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Abstract
Fourier phasing is the problem of retrieving Fourier phase information from
Fourier intensity data. The standard Fourier phase retrieval (without a mask)
is known to have many solutions which cause the standard phasing algorithms
to stagnate and produce wrong or inaccurate solutions. In this paper Fourier
phase retrieval is carried out with the introduction of a randomly fabricated mask
in measurement and reconstruction. Highly probable uniqueness of solution,
up to a global phase, was previously proved with exact knowledge of the
mask. Here the uniqueness result is extended to the case where only rough
information about the mask’s phases is assumed. The exponential probability
bound for uniqueness is given in terms of the uncertainty-to-diversity ratio of
the unknown mask. New phasing algorithms alternating between the object
update and the mask update are systematically tested and demonstrated to have
the capability of recovering both the object and the mask (within the object
support) simultaneously, consistent with the uniqueness result. Phasing with a
phase-uncertain mask is shown to be robust with respect to the correlation in
the mask as well as the Gaussian and Poisson noises.

(Some figures may appear in colour only in the online journal)

1. Introduction

Fourier phasing is the problem of reconstructing an unknown object from its Fourier intensity
data and is fundamental in many applications. Recent breakthroughs center around diffractive
imaging of non-periodic objects, combining the penetration power of hard x-ray and the high
sensitivity of lensless imaging [3, 17, 22]. Since the interaction of x-rays with matter is weak
compared to that of electrons, multiple scattering can be neglected and the singly scattered far
field is essentially the Fourier transform of the transmission function of the image via proper
choice of variables.

Despite tremendous progresses, many questions, fundamental as well as algorithmic,
remain to be solved. The standard phasing algorithms, based on alternating projections [8, 11],
are plagued by stagnation and spurious errors partly due to intrinsic non-uniqueness of the
standard phasing problem. The competition among the true and the ambiguous solutions
accounts for their slow convergence and possible stagnation [9, 10].
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We believe that the two problems, non-uniqueness and non-convergence, can be solved
in one stroke with high probability by introducing a random mask. We have previously
shown that phasing with a randomly fabricated, but otherwise exactly known, mask yields
a unique solution, up to a global phase factor, with high probability as well as superior
numerical performances, including rapid convergence, much reduced data and noise stability.
In particular, the random mask method is robust to various types of noise, including Gaussian,
Poisson and mask noises, with a noise amplification factor about 2 [5, 6]. Although uniqueness
of solution holds only with high probability (in the mask selection), instead of probability one,
it suffices for all practical purposes.

Similar in spirit is the wavefront curvature approach [20, 21, 24] which derives uniqueness,
up to a global phase, by using cylindrical, in addition to planar, incident waves. The cylindrical
wave approach, however, requires d + 1 Fourier measurements (d = the dimension of the
object) as well as the Neumann boundary condition of Fourier phase. In contrast, our previous
results of highly probable uniqueness [5] require just one Fourier measurement for complex-
valued objects whose phases are limited to any proper interval [a, b] � [0, 2π) and two Fourier
measurements for unconstrained complex objects in any dimension. This is an example of
randomized measurement leading to optimal information retrieval. Previously, the effect of a
random (binary) mask on Fourier phasing has been observed in [25].

Comparison can also be made with ptychography [3, 15, 22, 23] which is a coherent
diffractive imaging method that uses multiple diffraction patterns obtained through the scan
of a localized illumination on the specimen (see also remark 4). In ptychography, the adjacent
illuminations have to overlap around 60–70% in every dimension. This corresponds to at
least three illuminations for every point of the object and roughly more than three Fourier
measurements in two dimensions. In fact, randomly phased masks have been recently deployed
in the ptychographic approach to x-ray microscopy to enhance its performance with the extra
benefit of reduced dynamic range of the recorded diffraction patterns [16].

A critique that can be leveled against the random mask approach is the assumption of
exact knowledge of the mask which is not always available. In the present work, we address the
phasing problem with a random mask whose phases are not exactly known. We will show that
nearly perfect recovery of both the object and the mask can be achieved with high probability.

Our approach is based on two new highly probable uniqueness results for the setting with
random phase-uncertain mask (PUM) whose phases are only roughly known and satisfy a crude
uncertainty constraint. Instead of running phasing algorithms with a fixed erroneous mask, we
design algorithms to recover the object and the mask simultaneously. At each iteration, the
object and the mask are updated alternatively, aiming at fitting the object constraint, the mask
constraint as well as the Fourier intensity data. As shown below our numerical schemes can
accurately recover the object with close to 50% uncertainty in mask phases.

The paper is organized as follows. We state the uniqueness theorems for phasing with a
random PUM in section 3 and give the proofs in appendices A and B. We discuss the basic
algorithm of alternating-error-reduction (AER) and prove the residual reduction property
in section 5 and appendix C. We discuss the Douglas–Rachford-Error-Reduction (DRER)
algorithm in section 6 and the algorithms with two sets of Fourier intensity data in section 7.
We present numerical results in section 8 and conclude in section 9. A preliminary version of
the results is given in [7].

2. Random-mask-aided phasing

Let us consider discrete Fourier phasing first without a mask (the standard setting) and then
with a mask.
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Let n = (n1, . . . , nd ) ∈ Zd and z = (z1, . . . , zd ) ∈ Cd where d � 2 is the ambient
dimension. Define the multi-index notation zn = zn1

1 zn2
2 . . . znd

d . Let C(N ) denote the set of
finite complex-valued functions on Zd vanishing outside

N = {0 � n � N}, N = (N1, N2, . . . , Nd ).

