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Abstract

A mode III crack problem in a functionally graded material (FGM) modeled by

anisotropic strain gradient elasticity theory is solved by the integral equation method.

The gradient elasticity theory has two material characteristic lengths ` and `′, which are

responsible for volumetric and surface strain-gradient terms, respectively. The governing

differential equation of the problem is derived assuming that the shear modulus G is a

function of x, i.e. G = G(x) = G0eβx, where G0 and β are material constants. A hyper-

singular integrodifferential equation is derived and discretized by means of the collocation

method and a Chebyshev polynomial expansion. Numerical results are given in terms of

the crack opening displacements, strains, and stresses with various combinations of the

parameters `, `′, and β. Formulas for the stress intensity factors (SIFs), KIII , are derived

and numerical results are provided.

∗ Department of Computer and Mathematical Sciences, University of Houston–Downtown, One Main Street,

Houston, Texas 77002, U.S.A.
†Department of Civil and Environmental Engineering, University of Illinois, 2209 Newmark Laboratory, 205

North Mathews Avenue, Urbana, IL 61801, U.S.A.
‡Department of Mathematics, University of California, Davis, CA 95616, U.S.A.

1



1 Introduction

This work is a continuation of the paper on “Gradient Elasticity Theory for Mode III Fracture

in Functionally Graded Materials – Part I: Crack Perpendicular to the Material Gradation”

by Paulino et al. [1] (hereinafter referred to as Part I). In Part I, the authors considered a

plane elasticity problem in which the medium contains a finite crack on the y = 0 plane and

the material gradation is perpendicular to the crack. In “Part II”, the material gradation is

parallel to the crack (see Figure 1). In Part I, the shear modulus G (that rules the material

gradation) is a function of y only, G ≡ G(y) = G0eγy; while in Part II it is a function of x, i.e.

G ≡ G(x) = G0eβx. An immediate consequence of the difference in geometry, which is indicated

in Figure 1, is that the location of the crack in Part I is rather irrelevant to the problem and

thus can be shifted so that the center is at the origin point (0, 0). On the other hand, if the

material gradation is parallel to the crack, then the location of the crack is pertinent to the

solution of the problem.

The method of solution is essentially the same in both Part I and II, i.e. the integral equation

method. However, because of differences in the geometrical configurations, some changes are

expected. For instance, in Part I the crack opening displacement profile is symmetric with

respect to the y axis, while in Part II the symmetry of the crack profiles no longer exits. Thus

some interesting questions arise:

• How are the crack opening displacement profiles affected by the gradient elasticity and

the gradation of the material?

• How are the stresses influenced under the gradient elasticity?

• How are the stress intensity factors (SIFs) calculated?
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• How do the results compare with the classical linear elastic fracture mechanics (LEFM)?

We will address all the above questions. The remainder of the paper is organized as follows.

First, the constitutive equations of anisotropic gradient elasticity for nonhomogeneous materials

subjected to antiplane shear deformation are given. Then, the governing partial differential

equations (PDEs) are derived and the Fourier transform method is introduced and applied

to convert the governing PDE into an ordinary differential equation (ODE). Afterwards, the

crack boundary value problem is described and a specific complete set of boundary conditions

is given. The governing hypersingular integrodifferential equation is derived and discretized

using the collocation method. Next, various relevant aspects of the numerical discretization

are described in detail. Subsequently, numerical results are given, conclusions are inferred, and

potential extensions of this work are discussed. One appendix, providing the hierarchy of the

PDEs and the corresponding integral equations, supplements the paper.

2 Constitutive Equations of Gradient Elasticity

A schematic demonstration of continuously graded microstructure in FGMs is illustrated by

Figure 2. The linkage between gradient elasticity and graded materials within the framework

of fracture mechanics and its related work has been addressed in Part I. For the sake of com-

pleteness, the notation and constitutive equations of gradient elasticity for an anti-plane shear

crack in a functionally graded material are briefly given in this section and particularized to

the case of an exponentially graded material along the x-direction.

For an anti-plane shear problem, the relevant displacement components are:

u = v = 0 , w = w(x, y) ; (1)
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and the nontrivial strains are:

εxz =
1

2

∂w

∂x
, εyz =

1

2

∂w

∂y
. (2)

The constitutive equations of gradient elasticity for FGMs are (Paulino et al. [1], Chan et al. [2]):

σij = λ(x)εkkδij + 2G(x)(εij − `2∇2εij) − `2[∂kλ(x)](∂kεll)δij − 2`2[∂kG(x)](∂kεij) (3)

τij = λ(x)εkkδij + 2G(x)εij + 2`′νk[εij∂kG(x) + G(x)∂kεij] (4)

µkij = 2`′νkG(x)εij + 2`2G(x)∂kεij , (5)

where ` is the characteristic length of the material responsible for volumetric strain-gradient

terms, `′ is responsible for surface strain-gradient terms, σij is the stress tensor, and µijk is the

couple-stress tensor. The Lamé moduli λ ≡ λ(x) and G ≡ G(x) are assumed to be functions of

x. Moreover, ∂k = ∂/∂xk. The parameter `′ is associated with surfaces and νk, ∂kνk = 0, is a

director field equal to the unit outer normal nk on the boundaries.

For a mode-III problem, the constitutive equations above become

σxx = σyy = σzz = 0 , σxy = 0

σxz = 2G(x)(εxz − `2∇2εxz) − 2`2[∂xG(x)](∂xεxz) 6= 0

σyz = 2G(x)(εyz − `2∇2εyz) − 2`2[∂xG(x)](∂xεyz) 6= 0

µxxz = 2G(x)`2∂εxz/∂x

µxyz = 2G(x)`2∂εyz/∂x

µyxz = 2G(x)(`2∂εxz/∂y − `′εxz)

µyyz = 2G(x)(`2∂εyz/∂y − `′εyz) .

