Suppose supp(X) = S = {J1, . . . , Js} and Xmax = ‖XJ1‖1 ≥ ‖XJ2‖1 ≥ · · · ≥ ‖XJs‖1 =

Xmin.
In the first step,

d∑
j=1

|Y ∗j φJ1j| =
d∑
l=1

|x∗J1j + x∗J2jφ
∗
J2j
φJ1j + ...+ x∗Jsjφ

∗
JsjφJ1j + E∗jφJ1j|(70)

≥ Xmax −Xmax(s− 1)µmax −
∑
j

‖Ej‖2.

On the other hand, ∀l /∈ supp(X),

d∑
j=1

|Y ∗j φlj| =
d∑
j=1

|x∗J1jφ
∗
J1j
φlj + x∗J2jφ

∗
J2j
φlj + ...+ x∗Jsjφ

∗
Jsjφlj + E∗jφlj|(71)

≤ Xmaxsµmax +
∑
j

‖Ej‖2.

Hence, if

(2s− 1)µmax +
2
∑

j ‖Ej‖2

Xmax

< 1,

then the right hand side of (70) is greater than the right hand side of (71) which implies
that the first index selected by OMP must belong to supp(X).

To continue the induction process, we state the straightforward generalization of a stan-
dard uniqueness result for sparse recovery to the joint sparsity setting (Lemma 5.3, [16]).

Proposition 3. Let Z = ϕ(X) and Y = Z + E. Let Sk be a set of k indices and let
A ∈ Cm×p with supp(A) = Sk. Define

Y′ = Y − ϕ(A)

and
Z′ = Z− ϕ(A).

Clearly, Y′ = Z′ + E. If Sk ( supp(X) and the sparsity s of X satisfies 2s < 1 + µ−1
max, then

Z′ has a unique sparsest representation Z′ = ϕ(X′) with the sparsity of X′ at most s.

Let us suppose that the set Sk ⊆ supp(X) of k distinct indices have been selected and
that A in Proposition 3 solves the following least squares problem

A = arg min
B

∑
j

‖Yj −ΦjBj‖2, s.t. supp(B) ⊆ Sk(72)

without imposing the constraint L. This is equivalent to the concatenation A = [Aj] of p
separate least squares solutions

Aj = arg min
Bj

‖Yj −ΦjBj‖2, s.t. supp(Bj) ⊆ Sk(73)
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Let Φj,Sk be the column submatrix of Φj indexed by the set Sk. By (73), Y
′∗
j Φj,Sk = 0,∀j,

which implies that no element of Sk gets selected at the (k + 1)-st step. In order to ensure
that some element in supp(X)\Sk gets selected at the (k+1)-st step we only need to repeat
the calculation (70)-(71) to obtain the condition

(2s− 1)µmax +
2
∑

j ‖Ej‖2

‖XJk+1
‖1

< 1

which follows from the assumption (55) or equivalently

(2s− 1)µmax +
2
∑

j ‖Ej‖2

Xmin

< 1.(74)

By the s-th step, all elements of the support set are selected and by the nature of the least
squares solution the 2-norm of the residual is at most ε. Thus the stopping criterion is met
and the iteration stops after s steps.

On the other hand, it follows from the calculation∑
j

‖Y ′j ‖2 ≥
∑
j

∣∣φ∗Jk+1j
Y ′j
∣∣

=
∑
j

∣∣xJk+1j +
s∑

i=k+2

xJiiφ
∗
Jk+1j

φJii + φ∗Jk+1j
Ej
∣∣

≥ ‖XJk+1
‖1 − µmax(s− k − 1)‖XJk+2

‖1 −
∑
j

‖Ej‖2

≥ (1− µmax(s− k − 1))‖XJk+1
‖1 −

∑
j

‖Ej‖2

and (74) or, equivalently,

Xmin(1− µmax(2s− 1)) > 2ε(75)

that
∑

j ‖Y ′j ‖2 > ε for k = 0, 1, · · · , s− 1. Thus the iteration does not stop until k = s.

Since X̂ be the solution of the least squares problem (56), we have∑
j

‖Yj −ΦjX̂j‖2 ≤
∑
j

‖Yj −ΦjXj‖2 ≤ ε

and ∑
j

‖Φj(Xj − X̂j)‖2 ≤
∑
j

‖Yj −ΦjXj‖2 + ‖Yj −ΦjX̂j‖2 ≤ 2ε

which implies ∑
j

‖X̂j −Xj‖2 ≤ 2ε/λmin

where

λmin = min
j
{the s-th singular value of the column submatrix of Φj indexed by S}

.
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The desired error bound (57) can now be obtained from the following result (Lemma 2.2,
[16]).

Proposition 4. Suppose s < 1 + µ(Φj)
−1. Every m × s column submatrix of Φj has the

s-th singular value bounded below by
√

1− µ(Φj)(s− 1).

Proposition 4 implies that λmin ≥
√

1− µmax(s− 1) and thus the desired result∑
j

‖X̂j −Xj‖2 ≤
2ε√

1− µmax(s− 1)
.

Acknowledgement. I thank Stan Osher and Justin Romberg for suggestion of publishing
this note at the IPAM workshop “Challenges in Synthetic Aperture Radar” February 6-10,
2012. I thank the anonymous referees and Deanna Needell for pointing out the reference
[22] which helps me appreciate more deeply the strength and weakness of my approach. I
am grateful to Wenjing Liao for preparing Fig. 2-4. The research is partially supported by
the NSF grant DMS - 0908535.

References

[1] A. Beck and M. Teboulle, ”Fast gradient-based algorithms for constrained total variation image denois-
ing and deblurring Problems”, IEEE Trans. Image Proc. 18 (11), 2419-2434, 2009.

[2] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Compte
Rendus de l’Academie des Sciences, Paris, Serie I. 346 (2008) 589-592.

[3] E. J. Candès, J. Romberg and T. Tao, “Robust uncertainty principle: exact signal reconstruction from
highly incomplete frequency information,” IEEE Trans. Inform. Theory 52 (2006), 489 – 509.

[4] E.J. Candès and Y. Plan, “Near-ideal model selection by `1 minimization,” Ann. Stat. 37 (2009), 2145-
2177.

[5] E. J. Candès and T. Tao, “ Decoding by linear programming,” IEEE Trans. Inform. Theory 51 (2005),
4203 – 4215.

[6] A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging
Vision 20 (2004), 89-97.

[7] A. Chambolle and P.-L. Lions, ”Image recovery via total variation minimization and related problems,
” Numer. Math. 76 (1997), 167-188.

[8] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image
restoration., SIAM J. Sci. Comput. 20 (6), pp. 19641977, 1999,

[9] T. Chan and J. Shen, Image Processing And Analysis: Variational, PDE, Wavelet and Stochastic
Methods, Society for Industrial and Applied Mathematics, 2005.

[10] S.S. Chen, D.L. Donoho and M.A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43
(2001), 129-159.
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