Here m � n if mj � n j,∀ j. Set |N | =
d∏

j=1

(Nj + 1).

The z-transform F(z) = ∑
n f (n)z−n of f ∈ C(N ) is an analytic

continuation of the Fourier transform with z in the d-dimensional unit torus
{(exp (2π iω1), . . . , exp (2π iωd )), ω j ∈ [0, 1]}. The standard Fourier phasing is to determine
F(z) (and hence { f (n)}) from the data {|F(z)|} over the d-dimensional unit torus. This is a
nonlinear inversion problem. Worse still, the problem is non-convex due to the non-convexity
of the set of functions satisfying the Fourier intensity data.

But non-uniqueness of phasing solutions may be even more problematic than the
non-convexity of the phasing problem. Let us digress to make a simplifying observation.
Considering the calculation

|F(ei2πw)|2 =
N∑

n=−N

∑
m+n∈N

f (m + n) f (m) e−i2πn·w

where the over-bar notation means complex conjugacy, we see that the Fourier intensity
measurement is equivalent to the discrete Fourier measurement of the correlation function

C f (n) =
∑

m∈N
f (m + n) f (m)

if sampled at the lattice

L =
{
ω = (ω1, . . . , ωd ) | ω j = 0,

1

2Nj + 1
,

2

2Nj + 1
, . . . ,

2Nj

2Nj + 1

}

which is approximately 2d times of the number of degrees of freedom in f . Hence sampling
on L corresponds to the oversampling ratio |L|/|N | ≈ 2d .By the sampling theorem for band-
limited signals, the Fourier intensity data over L contain the complete information of the
Fourier intensity over the d-dimensional unit torus. So the standard phasing problem can be
recast as recovering f from its Fourier intensity data |F(ei2πω)|,∀ω ∈ L.

However, the autocorrelation function C f does not uniquely determine the object f .
First, there are three types of global ambiguities/associates:

(a) constant global phase: f (·) −→ exp (iθ ) f (·), for some θ ∈ [0, 2π),

(b) spatial shift: f (·) −→ f (· + m), for some m ∈ Zd,

(c) conjugate inversion: f (·) −→ f (N − ·).
Conjugate inversion produces the so-called twin image.

These trivial, global associates all share the same global geometric information as the
original object and can be viewed as belonging to the same equivalence class of objects.

The classical result [12, 13] says that for generic objects in dimension two or higher the
global ambiguities are the only ambiguities in Fourier phasing. Since the global associates are
all simple transformations of the original object, one is tempted to believe that the phasing
problem is well-posed relative to the equivalence classes of objects. There are, however, two
caveats with this result. One, generic objects almost surely have a full support (N ) and hence
do not include objects with zero voxels in N . This is an unrealistic restriction. Second, without
the exact knowledge of the outer boundary of the object support (i.e. tight support constraint)
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Figure 1. Imaging geometry with a fine-grained (high-resolution) mask (left) and coarse-grained
(low resolution) mask (right). The mask can be placed in front of or behind the object. The
construction of fine- and coarse-grained masks is given in section 8.1.

the standard phasing algorithms do not perform well even with noiseless data [8, 10], indicating
ill-posedness relative to the equivalence classes.

The random-mask-aided phasing method [5, 6] introduces a random mask into the Fourier
intensity measurement (see figure 1). The effect of a mask amounts to changing the original
object f to the masked object

g(n) = μ(n) f (n), n ∈ Zd (1)

where μ is an array representing the mask. The standard phasing set-up is equivalent to μ ≡ 1,
i.e. the uniform (hence deterministic) mask (UM). In this paper we assume that the mask μ is
randomly fabricated and only roughly known. We will focus on the case of phase masks

μ(n) = exp (iφ(n)), φ(n) ∈ [0, 2π), n ∈ Zd (2)

whose true phases φ(n), in radian, are only known to lie within δπ from a known, initial
estimates φ0(n) for all n. That is, the random mask phases φ(n) satisfy the uncertainty
constraint

φ(n) ∈ �φ0(n) − δπ, φ0(n) + δπ� ≡ �φ0(n) ± δπ�, ∀ n, (3)

(see section 4 for extension to general masks). Here and below we adopt the following notation:
θ ∈ �a, b� means{

a(mod 2π) � θ (mod 2π) � b(mod 2π) if a(mod 2π) � b(mod 2π)

a(mod 2π) � θ (mod 2π) < 2π or 0 � θ (mod 2π) � b(mod 2π) else.

Some words for clarifying the use of ‘random’ and ‘uncertain’: In this paper, ‘random’
means ‘non-deterministic’ and a random mask is a mask generated by a probabilistic
mechanism. For example, each pixel/voxel of a random mask may be independently selected
according to a probabilistic distribution which is not a Dirac delta-function. Once a mask
(random or not) is generated, it may or may not be exactly known to the user. In the latter case,
we speak of a uncertain mask or a roughly known mask. In other words, uncertainty refers to
the calibration while randomness refers to the fabrication of the mask.

In the original random-mask-aided approach [5, 6], the random mask is exactly known,
namely the uncertainty δ is zero. With an additional random mask in the Fourier intensity
measurement, we obtained not only uniqueness of solution but also rapid convergence of the
phasing algorithms to the true object (up to a global phase), indicating that the use of a random
mask renders the phasing problem well-posed. In the present paper, we extend the results to
the case of PUMs (δ > 0).

4
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3. Uniqueness

First we recall the uniqueness results for δ = 0 [5].
The rank of an object is the dimension of the support’s convex hull in Rd . An object is

said rank � 2 if the convex hull of its support has a dimension � 2. The support of a rank one
object is a subset of a line. The rank 2 property is a key assumption for our uniqueness results.