(6)

If G is constant, i.e. the material is homogeneous, then the constitutive equations (Exadakty-
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los et al. [3], Vardoulakis et al. [4]) are1

σxx = σyy = σzz = 0 , σxy = 0

σxz = 2G(εxz − `2∇2εxz) 6= 0

σyz = 2G(εyz − `2∇2εyz) 6= 0

µxxz = 2G`2∂εxz/∂x

µxyz = 2G`2∂εyz/∂x

µyxz = 2G(`2∂εxz/∂y − `′εxz)

µyyz = 2G(`2∂εyz/∂y − `′εyz) .

(7)

It is worth to point out that each of the total stresses σxz and σyz in (6) has an extra term than

the ones in (7) due to the material gradation interplays with the strain gradient effect (Chan

et al. [2]).

3 Governing Partial Differential Equation

and Boundary Conditions

By imposing the only non-trivial equilibrium equation

∂σxz

∂x
+

∂σyz

∂y
= 0 , (8)

1According to the geometry of the problem (see Figure 3), it is the upper half-plane that is considered in the

formulation. The crack is sitting on the x-axis, which is on the boundary of the upper half-plane. Thus, the

outward unit normal should be (0 ,−1 , 0), and NOT (0 , 1 , 0). Based on equation (5), or the last equation in

equation (5) of Ref. [4], the sign in front of `′ in the expression for both µyxz and µyyz should be “−”, instead

of “+”.
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the following PDE is obtained

∂

∂x

[
G(x)

(
∂w

∂x
− `2∇2∂w

∂x

)]
+

∂

∂y

[
G(x)

(
∂w

∂y
− `2∇2∂w

∂y

)]

− `2

[
∂2G(x)

∂x2

∂2w

∂x2
+

∂G(x)

∂x

∂3w

∂x3
+

∂G(x)

∂x

∂3w

∂x∂y2

]
= 0 . (9)

If the shear modulus G is assumed as an exponential function of x (see Figure 3):

G = G(x) = G0eβx , (10)

then PDE (9) can be simplified as

−`2∇4w − 2β`2∇2∂w

∂x
+ ∇2w − β2`2∂2w

∂x2
+ β

∂w

∂x
= 0 , (11)

or
(

1 − β`2 ∂

∂x
− `2∇2

)(
∇2 + β

∂

∂x

)
w = 0 , (12)

which is the governing PDE solved in the present paper.

It may be seen, from a viewpoint of perturbation, that PDE (12) can be expressed in an

operator form, i.e.

HβLβ w = 0 ; Hβ = 1 − β`2 ∂

∂x
− `2∇2 , Lβ = ∇2 + β

∂

∂x
, (13)

where Hβ is the perturbed Helmholtz operator, Lβ is the perturbed Laplacian operator, and the

two operators commute (HβLβ = LβHβ). By sending β → 0, we get the PDE [4, 5]

(
1 − `2∇2

)
∇2 w = 0 , or HLw = 0 , (14)

where the Helmholtz operator H = 1 − `2∇2 and the Laplacian operator L = ∇2 are invariant

under any change of variables by rotations and translations. FGM creates the perturbation and
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ruins the invariance. However, the perturbing term “−β`2 ∂
∂x

” in Lβ, which is not purely caused

by the gradation of the material, involves both the gradation parameter β and the characteristic

length ` (the product of β and `2). It can be interpreted as a consequence of the interaction of

the material gradation and the strain gradient effect [2].

If we let ` → 0 alone, then the perturbed Helmholtz differential operator Hβ will become

the identity operator, and one reduces PDE (12) to

(
∇2 + β

∂

∂x

)
w = 0 , (15)

the perturbed Laplace equation, which is the PDE that governs the mode III crack problem for

nonhomogeneous materials with shear modulus G(x) = G0eβx [6, 7]. The limit of sending ` → 0

will lower the fourth order PDE (11) to a second order one, (15), and a singular perturbation

is expected. By taking both limits β → 0 and ` → 0, one obtains the harmonic equation

for classical elasticity. Various combinations of parameters ` and β with the corresponding

governing PDE are listed in Table 1.

One may notice that in the governing PDE (12) there is no surface term parameter `′

involved. However, `′ does influence the solution through the boundary conditions. By the

principle of virtual work the following boundary conditions can be derived and are adopted in

this paper: 



σyz(x, 0) = p(x) , x ∈ (c, d) ;

w(x, 0) = 0 , x /∈ (c, d) ;

µyyz(x, 0) = 0 , −∞ < x < +∞ .

(16)

The first two boundary conditions in (16) are from classical LEFM, and the last one, involving

the couple-stress µyyz , is needed for the higher order theory. This set of boundary conditions

are the same as those adopted by Vardoulakis et al. [4]. An alternative treatment of boundary
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Table 1: Governing PDEs in antiplane shear problems.

Cases Governing PDE References

` = 0, β = 0 Laplace equation: Standard textbooks.

∇2w = 0

` = 0, β 6= 0 Perturbed Laplace equation: Erdogan [7].

(
∇2 + β ∂

∂x

)
w = 0

` 6= 0, β = 0 Helmholtz-Laplace equation: Vardoulakis et al. [4].

(1 − `2∇2)∇2w = 0 Fannjiang et al. [5].

Zhang et al. [8]

` 6= 0, β 6= 0 Equation (11): Studied in this paper.

(
1 − β`2 ∂

∂x
− `2∇2

) (
∇2 + β ∂

∂x

)
w = 0

conditions can be found in Georgiadis [9].