The first uniqueness pertains to the real-valued objects.

Proposition 1. Let {φ(n)} be independent, continuous random variables on [0, 2π ]. Let f
be a real-valued object of rank � 2. Then, with probability one, f is determined absolutely
uniquely up to ± sign by the Fourier intensity measurement on L.

A more general constraint is to restrict the object values within a certain sector of the
complex plane. For instance, for coherent x-ray diffractive imaging, the electron density is
complex with the real part representing the effective number of electrons that diffract the
x-rays in phase and is usually positive and the imaginary part representing the absorption of
the x-rays by the specimen and thus is always positive [19].

We have the following uniqueness for the so-called sector-constrained objects.

Proposition 2. Let {φ(n)} be independent, uniform random variables on [0, 2π ]. Let f be a
complex-valued object of rank � 2 such that � f (n) ∈ [α, β],∀ n. Let S denote the sparsity of
the image and let �S/2� be the greatest integer at most half the image sparsity S which is the
number of nonzero pixels.

Then with probability no less than 1−|N |(β −α)�S/2�(2π)−�S/2�, the object f is uniquely
determined, up to a global phase, by the Fourier intensity measurement on L.

For general complex-valued images without any sector constraint, measurements with
two independent masks are needed to ensure uniqueness.

Proposition 3. Let {φ(1)(n)} and {φ(2)(n)} be two independent arrays of continuous random
variables on [0, 2π ]. Let f be any complex-valued object of rank � 2. Then almost surely f
is uniquely determined, up to a constant phase factor, by two Fourier intensity measurements
on L with two masks μ(1)(n) = exp (iφ(1)(n)) and μ(2)(n) = exp (iφ(2)(n)).

Notice that the above uniqueness results deal with any given, deterministic object of rank
� 2. Moreover, there is substantial flexibility in the mask ensemble in propositions 1 and 3
since only the existence of probability density for the mask phases is assumed. The uniformity
condition in proposition 2 can also be relaxed but then the resulting probability bound would
be more complicated.

Next we state our main theoretical results that for proper δ > 0 both the ambiguities for
the object and the PUM can be resolved up to a global phase with overwhelming probability.

The first result is analogous to proposition 1.

Theorem 1. Let f be a real-valued object of rank � 2. Suppose the exact mask phases {φ(n)}
are independently and uniformly distributed on [−γπ, γπ ). Suppose the uncertainty of the
mask estimate μ0 = {exp (iφ0(n))} in (3) is δ < γ /2.

Suppose that another real-valued image f̃ and mask estimate μ̃ = {exp (iφ̃(n))} satisfying
the same uncertainty constraint as (3), i.e.

φ̃(n) ∈ �φ0(n) ± δπ�, (4)

produce the same Fourier intensity data on L as do f and μ. Then, with probability no less
than 1−|N |(2δ/γ )�S/2�, f̃ (n) = ± f (n) ∀ n and furthermore φ̃(n) = θ +φ(n) for a constant
θ ∈ [0, 2π) wherever f (n) 	= 0.

5
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Remark 1. If the object is known to be non-negative, then δ can be any number in [0, γ ) and
uniqueness holds with probability no less than 1 − |N |(δ/γ )�S/2�.

Because the phases of the object and the mask are mixed, any uncertainty in the mask
phases is automatically transferred to the object phases. To resolve the phase ambiguity in
complex-valued objects we use two independent sets of Fourier intensity data.

Theorem 2. Let f be a complex-valued object of rank � 2. Let the first mask μ(1) = μ be as
in theorem 1 with the initial mask estimate μ0 satisfying (3).

Suppose the second mask μ(2) is exactly known and the z-transform of μ(2) f is
irreducible up to a power of z. Moreover, assume the non-degeneracy condition that there
is no m 	= 0 such that μ(2)(n + m) f (n + m) = exp (iξ ) exp (iη(n))μ(2)(n) f (n),∀ n, and
no m such that μ(2)(m − n) f (m − n) = exp (iξ ) exp (iη(n))μ(2)(n) f (n),∀ n, for some
ξ ∈ [0, 2π), |η(n)| � πδ.

Suppose that for a phase mask μ̃ with (4) and an object f̃ the two pairs of masked
objects μ f and μ̃ f̃ , μ(2) f and μ(2) f̃ , respectively, produce the same Fourier intensity on
L. Then, with probability no less than 1 − |N |(δ/γ )�S/2�, f̃ (n) = exp (iα1) f (n),∀ n, and
μ̃(n) = exp (iα2)μ(n) if f (n) 	= 0, where α1, α2 are two real numbers.

Remark 2. Clearly, most objects and masks obey the non-degeneracy condition.

Remark 3. The probability bounds, in terms of the mask’s uncertainty-to-diversity ratio (UDR)
δ/γ , in theorems 1 and 2 are probably not far from optimal. In particular, the probability bound
predicts the threshold UDR ≈ 1 for reconstruction of nonnegative and complex images which
is confirmed by our numerical results (see figure 12).

The proofs of theorems 1 and 2 are given in appendices A and B, respectively.
Both theorems assert that not only the uniqueness of the object but also the uniqueness

of the mask, up to a constant phase, inside the object support. Outside the support, the mask
phase can be arbitrarily assigned without affecting the Fourier intensity data.

The surprising lesson from theorems 1 and 2 is that a crude constraint on a mask that is
sufficiently random is enough to enforce uniqueness of solution (up to a global phase) as well
as the mask itself (inside the object support). And this mask constraint can be numerically
implemented straightforwardly within the phasing algorithms for δ = 0 [6]. The resulting
algorithms turn out to be capable of nearly perfect recovery of object and mask even in the
presence of relatively high uncertainty in mask.