4 Fourier Transform

Let the Fourier transform be defined by

F(w)(ξ) = W (ξ) =
1√
2π

∫ ∞

−∞
w(x)eixξdx . (17)

Then, by the Fourier integral formula [10],

F−1(W )(x) = w(x) =
1√
2π

∫ ∞

−∞
W (ξ)e−ixξdξ , (18)

where F−1 denotes the inverse Fourier transform. Now let us assume that

w(x, y) =
1√
2π

∫ ∞

−∞
W (ξ, y)e−ixξdξ , (19)
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where w(x, y) is the inverse Fourier transform of the function W (ξ, y). Considering each term

in equation (11) and using equation (19), one obtains

−`2∇4w =
−`2

√
2π

∫ ∞

−∞

(
ξ4W (ξ, y) − 2ξ2∂2W

∂y2
+

∂4W

∂y4

)
e−ixξ dξ ; (20)

−β`2∇2∂w

∂x
=

−β`2

√
2π

∫ ∞

−∞

(
iξ3W (ξ, y) − iξ

∂2W

∂y2

)
e−ixξ dξ ; (21)

∇2w =
1√
2π

∫ ∞

−∞

(
−ξ2W (ξ, y) +

∂2W

∂y2

)
e−ixξ dξ ; (22)

−β2`2∂2w(x, y)

∂x2
=

β2`2

√
2π

∫ ∞

−∞
ξ2 W (ξ, y)e−ixξ dξ ; (23)

β
∂w(x, y)

∂x
=

β√
2π

∫ ∞

−∞
(−iξ)W (ξ, y)e−ixξ dξ . (24)

Equations (20) to (24) are added according to equation (11), and after simplification, the

governing ordinary differential equation (ODE) is obtained:

[
`2 d4

dy4
−
(
2`2ξ2 + 2iβ`2ξ + 1

) d2

dy2
+
(
`2ξ4 + 2iβ`2ξ3 − β2`2ξ2 + ξ2 + iβξ

)]
W = 0 . (25)

5 Solutions of the ODE

The corresponding characteristic equation to the ODE (25) is

`2λ4 −
(
2`2ξ2 + 2iβ`2ξ + 1

)
λ2 +

(
`2ξ4 + 2iβ`2ξ3 − β2`2ξ2 + ξ2 + iβξ

)
= 0 , (26)

which can be further factorized as

[
`2λ2 − (1 + iβ`2ξ + `2ξ2)

] (
λ2 − ξ2 − iβξ

)
= 0 . (27)

Clearly the four roots λi (i = 1, 2, 3, 4) of the polynomial (27) above can be written as

λ1 =
−1√

2

√√
ξ4 + β2ξ2 + ξ2 − i√

2

β ξ√√
ξ4 + β2ξ2 + ξ2

, (28)
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λ2 =
1√
2

√√
ξ4 + β2ξ2 + ξ2 +

i√
2

β ξ√√
ξ4 + β2ξ2 + ξ2

, (29)

λ3 =
−1√

2

√√
(ξ2 + 1/`2)2 + β2ξ2 + ξ2 + 1/`2 − i√

2

β ξ√√
(ξ2 + 1/`2)2 + β2ξ2 + ξ2 + 1/`2

, (30)

λ4 =
1√
2

√√
(ξ2 + 1/`2)2 + β2ξ2 + ξ2 + 1/`2 +

i√
2

β ξ√√
(ξ2 + 1/`2)2 + β2ξ2 + ξ2 + 1/`2

. (31)

If β → 0, then the imaginary part of each root λi (i = 1, · · · , 4) disappears. Thus we have

exactly the same roots found by Vardoulakis et al. [4] and Fannjiang et al. [5]. The root λ1

corresponds to the solution of the perturbed harmonic equation, ∇2w + β∂w/∂x = 0; the root

λ3 agrees with the solution of the perturbed Helmholtz equation, (1 − β`2∂/∂x− `2∇2)w = 0.

Various choices of parameters ` and β with their corresponding mechanics theories and materials

are listed in Table 2. In contrast to the four real roots found in Part I, the four roots here are

all complex and admit a more complicated expression.

By the symmetry of the geometry, one can only consider the upper half-plane ( y > 0 ).

Taking account of the far-field boundary condition

w(x, y) → 0 as
√

x2 + y2 → +∞ , (32)

one can express the solution for W (ξ, y) as

W (ξ, y) = A(ξ)eλ1y + B(ξ)eλ3y , (33)

where the non-positive real part of λ1 and λ3 have been chosen to satisfy the far-field condition

in the upper half-plane. Accordingly, the displacement w(x, y) takes the form

w(x, y) =
1√
2π

∫ ∞

−∞

[
A(ξ)eλ1y + B(ξ)eλ3y

]
e−ixξdξ . (34)

Both A(ξ) and B(ξ) are determined by the boundary conditions.
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Table 2: Roots λi together with corresponding mechanics theory and type of material.

Cases Number Roots Mechanics theory References

of roots and type of material

` = 0, β = 0 2 ±|ξ| Classical LEFM, Standard textbooks.

homogeneous materials.

` = 0, β 6= 0 2 λ1 and λ2 in equations Classical LEFM, Erdogan [7].

(28) and (29), respectively. nonhomogeneous materials

` 6= 0, β = 0 4 ±|ξ|, ±
√

ξ2 + 1/`2 Gradient theories, Vardoulakis et al. [4].

homogeneous materials. Fannjiang et al. [5].

` 6= 0, β 6= 0 4 The four roots λ1 — λ4 Gradient theories, Studied in this paper.

nonhomogeneous materials

in equations (28) — (31).

6 Hypersingular Integrodifferential Equation Approach

Sustituting (34) into (7), we have

σyz(x, y) = 2G(x)
(
εyz − `2∇2εyz

)
− 2`2[∂xG(x)]∂xεyz

=
G(x)√

2π

∫ ∞

−∞

[
λ1 A(ξ)eλ1y

]
e−ixξ dξ , y ≥ 0 , (35)
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and

µyyz(x, y) = 2G(x)

(
`2∂εyz

∂y
− `′εyz

)

=
G(x)√

2π

∫ ∞

−∞

{
(`2λ2

1 − `′λ1)A(ξ)eλ1y + (`2λ2
3 − `′λ3)B(ξ)eλ3y

}
e−ixξ dξ , y ≥ 0 . (36)

From the boundary condition in (16) imposed on the couple-stress µyyz (i.e. µyyz (x, 0) = 0 for

−∞ < x < ∞), one obtains the following relationship between A(ξ) and B(ξ)

B(ξ) =
`′λ1 − `2λ2

1

`2λ2
3 − `′λ3

A(ξ) = ρ(β, ξ)A(ξ) , (37)

with

ρ(β, ξ) =
`′λ1 − `2λ2

1

`2λ2
3 − `′λ3

= − `2ξ2 + iβ`2ξ + `′
√

ξ2 + iβξ

`′
√

ξ2 + iβξ + 1/`2 + (`2ξ2 + iβ`2ξ + 1)
. (38)

Denote

φ(x) =
∂

∂x
w(x, 0+) =

1√
2π

∫ ∞

−∞
(−iξ)[A(ξ) + B(ξ)]e−ixξdξ (39)

= F−1{(−iξ)[A(ξ) + B(ξ)]} .