4. Extension to general masks

The preceding discussion is limited to the case of phase masks. It is easy to extend the above
results to general masks, if the mask intensities are strictly positive and certain (i.e. exactly
known), as follows.

Let the mask be rewritten as μ(n) = |μ|(n) exp (iφ(n)), with |μ(n)| > 0,∀ n ∈ N , where
|μ| is certain and φ is uncertain as before. Define the auxiliary object f̃ (n) = f (n)|μ|(n).
The Fourier phasing problem for the object f and the mask μ is equivalent to that for the
auxiliary object f̃ and the phase mask exp (iφ) which can be solved as above. The original
object can then be recovered by dividing the recovered auxiliary object by the known, nonzero
mask intensities |μ|.

In this extension, any uncertainty of the mask intensities is converted into that of the
object. So in case that |μ| is unknown or highly uncertain our approach needs substantial
modification unless the object intensities are known a priori. For example, if the object is a

6
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Figure 2. AER between object and mask. The object update (a) is the ER with a mask.

phase object (| f | = 1) then we can proceed as if the object were f̃ = f |μ| and the mask
were exp (iφ). After the auxiliary object is recovered, the phase object can be recovered by
normalization.

5. Alternating error reduction (AER)

Let � be the diagonal matrix with diagonal elements {μ(n)} and let � represent the
d-dimensional discrete Fourier transform. Denote the Fourier intensity data vector by
Y = |�� f | where � f (n) = μ(n) f (n) and the absolute value is taken component-wise.

A standard way to utilize the oversampled data (over L) is to enlarge the original image
by adding corresponding number of zero pixels (i.e. zero padding) which is then enforced as
an additional object constraint. This procedure is called the oversampling method [18] and
implemented in all our simulations with the oversampling ratio |L|/|N | ≈ 4 (for d = 2).
There are many ways to zero-pad the object. For example, we can extend the definition of the
original object f and the mask μ from N to the larger domain

{−N � n � N}, N = (N1, N2, . . . , Nd )

with the additional object constraint f = φ = 0 outside N . In the framework of the
oversampling method, the d-dimensional discrete Fourier transform � is a

∏
j(2Nj + 1) ×∏

j(2Nj + 1) matrix.

5.1. Object update

Given the object estimate fk and mask estimate μk at the kth iteration, we use standard phasing
algorithms to obtain fk+1.

Let O denote the ensemble of objects f̃ satisfying various object constraints (real-valued,
sector etc). Let Po be the orthogonal projection onto O (cf [6] for details about numerical
implementation of Po) and Pf,k = �−1

k �−1T ��k,where T is the intensity fitting operator

T G(ω) =
{

Y (ω) exp (i�G(ω)) if |G(ω)| > 0
Y (ω) if |G(ω)| = 0

. (5)

Here and below �z ∈ [0, 2π) denotes the wrapped phase angle of z. When z = 0, �z is taken
to be 0 unless specified otherwise.

Error reduction (ER) takes the form fk+1 = PoPf,k fk which is conveniently represented
by the diagram in figure 2(a).

Let r( f̃ , μ̃) = ‖ |��̃ f̃ | − Y ‖ denote the residual. Here and below ‖ · ‖ stands for the
Euclidean norm. With a phase mask, ER enjoys the residual reduction property [6, 8]:

r( fk+1, μk) � r( fk, μk) (6)

and r( fk+1, μk) = r( fk, μk) if and only if fk+1 = fk.

7
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5.2. Mask update

Based on the newly updated object estimate fk+1, the ER algorithm can be similarly applied
to update the mask. Let Qf,k be defined as

μ′
k = Qf,kμk(n) =

{
[�−1T ��k fk+1](n)/ fk+1(n) if fk+1(n) 	= 0
μk(n) else.

. (7)

Let M be the ensemble of phase masks satisfying the phase uncertainty constraint (4):

M = {μ̃|∀ n, |μ̃(n)| = 1 and �μ̃(n) ∈ �φ0(n) ± δπ�}. (8)

Let Qm be the orthogonal projection onto M.
The projector Qm can be computed pixel by pixel as follows. Let a = (φ0(n) −

δπ )(mod 2π), b = (φ0(n) + δπ )(mod 2π) and

c =
{
π + (a + b)/2(mod 2π), if a � b
(a + b)/2(mod 2π), else.

Then Qm can be expressed as

Qmμ′
k(n) =

⎧⎨
⎩

exp (i�μ′
k(n)) if �μ′

k(n) ∈ �a, b�
exp (ib) if �μ′

k(n) ∈ �b, c�
exp (ia) if �μ′

k(n) ∈ �c, a�.
(9)

Since the object and the mask have interchangeable roles, we set μk+1 = QmQf,kμk in the
spirit of ER (see figure 2(b)).

Remark 4. Note the differences between the mask update rule here and that of the extended
ptychographical engine (ePIE) ((4) in [15]): First, (7) uses the newly updated object fk+1 while
ePIE uses the previous one. Second, more importantly, the crude prior information of the mask
is enforced by Qm here while ePIE does not consider this aspect.

We have the following residual reduction property.

Lemma 1. With Qm we have

r( fk+1, μk+1) � r( fk+1, μk).

The proof of lemma 1 is given in appendix C. Unlike (6) we cannot ascertain that the
equality in lemma 1 holds only if μk+1 = μk.

Define the AER as

( fk+1, μk+1) = (PoPf,k fk,QmQf,kμk). (10)

In words, AER alternates between updating the object and the mask estimates.
Lemma 1 and (6) together yield the following residual reduction property for AER.

Theorem 3. AER (10) satisfies the residual reduction property: r( fk+1, μk+1) � r( fk, μk).

In our numerical experiments, we find that while Qm works well for real-valued objects,
but for complex-valued objects the following alternative rule is better

Q̂mμ′
k(n) =

{
exp (i�μ′

k(n)) if �μ′
k(n) ∈ �a, b�

μ0(n), else
(11)

where μ0 is the initial mask estimate. In other words, when the phase of μ′
k(n) falls outside

the uncertainty constraint, we keep the initial mask phase instead of updating it. With Q̂m we
have the alternative version of AER

( fk+1, μk+1) = (PoPf,k fk, Q̂mQf,kμk). (12)

8
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6. Alternating Douglas–Rachford and error-reduction (DRER)

In practice AER (either version) by itself converges slowly, typically taking up to several
thousands steps for accurate recovery in our numerical tests. To speed up convergence we
consider the Douglas–Rachford (DR) algorithm [4, 14], also called the averaged alternating
reflections [1, 2],

fk+1 = I + RoRf,k

2
fk, with Ro = 2Po − I, Rf,k = 2Pf,k − I (13)

which coincides with the hybrid input–output algorithm for the parameter β = 1 in the absence
of any object value constraint.

Define the DRER iteration as

( fk+1, μk+1) = (
1
2 (I + RoRf,k) fk,QmQf,kμk

)
(14)

and the alternative version as

( fk+1, μk+1) = (
1
2 (I + RoRf,k) fk, Q̂mQf,kμk

)
. (15)

To strictly enforce the mask constraint, we use ER instead of DR for mask update.

7. AER/DRER with two sets of data

Let μ(1) = μ and μ(2) be two masks with which two sets of Fourier intensity data Y = |�� f |
and Y (2) = |��(2) f | are measured on L. Let T and T (2) be the intensity fitting operators
corresponding to Y and Y (2), respectively.

Suppose fk and μk are the image and the mask recovered at the end of the kth iteration.
At the (k + 1)-st iteration, the image is first updated from fk to fk+1 based on μk and μ(2).
Then the first mask is updated based on fk+1 as before.

For simplicity of presentation we assume the second mask (random or deterministic) is
exactly known and independent from the first mask which is randomly fabricated and only
roughly known. In this case, there is no need for updating the second mask.

Let Pk = �−1
k �−1T ��k and P (2) = (�(2))−1�−1T (2)��(2).

The AER and DRER algorithms with two masks are defined respectively as

( fk+1, μk+1) = (PoP (2)Pk fk,QmQf,kμk), k = 0, 1, . . . (16)

( fk+1, μk+1) = (
1
2 (I + Ro(2P (2)Pk − I)) fk,QmQf,kμk

)
. (17)

As commented above replacing Qm with Q̂m improves the reconstruction of complex-valued
objects:

( fk+1, μk+1) = (PoP (2)Pk fk, Q̂mQf,kμk), k = 0, 1, . . . (18)

( fk+1, μk+1) = (
1
2 (I + Ro(2P (2)Pk − I)) fk, Q̂mQf,kμk

)
. (19)

8. Numerical simulations

In this section, we present the numerical results of phasing with a PUM .
The original images are the 256 × 256 cameraman, the 138 × 184 phantom and the

512 × 512 mandrill (figure 3(c)). We surround the first two images by dark (i.e. zero-valued)
borders to create the 282 × 282 cameraman and the 200 × 200 phantom of loose supports
(figure 3(a) and (c)). Objects of loose support are usually harder to recover than the same
objects of tight support (figure 3(b)).
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Figure 3. Test images of loose support (a) (c) and tight support (b) .

Figure 4. (a) HRM and (b) LRM. The gray scale represents the phase range [0, 1] in the unit
of 2π .

8.1. High and low resolution masks

First we consider the case of the full mask range γ = 1. Let {φ0(n)} and {ψ(n)} be two
independent arrays of independent uniform random variables over [−π, π ). Define the true
mask phases φ(n) = φ0(n)+δψ(n), δ > 0. We refer to the corresponding mask μ = exp (iφ)

as a full-ranged, fine-grained or high-resolution mask (HRM), figure 4(a).
To demonstrate that the random mask approach is stable with respect to the correlation

length of the mask, we define a full-ranged, coarse-grained or low resolution mask (LRM) as
follows.

Let {φ̃0(n)} and {ψ̃ (n)} be two other independent arrays of independent uniform random
variables over [−π, π ). Convolving exp (iφ̃0) with the kernel function

gc(x) =
{

exp [−c2/(c2 − |x|2)], |x| � c
0, else

with c = 5 and normalizing the outcome to have unit modulus we obtain the LRM estimate,
still denoted by μ0 = exp (iφ0). Repeating the same procedure with exp (iψ̃ ) we obtain
exp (iψ). We then set the LRM μ = exp (iφ) with phase φ = φ0 + δψ (figure 4(b)). The
resulting LRM phases and their estimates are uniform random variables over [−π, π ) with a
correlation length of about ten pixel sizes and hence have much lower (100 times less) degrees

10
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Figure 5. The diffraction pattern (Fourier intensity) of the non-negative phantom with (a) UM (b)
LRM (c) HRM.

of diversity than HRM. Consequently HRM tends to yield a better perform in recovery than
LRM (cf figure 10).

When a second set of Fourier data is used (for complex-valued objects), the data are
synthesized with a UM (i.e. μ(2) = 1).