The second boundary condition in (16) and equation (39) imply that

φ(x) = 0, x 6∈ [c, d] , (40)

and
∫ d

c

φ(x) dx = 0 , (41)

which is the single-valuedness condition. By (39) and (40), we obtain

(−iξ)[A(ξ) + B(ξ)] =
1√
2π

∫ ∞

−∞
φ(x) eixξ dx

=
1√
2π

∫ d

c

φ(t) eiξt dt . (42)
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Substituting (37) into (42) above, one gets

A(ξ) =
1√
2π

[
1

(−iξ)[1 + ρ(β, ξ)]

]∫ d

c

φ(t)eiξtdt , (43)

where

1

1 + ρ(β, ξ)
=

(`2ξ2 + iβ`2ξ + 1) + `′
√

ξ2 + iβξ + 1/`2

1 + `′
√

ξ2 + iβξ + 1/`2 − `′
√

ξ2 + iβξ
. (44)

Replacing the A(ξ) in equation (35) by (43), one obtains the following integral equation in the

limit y → 0+:

lim
y→0+

σyz(x, y) = lim
y→0+

G(x)

2π

∫ ∞

−∞
λ1(β, ξ)

[
1

(−iξ)[1 + ρ(β, ξ)]

∫ d

c

φ(t)eiξt dt

]
eλ1ye−ixξ dξ

= lim
y→0+

G(x)

2π

∫ d

c

φ(t)

∫ ∞

−∞

[
λ1(β, ξ)

(−iξ)[1 + ρ(β, ξ)]
eλ1y

]
ei(t−x)ξ dξ dt (45)

= lim
y→0+

G

2π

∫ d

c

φ(t)

∫ ∞

−∞
K(ξ, y)eiξ(t−x) dξ dt , −∞ < x < ∞ , (46)

with

K(ξ, y) =
λ1(β, ξ)

(−iξ)[1 + ρ(β, ξ)]
eλ1y . (47)

Equation (46) is an expression for the stress σyz(x, y) in the limit form of y → 0+, which is valid

for x ∈ (−∞, ∞). Note that for the (first) boundary condition in (16), σyz(x, 0) = p(x), x is

retricted to the crack surface (c, d). It is this boundary condition that leads to the governing

hypersingular integrodifferential equation (see (55a) below). However, when SIFs are calculated,

x takes values outside of (c, d), and the integral (46) is not singular (see (55b) below).

We split K(ξ, y) into the singular part K∞(ξ, y) and the non-singular part N(ξ, y):

K(ξ, y) = K∞(ξ, y) + N(ξ, y) , (48)
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where K∞(ξ, y) is the non-vanishing part of the asymptotic expansion of K(ξ, y) in the powers

of ξ, as |ξ| → ∞. When y is set to be 0, we have

K∞(ξ, 0) = −i`2|ξ|ξ − `′

2
iξ +

3β`2

2
|ξ| + `′β

2
+

[(
`′

2`

)2

+
3`2β2

8
− 1

]
iξ

|ξ|
. (49)

Note that the real and the imaginary parts of K∞(ξ, 0) given in equation (49) are even and odd

functions of ξ, respectively.

In view of the following distributional convergence,

∫ ∞

−∞

[
iξ|ξ|e−|ξ|y] ei(t−x)ξdξ

y→0+

−→ 4

(t − x)3
(50)

∫ ∞

−∞

[
|ξ|e−|ξ|y] ei(t−x)ξdξ

y→0+

−→ −2

(t − x)2
(51)

∫ ∞

−∞

[
iξe−|ξ|y] ei(t−x)ξdξ

y→0+

−→ 2πδ′(t − x) (52)

∫ ∞

−∞

[
i
|ξ|
ξ

e−|ξ|y
]
ei(t−x)ξdξ

y→0+

−→ −2

t− x
(53)

∫ ∞

−∞

[
1e−|ξ|y] ei(t−x)ξdξ

y→0+

−→ 2πδ(t− x) (54)

with δ(x) being the Dirac delta function, we obtain the limit

lim
y→0+

∫ d

c

∫ ∞

−∞
K∞(ξ, y)eiξ(t−x)dξ φ(t) dt =





G
π

∫ d

c
=

{
−2`2

(t−x)3
− 3β`2

2(t−x)2
+ 1−3β2`2/8−[`′/(2`)]2

t−x
+ k(x, t)

}
φ(t) dt + `′

2
φ′(x) + β`′

2
φ(x)

= p(x) , c < x < d

1
π

∫ d

c

{
−2`2

(t−x)3
− 3β`2

2(t−x)2
+ 1−3`2β2/8−[`′/(2`)]2

t−x
+ k(x, t)

}
φ(t) dt , x < c or x > d ,

(55)

where
∫
= denotes the finite-part integral [11], and the regular kernel k(x, t) is given by

k(x, t) =

∫ ∞

0

N(ξ, 0)ei(t−x)ξdξ . (56)

Equation (55a) is a Fredholm integral equation of the second kind with the cubic and Cauchy

singular kernels.
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7 Numerical Solution

To solve the unknown slope function φ(t) numerically in (55a), we follow the general procedure

outlined in the Part I paper. For the sake of clarity and completeness, each step is presented

below and particularized to the problem at hand (see Figures 1 and 2).