The diffraction patterns of the non-negative phantom with UM, LRM and HRM are shown
in figure 5. Clearly, the diffraction pattern sensitively depends on how random the mask is.

8.2. Error and residual

We use the relative error and residual as figures of merit. Let f̂ and μ̂ be the recovered image
and mask respectively. The relative error of object reconstruction is defined as

e( f̂ ) =
{‖ f − f̂‖/‖ f ‖ if absolute uniqueness holds

min
α∈[0,2π)

‖ f − exp (iα) f̂‖/‖ f ‖ if uniqueness holds only up to a global phase.

Let �̂ be the diagonal matrix whose diagonal elements are μ̂(n). The relative residual is
defined as

ρ( f̂ , μ̂) = ‖ Y − |��̂Po f̂ | ‖
‖Y‖

where Po is introduced to enforce the object constraints in the case of DRER.

8.3. Non-negative images

First we use AER (10) to recover the non-negative images with the stopping rule ‖ fk+1 −
fk‖/‖ fk‖ < 0.05% and one LRM of uncertainty δ = 0.3. The results, shown in figure 6,
are noisy and inaccurate with 36.56% error for the cameraman, 44.28% for the mandrill and
59.50% error for the phantom. Consistent with the residual reduction property (theorem 3),
the residual curves in figure 6 are monotonically decreasing.

Much improvement can be gained by running DRER first, followed by AER. For
real-valued objects, we use the version of DRER (14). DRER (14) is stopped when
‖ fk+1 − fk‖/‖ fk‖ < 1%, with the maximum of 500 steps, and AER (10) is terminated
when ‖ fk+1 − fk‖/‖ fk‖ < 0.05%, with the maximum of 500 steps. As shown in figure 7,
the results are 90 DRER and 6 AER steps with 1.26% error for the cameraman, 61 DRER

11
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Figure 6. Recovery of non-negative images by AER with one LRM of δ = 0.3. The middle column
shows the absolute phase differences between μ and μ̂. The right column shows the relative residual
at each iteration.

and 6 AER with 0.96% error for the mandrill and 72 DRER and 5 AER with 0.37% error
for the phantom. Consistent with theorem 1, the mask errors occur only outside the object
supports.

8.4. Unconstrained complex images

Next we consider the case of the complex-valued objects without phase constraint and with
one UM and one LRM of uncertainty δ = 0.3. We apply the alternative versions of DRER (19)
and AER (18) which tend to outperform (14) and (10) for complex-valued objects. DRER (19)
is stopped when ‖ fk+1 − fk‖/‖ fk‖ < 1%, with the maximum of 500 steps, and AER (18) is
terminated when ‖ fk+1 − fk‖/‖ fk‖ < 0.05%, with the maximum of 500 steps. figure 8 shows
the results for object phases randomly distributed on [0, 2π). Both algorithms ran their full
course of 500 steps with 6.43% error for the cameraman, 4.62% for the mandrill and 2.20%
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Figure 7. Recovery of non-negative images with one LRM of δ = 0.3. (a) The recovered
cameraman f̂ by 90 DRER + 6 AER steps. (d) The recovered mandrill f̂ by 61 DRER + 6
AER steps. (g) The recovered phantom f̂ by 72 DRER + 5 AER steps. The middle column shows
the absolute phase differences between μ and μ̂. The right column shows the relative residual at
each iteration.

error for the phantom. The mask errors occur only outside the object supports, consistent with
theorem 2.

8.5. π/2-sector-constrained complex images

Here we consider π/2-sector-constrained complex images with randomly distributed phases
in [0, π/2].

With the sector constraint, we found that the following stopping rule can significantly
reduce the number of iterations: DRER (19) is stopped if the residual increases in five
consecutive steps, with the maximum of 500 steps, and AER (18) is terminated when
‖ fk+1 − fk‖/‖ fk‖ < 0.05%, with the maximum of 500 steps. figure 9 shows the results
with one UM and one LRM of uncertainty δ = 0.3. With the new stopping rule and the sector
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Figure 8. Recovery of unconstrained complex-valued images with one UM and one LRM of
δ = 0.3. (a) Absolute values of the recovered cameraman f̂ by 500 DRER + 500 AER steps.
(d) Absolute values of the recovered mandrill f̂ by 500 DRER + 500 AER steps. (g) Absolute
values of the recovered phantom f̂ by 500 DRER + 500 AER steps. The middle column shows
the absolute phase differences between μ and μ̂. The right column shows the relative residual at
each iteration.

constraint, 21 DRER and 500 AER steps took place with 2.62% error for the cameraman, 23
DRER and 500 AER steps with 2.16% for the mandrill and 23 DRER and 500 AER steps with
1.47 % error for the phantom.

8.6. Reconstruction error versus mask uncertainty

Figure 10 shows the averaged relative error e( f̂ ), after five runs of independently chosen initial
guesses for the object, with or without mask update, as a function of the mask uncertainty of
HRM or LRM for non-negative images (a)(d)(g), complex-valued images under the π/2-sector
condition (b)(e)(h) and complex-valued images with unconstrained random phases (c)(f)(i).

14
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Figure 9. Recovery of the π/2-sector-constrained images with one UM and one LRM of δ = 0.3.
(a) Absolute values of the recovered cameraman f̂ by 21 DRER + 500 AER steps. (d) Absolute
values of the recovered mandrill f̂ by 23 DRER + 500 AER steps. (g) Absolute values of the
recovered phantom f̂ by 23 DRER + 500 AER steps. The middle column shows the absolute
phase differences between μ and μ̂. The right column shows the relative residual at each iteration.