7.1 Normalization

By the change of variables

t = (d − c)s/2 + (c + d)/2 and x = (d − c)r/2 + (c + d)/2 , (57)

the crack surface (c, d) can be converted into (−1, 1), and the main integral equation (55a) can

be rewritten in normalized form:

1

π

∫ 1

−1

=

{
−2(`/a)2

(s − r)3
− 3(`/a)2(aβ)

2(s − r)2
+

1 − 3(`/a)2(aβ)2/8 − [(`′/a)/(2`/a)]2

s − r
+ K(r, s)

}
Φ(s) ds

+
`′/a

2
Φ′(r) +

(aβ)(`′/a)

2
Φ(r) =

P (r)

G0
e−β[ar+(c+d)/2] , |r| < 1 , (58)

where

a = (d − c)/2 = half of the crack length ; (59)

Φ(r) = φ (a r + (c + d)/2) ; P (r) = p (a r + (c + d)/2) ; (60)

K(r, s) = a k (a r + (c + d)/2 , a s + (c + d)/2) , (61)

and k(x, t) is described by equation (56).

Note that in equation (58), G(x) can be written as

G(x) = G0eβx = G0eβ[( d−c
2 )r+ c+d

2 ] = G0e(aβ)r
(
eaβ
)( d+c

d−c) ,

where aβ = (d− c)β/2 and (d+ c)/(d− c) are two dimensionless quantities. Together with the

terms `/a and `′/a that appear in equation (58), the following dimensionless parameters are
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defined:

˜̀= `/a , ˜̀′ = `′/a , and β̃ = aβ . (62)

They will be used in the numerical implementation and results.

7.2 Representation of the Density Function

To proceed with the numerical approximation, a representation of Φ(s) is chosen so that one can

evaluate the hypersingular and the Cauchy singular integrals by finite-part and Cauchy principal

value, respectively (see Kaya and Erdogan [11], Monegato [12]). For the cubic hypersingular

integral equation (58), the solution Φ(s) can be represented as

Φ(s) = g(s)
√

1 − s2 , (63)

where g(±1) is finite and g(±1) 6= 0 [5]. By finding numerical solution for g(s), one can find the

approximate solution for Φ(s). The representation (63) of Φ(s) is suggested by the following

asymptotic behavior of the solution around the crack tips:

Displacements ∼ r3/2 , Strains ∼
√

r , Stresses ∼ r−3/2 , (64)

reported in [1, 5].

7.3 Chebyshev Polynomial Expansion

In view of (63) and the fact that {Un(s)} are orthogonal on (−1, 1) with respect to the weight

function
√

1 − s2, g(s) can be most naturally expressed in terms of the Chebyshev polynomials

of the second kind Un(s). However, the orthogonality is not required in the implementation of

the numerical procedures, and either Chebyshev polynomials of the first kind Tn(s), or of the
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second kind Un(s), may be employed in the approximation, i.e.

g(s) =
∞∑

n=0

anTn(s) or g(s) =
∞∑

n=0

AnUn(s) . (65)

The coefficients an’s or An’s are determined numerically by the collocation method. As shown

by Chan et al. [6], the two expansions should lead to consistent numerical results. In this paper,

the expansion in terms of Un(s) is adopted, i.e.

Φ(s) =
√

1 − s2

∞∑

n=0

AnUn(s) , (66)

where Un(s) is defined, as usual, by

Un(s) =
sin[(n + 1) cos−1(s)]

sin[cos−1(s)]
, n = 0, 1, 2, · · · . (67)

Note the single-valuedness condition (41), or equivalently,
∫ 1

−1
Φ(s) ds = 0, implies

A0 = 0 . (68)

Thus the running index n in (66) can start from 1 instead of 0.

7.4 Evaluation of the Derivative of the Density Function

The term Φ′(r) in equation (58) is evaluated using the expansion (66) and the fact that

d

dr

[
Un(r)

√
1 − r2

]
= − n + 1√

1 − r2
Tn+1(r) , n ≥ 0 . (69)

Thus

Φ′(r) =
d

dr

[
√

1 − r2

∞∑

n=0

AnUn(r)

]
=

−1√
1 − r2

∞∑

n=0

(n + 1)AnTn(r) . (70)

17



7.5 Formation of the Linear System of Equations

The An coefficients are determined by transforming the integral equation (55a) into a system

of linear algebraic equations in terms of the An’s. Replacing Φ(s) in (58) by the representation

(66), and using (70), one obtains the governing integral equation in discretized form:

−2˜̀2
∞∑

n=1

An

π

∫ 1

−1

=
Un(s)

√
1 − s2

(s − r)3
ds − 3˜̀2β̃

2

∞∑

n=1

An

π

∫ 1

−1

=
Un(s)

√
1 − s2

(s − r)2
ds

+


1− 3˜̀2β̃2

8
−
(

˜̀′

2˜̀

)2



∞∑

n=1

An

π

∫ 1

−1

− Un(s)
√

1 − s2

s − r
ds +

∞∑

n=1

An

π

∫ 1

−1

√
1−s2Un(s)K(r, s)ds

−
˜̀′

2
√

1 − r2

∞∑

n=1

(n + 1)AnTn+1(r) +
˜̀′β̃

2

√
1 − r2

∞∑

n=1

AnUn(r) =
P(r)

G(r)
, |r| < 1. (71)

We have used the running index n starts from 1 (see (68)).

7.6 Evaluation of Singular and Hypersingular Integrals

Formulas for evaluating singular integral terms in (71) are listed below:

1

π

∫ 1

−1

− Un(s)
√

1 − s2

s − r
ds = −Tn+1(r) , |r| < 1 , n ∈ Z+ (72)

1

π

∫ 1

−1

=
Un(s)

√
1 − s2

(s − r)2
ds = −(n + 1)Un(r) , |r| < 1 , n ∈ Z+ (73)

1

π

∫ 1

−1

=
Un(s)

√
1−s2

(s − r)3
ds =





−1 , n = 0 ,

|r| < 1

(n2+n)Un+1(r)−(n2+3n+2)Un−1(r)
4(1−r2) , n ≥ 1 ,

(74)

The details of the calculation can be found in Chan et al. [13].
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7.7 Evaluation of Non-singular Integral

Combining all the results obtained so far in the numerical approximation, one may rewrite

equation (71) in the following form

−˜̀2

2(1 − r2)

∞∑

n=1

An

[
(n2 + n)Un+1(r) − (n2 + 3n + 2)Un−1(r)

]
+

3β̃ ˜̀2

2

∞∑

n=1

(n + 1)AnUn(r)

−


1 − 3˜̀2β̃2

8
−
(

˜̀′

2˜̀

)2



∞∑

n=1

AnTn+1(r) +
∞∑

n=1

An

π

∫ 1

−1

√
1 − s2Un(s)K(r, s)ds

−
˜̀′

2
√

1 − r2

∞∑

n=1

(n + 1)AnTn+1(r) +
˜̀′β̃

2

√
1 − r2

∞∑

n=1

AnUn(r) =
P(r)

G(r)
, |r| < 1 . (75)

The regular kernel in (75) is actually a double integral, i.e.