We use the same stopping rules and updating rules as above for each case, except that the
maximum number of steps is changed to 200 + δ · 1000 for DRER and AER separately to
adapt to variable uncertainty.

Without mask update the error curves are roughly linear with the noise amplification
factor roughly 2 (top two curves), consistent with our previous results reported in [6]. With
mask update, the results (bottom two curves) are drastically improved in all cases.

8.7. Reconstruction error versus Gaussian and Poisson noises

We demonstrate the stability of our method with respect to additional Gaussian and Poisson
noises (10%).
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Figure 10. Noiseless reconstruction error with or without mask update. Averaged relative error
e( f̂ ) of five independent runs versus the percentage of mask uncertainty for nonnegative images
(left column), π/2-sector images (middle column) and unconstrained images (right column) in the
order of cameraman, mandrill and phantom (top to bottom). The stopping rules and mask updating
rules are the same as described in the main text for each case with the maximum of 200 + 1000 · δ
steps for DRER and AER separately.

For the Gaussian noise let E = E1 + iE2 be a complex Gaussian vector where E1 and
E2 consist of |L| independent Gaussian random variables with zero mean and variance σ 2.
The noisy Fourier intensity data are given by Ynoisy = |�� f +E|. We set

√
2|L|σ 2/‖�� f ‖ =

10%.

For the Poisson noise, let the noisy data Ynoisy = Xnoisy/a where Xnoisy consists of |L|
independent Poisson random variables with mean a|�� f | where the scaling factor a > 0 is
chosen so that the overall noise-to-signal ratio ‖√a|�� f |‖/‖a|�� f |‖ = 10%.

Figure 11 shows the averaged relative error e( f̂ ), over five runs of independent random
initial guesses, as a function of the mask uncertainty δ of HRM or LRM, in the presence of 10%
Gaussian or 10% Poisson noise. Not surprisingly, the reconstruction with the Poisson noise
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Figure 11. Noisy reconstruction error with Gaussian or Poisson noise. Averaged relative error
e( f̂ ) versus mask uncertainty δ for non-negative images (left column), π/2-sector images (middle
column) and unconstrained images (right column) in the order of cameraman, mandrill and phantom
(top to bottom). The stopping rules and mask updating rules are the same as described in the main
text for each case with the maximum of 200 + 1000 · δ steps for DRER and AER separately.

Figure 12. Reconstruction error with variable UDR δ/γ (δ = 0.3). Relative error versus the mask
phase range γ for (a) nonnegative, (b) π/2-sector-constrained and (c) unconstrained images.

17



Inverse Problems 29 (2013) 125001 A Fannjiang and W Liao

is generally worse than that with the Gaussian noise. The presence of (Gaussian or Poisson)
noise amplifies the difference in performance between HRM and LRM especially in the case
of π/2-sector images (the middle column). The reconstruction with HRM is stable across the
board.

8.8. Reconstruction error versus uncertainty-to-diversity ratio (UDR)

Figure 12 shows the relative error versus the range of mask phases for δ = 0.3. The error
starts to change precipitously around UDR ≈ 1 consistent with the threshold predicted by the
probability bound 1 − |N |UDR�S/2� in theorems 1 (for non-negative images) and 2.

The real or complex mandrill has the best performance near the threshold UDR ≈ 1
probably due to its highest sparsity S among the tested images. Surprisingly the non-negative
mandrill image can be accurately recovered with γ just slightly greater than 0.2 (figure 12(a)).
By contrast, the image with the lowest sparsity (i.e. phantom) also has the worst performance.

9. Conclusion

We proved the uniqueness, up to a global phase, for phasing with phase-uncertain mask with
probability exponentially close to one, depending on the object sparsity and the uncertainty-
to-diversity ratio of the mask. We designed algorithms that achieve nearly perfect recovery
for mask uncertainty up to half of that promised by the uniqueness results. Additional object
constraints such as the sector condition help mitigate the mask uncertainty. As a by-product of
object recovery the unknown mask can be recovered accurately within the object support. The
numerical performance is robust with respect to the correlation in the mask as well as external
noises.

Our method can be easily extended to general masks with phase and amplitude modulation
if the mask amplitudes are known exactly. If the mask amplitudes are also uncertain, the
proposed method will have to be substantially modified. This will be a topic of future study.

Appendix A. Proof of theorem 1

Proof. As a consequence of theorem 2 [5] the global ambiguities are the only ambiguities
possible as far as the masked object (1) is concerned [12]. As a consequence, there exist some
m and θ ∈ [0, 2π) such that either

μ̃(n) f̃ (n) = exp (iθ )μ(m + n) f (m + n) (A.1)

or

μ̃(n) f̃ (n) = exp (iθ )μ(m − n) f (m − n). (A.2)

In the case of (A.1) with any m 	= 0 and any θ ∈ [0, 2π),

f̃ (n) = exp (iθ )
|μ(m + n)| exp (iφ(n + m))

|μ̃(n)| exp (i�μ̃(n))
f (n + m).

Consider the �S/2� independently distributed random variables (r.v.s.) of μ(n + m) where
f (n + m) 	= 0 corresponding to �S/2� nonoverlapping pairs of points {n, n + m}. For every
n where f (n + m) 	= 0, a proper choice of �μ̃(n) makes f̃ (n) real-valued if and only if
either

φ(n + m) ∈ �φ0(n) − θ − � f (n + m) ± δπ�
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or

φ(n + m) ∈ �(φ0(n) − θ − � f (n + m) + π) ± δπ�.