∫ 1

−1

√
1 − s2Un(s)K(r, s)ds =

∫ 1

−1

√
1 − s2Un(s)ak(ar, as)ds

=

∫ 1

−1

√
1 − s2Un(s)

∫ ∞

0

aN(ξ, 0) sin[aξ(s − r)] dξ ds . (76)

The Fourier sine transform in (76) can be efficiently evaluated by applying fast Fourier transform

(FFT) [14]. The integral along [−1, 1] can be readily obtained by the Gaussian quadrature

method [15].

8 Stress Intensity Factors

In classical LEFM, the stress intensity factors (SIFs) are defined by

KC
III(d) = lim

x→d+

√
2π(x − d) σyz(x, 0) , (x > d) (77)

and

KC
III(c) = lim

x→c−

√
2π(c − x) σyz(x, 0) , (x < c) (78)
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After normalization, the crack surfaces are located in the interval (−1, 1). The density function

Φ(t) is expanded in terms of Chebyshev polynomials of the second kind Un, which, when

substituted into (55b), give rise to the following formulas for |r| > 1 (see Chan et al. [13]):

1

π

∫ 1

−1

Un(s)
√

1 − s2

s − r
ds = −

(
r − |r|

r

√
r2 − 1

)n+1

, n ≥ 0 (79)

1

π

∫ 1

−1

Un(s)
√

1 − s2

(s − r)2
ds = −(n + 1)

(
1 − |r|√

r2 − 1

)(
r − |r|

r

√
r2 − 1

)n

, n ≥ 0 (80)

1

π

∫ 1

−1

Un(s)
√

1 − s2

(s − r)3
ds =

−1

2
(n + 1)

(
r − |r|

r

√
r2 − 1

)n−1

×
[
n

(
1 − |r|√

r2 − 1

)2

+
r − |r|

r

√
r2 − 1

(√
r2 − 1

)3

]
, n ≥ 0 . (81)

The highest singularity in (79)–(81) appears in the last term in equation (81) and it behaves

like (r2 − 1)−3/2 as r → 1+ or r → −1−. Motivated by such asymptotic behavior, we define the

SIFs for strain gradient elasticity as

`KIII (d) = lim
x→d+

2
√

2π(x − d)(x − d)σyz(x, 0) , (x > d) (82)

`KIII (c) = lim
x→c−

2
√

2π(c− x)(c − x)σyz(x, 0) , (x < c) . (83)

Thus,

`KIII (d) = lim
x→d+

2
√

2π(x − d)(x − d)σyz(x, 0) , (x > d)

= lim
r→1+

2

√
2π

[(
d − c

2

)
r +

c + d

2
− d

]
(ar − a)σyz

(
d − c

2
r +

c + d

2
, 0

)
, (r > 1)

= 2a
√

2πa lim
r→1+

√
(r − 1)(r − 1) σyz((d − c)r/2 + (c + d)/2 , 0) , (r > 1)

= 2a
√

2πa lim
r→1+

√
(r−1)(r−1)G0eaβreβ(d+c)/2

(
−2`2

πa2

)∫ 1

−1

Φ(s)

(s−r)3
ds , (r > 1) (84)

20



Using (66) in conjunction with (81), we obtain from (84)

KIII(d) = 2
√

2πa

(
−2`

a

)
G0eβd lim

r→1+
(r − 1)3/2

N∑

n=0

−(n + 1)

2

(
r − |r|

r

√
r2 − 1

)n−1

×
[
n

(
1 − |r|√

r2 − 1

)2

+
r − |r|

r

√
r2 − 1

√
r2 − 1

3

]
An

=
√

πaG0eβd (`/a)
∞∑

n=0

(n + 1)An . (85)

Similarly,

KIII(c) =
√

πaG0eβc (`/a)
∞∑

n=0

(−1)n(n + 1)An . (86)

9 Results and Discussion

The numerical results include crack surface displacements, strains, stresses, and SIFs.

9.1 Crack Surface Displacements

The (normalized) crack surface displacements shown in Figures 4–8 are obtained by integrating

the slope function (see (87) below). Figure 4 shows a full normalized crack sliding displacement

profile for a homogeneous medium (β̃ = 0) with the strain-gradient effect. The crack profile in

Figure 4 is symmetric because the material is homogeneous. Figures 5 and 6 are for classical

LEFM. Figures 7 and 8 are for the strain-gradient theory. As β < 0, the material has larger

shear modulus at the left side of the crack than at the right side, and thus the material is stiffer

on the left and more compliant on the right as shown in Figure 5 (and 7). Similarly, Figure 6

(and 8) illustrates the case of β > 0, and confirm that the material is stiffer on the right and

more compliant on the left. The variation of the shear modulus destroys the symmetry of the

displacement profiles. The most prominent feature is the cusping phenomena around the crack

21



tips as shown in Figures 4, 7 and 8. The difference between Figures 5 and 6 and Figures 7 and

8 is the cusp at the crack tips. In Figures 5 and 6, one may observe that the profiles have a

tangent line with infinite slope at the crack tips, which is a common crack behavior exhibited

in the classical LEFM, although less physical. However, such is not the case in gradient theory

as evidenced by the numerical results shown.