However, φ(n + m) is independently and uniformly distributed in [−γπ, γπ ], so it falls
in these two regions with probability at most 2δ/γ . The probability for every such f̃ (n) to be
real-valued is at most 2δ/γ and hence the probability for all f̃ (n) with m 	= 0 to be real-valued
is at most (2δ/γ )�S/2�.

The union over m 	= 0 of these events has probability at most |N |(2δ/γ )�S/2�. Therefore,
with probability at least 1 − |N |(2δ/γ )�S/2�, m = 0 and exp (iθ )μ(n) f (n) = μ̃(n) f̃ (n) ∀ n
which further implies that f̃ (n) = ± f (n)∀ n and μ̃(n) = ± exp (iθ )μ(n)onnwhere f (n) 	= 0.

Likewise the probability for all f̃ (n) given by (A.2) to be real-valued for any m is at most
|N |(2δ/γ )�S/2�. �

Appendix B. Proof of theorem 2

Proof. As a consequence of theorem 2 [5] the global ambiguities are the only ambiguities
possible as far as the masked object (1) is concerned [12]. Consequently, for some m1, m2 and
θ1, θ2 ∈ [0, 2π) either

exp (iθ1)μ(n + m1) f (n + m1) = μ̃(n) f̃ (n) (B.1)

or

exp (iθ1)μ(m1 − n) f (m1 − n) = μ̃(n) f̃ (n) (B.2)

as well as

exp (iθ2)μ
(2)(n + m2) f (n + m2) = μ(2)(n) f̃ (n) (B.3)

or

exp (iθ2)μ(2)(m2 − n) f (m2 − n) = μ(2)(n) f̃ (n). (B.4)

There are four possible combinations of (B.1)–(B.4).
In the case of (B.1) and (B.3), we have

exp (iθ1)μ(n + m1)μ
(2)(n) f (n + m1) = exp (iθ2)μ

(2)(n + m2)μ̃(n) f (n + m2). (B.5)

For any m1 	= 0 and any θ1, θ2 ∈ [0, 2π), consider the �S/2� pairs of independently
distributed r.v.s. of μ(n + m1) where f (n + m1) 	= 0 corresponding to �S/2� nonoverlapping
sets of points {n, n + m1}. For every n, a proper choice of μ̃(n) makes (B.5) true if and only
if

φ(n + m1) ∈ �(φ0(n) + θ2 − θ1 + φ(2)(n + m2) − φ(2)(n) + � f (n + m2)

−� f (n + m1)) ± δπ� (B.6)

where φ(2)(n) = �μ(2)(n).
Since φ(n + m1) are independently and uniformly distributed in [−γπ, γπ ], (B.6) holds

for each n with probability at most δ/γ and hence (B.5) holds for all n at once with probability
at most (δ/γ )�S/2�.

The union over m1 	= 0 of these events has probability at most |N |(δ/γ )�S/2�. Therefore,
with probability at least 1 − |N |(δ/γ )�S/2�, m1 = 0 and (B.5) becomes

μ(n)

μ̃(n)
= exp (iθ2 − iθ1)

μ(2)(n + m2) f (n + m2)

μ(2)(n) f (n)
.
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Moreover, if μ(2) f satisfies the non-degeneracy condition, then m2 = 0, f̃ (n) =
exp (iθ2) f (n), ∀ n, and μ̃(n) = exp (iθ1 − iθ2)μ(n), if f (n) 	= 0, with probability at least
1 − |N |(δ/γ )�S/2�.

In the case of (B.1) and (B.4), we have

exp (iθ1)μ(n + m1)μ
(2)(n) f (n + m1) = exp (iθ2)μ̃(n)μ(2)(m2 − n) f (m2 − n). (B.7)

The same argument applies and m1 = 0 with probability at least 1 − |N |(δ/γ )�S/2�, and (B.7)
becomes

μ(n)

μ̃(n)
= exp (iθ2 − iθ1)

μ(2)(m2 − n) f (m2 − n)

μ(2)(n) f (n)
,

which violates the non-degeneracy condition. In other words, (B.1) and (B.4) holds with
probability at most |N |(δ/γ )�S/2�.

Similar conclusions follow in the case of (B.2) and (B.3) and (B.2) and (B.4). �

Appendix C. Proof of lemma 1

Proof. Since the operator T enforces the measured Fourier intensities Y

r( fk+1, μk+1) = ‖ |��k+1 fk+1| − Y ‖ = ‖��k+1 fk+1 − T ��k+1 fk+1‖
� ‖��k+1 fk+1 − T ��k fk+1‖ = ‖�k+1 fk+1 − �−1T ��k fk+1‖

by the unitarity of the Fourier transform. By splitting the summation and using the definition
(7), the rightmost term becomes( ∑

fk+1(n)	=0

| fk+1|2(n)|μk+1(n) − μ′
k(n)|2 +

∑
fk+1(n)=0

|�−1T ��k fk+1(n)|2
)1/2

. (C.1)

Now since μk+1(n) = Qmμ′
k(n) is a pixel-wise projection of μ′

k(n), |μk+1(n) − μ′
k(n)| �

|μk(n) − μ′
k(n)| and hence (C.1) is less than or equal to

�

⎛
⎝ ∑

fk+1(n)	=0

| fk+1|2(n)|μk(n) − μ′
k(n)|2 +

∑
fk+1(n)=0

|�−1T ��k fk+1(n)|2
⎞
⎠

1/2

= ‖�k fk+1 − �−1T ��k fk+1‖ = ‖��k fk+1 − T ��k fk+1‖
= ‖ |��k fk+1| − Y ‖ = r( fk+1, μk)

which is the desired result. �
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