9.2 Strains

We have used the strain-like field, φ(x) (the slope function), as the unknown density function

in our integral equation formulation. The normalized version, Φ(x), with various ˜̀ is plotted in

Figure 9. Note that Φ(±1) = 0 while, in classical LEFM, Φ(±1) = ±∞. The vanishing slope is

equivalent to the cusping at the crack tips. The (normalized) crack displacement profile w(r, 0)

can be obtained by

w(r, 0) =

∫ r

−1

Φ(s)ds =

∫ r

−1

√
1 − s2

N∑

n=0

AnUn(s) ds . (87)

As ` decreases, Φ(x) seems to converge to the slope function of the classical LEFM case in the

region away from the crack tips; where as Φ(x) is very different from its classical counterpart

near the crack tips.

9.3 Stresses

Similar to classical LEFM, the stress σyz(x, 0) diverge as x approaches the crack tips along the

ligament (Figure 10). Moreover, the sign of the stress changes, and as ` decreases, the interior

part (i.e. the region apart from the two crack tips) of σyz(x, 0) seems to converge to the solution

of classical LEFM. The finding of the negative near-tip stress is consistent with the results by
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Zhang et al. [8] who also investigated a mode III crack in elastic materials with strain gradient

effects; this negative stress may be considered as a necessity for the crack surface to reattach

near the tips. The point worth noting here is that not all strain gradient theories possess the

negative-stress feature near the crack tips. For instance, the strain gradient elasticity theory for

cellular materials [16] and elastic-plastic materials with strain gradient effects [17], which fall

within the classical couple stress theory framework, show a positive stress singularity near the

crack tip. On the other hand, the strain gradient theory proposed by Fleck and Hutchinson [18],

which does not fall into the above framework, predicts a compressive stress near the tip of a

tensile mode I crack [19, 20].

9.4 Stress Intensity Factors (SIFs)

Besides using φ(x) as the unknown density function, one may also use displacement w(x) to

be the unknown in the formulation of the integral equation (see Appendices A.1, A.3 and

A.6). By rewriting KC
III in terms of the coefficients in the expansion for w, one obtains (see

Chan et al. [6]):

• With Tn expansion:

KC
III(c)

G0

√
π(d− c)/2

= eβc
N∑

0

(−1)nan ,
KC

III(d)

G0

√
π(d − c)/2

= eβd
N∑

0

an . (88)

• With Un expansion:

KIII (c)

G0

√
π(d − c)/2

= eβc

N∑

0

(−1)n(n + 1)An ,
KIII (d)

G0

√
π(d − c)/2

= eβd

N∑

0

(n + 1)An . (89)

Table 3 contains the (normalized) SIFs for the case of classical LEFM by using both Tn and

Un expansions [see equations. (63) and (65)]. The SIFs in Table 3 have been obtained by using

equations (88) and (89), and they are close to the results reported in Erdogan [7].
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Table 3: Normalized SIFs for mode III crack problem in an FGM. (` = `′ → 0)

Un Representation Tn Representation

β(d−c
2 ) KIII(c)

p0

√
π(d−c)/2

KIII(d)

p0

√
π(d−c)/2

KIII(c)

p0

√
π(d−c)/2

KIII(d)

p0

√
π(d−c)/2

-2.00 1.21779 0.55672 1.21779 0.55672

-1.50 1.17801 0.63007 1.17801 0.63007

-1.00 1.14307 0.72845 1.14307 0.72845

-0.50 1.09036 0.85676 1.09036 0.85676

-0.10 1.02289 0.97312 1.02289 0.97312

0.00 1.00000 1.00000 1.00000 1.00000

0.10 0.97312 1.02289 0.97312 1.02289

0.50 0.85676 1.09036 0.85676 1.09036

1.00 0.72845 1.14307 0.72845 1.14307

1.50 0.63007 1.17801 0.63007 1.17801

2.00 0.55672 1.21779 0.55672 1.21779

Table 4 contains the SIFs for strain gradient elasticity at ˜̀= 0.1 and ˜̀′ = 0.01. One observes

that the dependence of KIII(c) and KIII(d) is similar to the classical case reported in Table 3.

10 Concluding Remarks

This paper has shown that the integral equation method is an effective means of formulat-

ing crack problems for a functionally graded material considering strain-gradient effects. The

theoretical framework and numerical analysis has been utilized to solve anti-plane shear crack

problems in FGMs using Casal’s continuum. The behavior of the solution around the crack

tips is affected by the strain gradient theory, and not by the gradation of the materials. Also,

the integral equation formulation has been found to be an adequate tool for implementing the
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Table 4: Normalized generalized SIFs for a mode III crack at ˜̀ = 0.1, ˜̀′ = 0.01, and various

values of β̃

β̃ KIII(c)

p0

√
π(d−c)/2

KIII(d)

p0

√
π(d−c)/2

-2.00 1.23969 0.49938

-1.00 1.12585 0.67600

-0.50 1.04849 0.80248

-0.10 0.96814 0.91658

0.00 0.94385 0.94385

0.10 0.91677 0.96828

0.50 0.80277 1.04854

1.00 0.67637 1.12584

2.00 0.49938 1.23969

numerical procedures and to assess physical quantities such as crack surface displacements,

strains, stresses, and SIFs. Further experiments are needed for justifying the physical aspects

of the method. Future work includes extension of the theory to mode I crack problems.
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Appendix

A Hierarchy of Governing Integral Equations

In this appendix we list the type of the physical problem under anti-plane shear loading, its

governing PDE and integral equation associated with the choice of the density function. The

corresponding references in the literature are also provided.

A.1 Classical LEFM, Homogeneous Materials (G ≡ G0)

• PDE: Laplace equation ∇2w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

G0

π

∫ d

c

− φ(t)

t − x
dt = p(x) , c < x < d . (90)

• Integral equation with the of density function φ(x) = w(x, 0) :

G0

π

∫ d

c

=
φ(t)

(t− x)2
dt = p(x) , c < x < d . (91)

Many standard textbooks have covered the Laplace equation (see, for example, Sneddon [21]).
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A.2 Classical LEFM, Nonhomogeneous Materials (G ≡ G(y) = G0eγy)

• PDE: Perturbed Laplace equation
(
∇2 + γ ∂

∂y

)
w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

G0

π

∫ a

−a

−
[

1

t− x
+ K̃γ(x, t)

]
φ(t) dt = p(x) , −a < x < a . (92)

Erdogan and Ozturk [22] have investigated this problem as bonded nonhomogeneous

materials with an interface cut.

A.3 Classical LEFM, Nonhomogeneous Materials (G ≡ G(x) = G0eβx)

• PDE: Perturbed Laplace equation
(
∇2 + β ∂

∂x

)
w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

G(x)

π

∫ d

c

−
[

1

t − x
+

β

2
log |t − x|+ Ñ (x, t)

]
φ(t) dt = p(x) , c < x < d . (93)

• Integral equation with the density function φ(x) = w(x, 0) :

G(x)

π

∫ d

c

=

[
1

(t − x)2
+

β

2(t − x)
+ N(x, t)

]
φ(t) dt = p(x) , c < x < d . (94)

The regular kernels Ñ(x, t) in (93) and N(x, t) in (94) can be found in Chan et al. [6]. Erdo-

gan [7] has studied this problem for bonded nonhomogeneous materials.

A.4 Gradient Elasticity, Homogeneous Materials (G ≡ G0)

• PDE: Helmholtz-Laplace equation (1 − `2∇2)∇2w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

1

π

∫ d

c

=

{
−2`2

(t − x)3
+

1 − (`′/`)2/4

t − x
+ K0(t − x)

}
φ(t) dt +

`′

2
φ′(x) =

p(x)

G0
. (95)

Fannjiang et al. [5] have studied equation (95) in detail.
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A.5 Gradient Elasticity, Nonhomogeneous Materials (G ≡ G(y) = G0eγy)

• PDE:
(
1 − γ`2 ∂

∂y
− `2∇2

)(
∇2 + γ ∂

∂y

)
w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

G0

π

∫ a

−a

=

{
−2`2

(t− x)3
+

5`2γ2/8 + `′γ/4 + 1 − (`′/`)2/4

t − x
+ kγ(x, t)

}
φ(t)dt

+ G(`′/2 + `2γ)φ′(x) = p(x) , |x| < a . (96)

This is the Part I paper by Paulino et al. [1].

A.6 Gradient Elasticity, Nonhomogeneous Materials (G ≡ G(x) = G0eβx)

• PDE:
(
1 − β`2 ∂

∂x
− `2∇2

) (
∇2 + β ∂

∂x

)
w(x, y) = 0 .

• Integral equation with the density function φ(x) = ∂w(x, 0)/∂x :

1

π

∫ d

c

=

{
−2`2

(t − x)3
− 3β`2

2(t − x)2
+

1 − 3`2β2/8 − [`′/(2`)]2

t− x
+ k(x, t)

}
φ(t) dt

+
`′

2
φ′(x) +

β`′

2
φ(x) = p(x)/G , c < x < d .

This is the main governing integral equation (55a).

• Integral equation with the density function φ(x) = w(x, 0) :

1

π

∫ d

c

=





−6`2

(t − x)4
− 3`2β

(t− x)3
+

1−
(

`′

2`

)2− 3`2β2

8

(t− x)2
+

β
2

[
1−
(

`′

2`

)2]
+ `2β3

16

t − x
+ k̃(x, t)



φ(t)dt

+
`′

2
φ′′(x) − `′β

2
φ′(x) −

[
1

`

(
`′

2`

)3

+
`′

8`2

]
φ(x) =

p(x)

G(x)
, c < x < d .
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Figure 4: Full crack displacement profile for homogeneous material (β̃ = 0) under uniform crack

surface shear loading σyz(x, 0) = −p0 with choice of (normalized) ˜̀= 0.2 and ˜̀′ = 0 .
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geneous plane under uniform crack surface shear loading σyz(x, 0) = −p0 and shear modulus

G(x) = G0eβx. Here a = (d − c)/2 denotes the half crack length.
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Figure 6: Classical LEFM, i.e. ˜̀= ˜̀′ → 0. Crack surface displacement in an infinite nonhomo-

geneous plane under uniform crack surface shear loading σyz(x, 0) = −p0 and shear modulus

G(x) = G0eβx. Here a = (d − c)/2 denotes the half crack length.

Figure 6 / Chan et al./ ASME - JAM # 201292

39



w
(x

,0
)/

(a
p 0 / 

G
0 )

G(x)=G
0
eβx

β = −2.0 

β = −1.5 

β = −1.0 

β = −0.5 

β = −0.1 0 

2 

4 

6 

8 

10 

12 

0 2.0 1.2
x/a 

0.4 0.8 1.6 
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surface shear loading σyz(x, 0) = −p0 and shear modulus G(x) = G0eβx with choice of (nor-

malized) ˜̀= 0.10 and ˜̀′ = 0.01. Here a = (d − c)/2 denotes the half crack length.
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Figure 8: Crack surface displacement in an infinite nonhomogeneous plane under uniform crack

surface shear loading σyz(x, 0) = −p0 and shear modulus G(x) = G0eβx with choice of (nor-

malized) ˜̀= 0.10 and ˜̀′ = 0.01. Here a = (d − c)/2 denotes the half crack length.
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Figure 9: Strain φ(x/a) along the crack surface (c, d) = (0, 2) for β̃ = 0.5, ˜̀′ = 0, and various ˜̀

in an infinite nonhomogeneous plane under uniform crack surface shear loading σyz(x, 0) = −p0

and shear modulus G(x) = G0eβx. Here a = (d − c)/2 denotes the half crack length.
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Figure 10: Stress σyz(x/a, 0)/G0 along the ligament for β̃ = 0.5, ˜̀′ = 0, and various ˜̀. Crack

surface (c, d) = (0, 2) located in an infinite nonhomogeneous plane is assumed to be under

uniform crack surface shear loading σyz(x, 0) = −p0 and shear modulus G(x) = G0eβx. Here

a = (d − c)/2 denotes the half crack length.
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