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Abstract. Uniqueness, up to a global phase, is proved for phasing with a random phase-
uncertain mask (PUM). Phasing algorithms alternating between the object update and the
mask update are systematically tested and demonstrated to have the capability of recov-
ering both the object and the mask (within the object support) simultaneously with high
uncertainty in the mask phases. Phasing with PUM is demonstrated to be robust with
respect to the correlation in the mask.

1. Introduction

Fourier phasing is the problem of reconstructing an unknown image from its Fourier in-
tensity data and is fundamental in many applications. Recent breakthroughs center around
diffractive imaging of non-periodic objects, combining the penetration power of hard X-ray
and the high sensitivity of lensless imaging [3, 17, 22]. Since the interaction of X-rays with
matter is weak compared to that of electrons, multiple scattering can be neglected and the
singly scattered far field is essentially the Fourier transform of the transmission function of
the image via proper choice of variables.

Despite tremendous progresses, many questions, fundamental as well as algorithmic, re-
main to be solved. The standard phasing algorithms, based on alternating projections [8,11],
are plagued by stagnation and spurious errors partly due to intrinsic non-uniqueness of the
standard phasing problem. The competition among the true and the ambiguous solutions
accounts for their slow convergence and possible stagnation [9, 10].

We believe that the two problems, non-uniqueness and non-convergence, can be solved in
one stroke. Our approach is based on Fourier measurement with random mask and yields
a unique solution, up to a global phase factor, as well as superior numerical performances,
including rapid convergence, much reduced data and noise stability. In particular, the ran-
dom mask method is robust to various types of noise, including Gaussian, Poisson and mask
noises, with a noise amplification factor about 2 [5, 6].

Similar in spirit is the wavefront curvature approach [20,21,24] which derives uniqueness,
up to a global phase, by using cylindrical, in addition to planar, incident waves. The cylin-
drical wave approach, however, requires d + 1 Fourier measurements (d = the dimension
of the object) as well as the Neumann boundary condition of Fourier phase. In contrast,
our previous uniqueness results [5] require just one Fourier measurement for complex-valued
objects whose phases are limited to any proper interval [a, b] ( [0, 2π) and two Fourier
measurements for unconstrained complex objects in any dimension. This is an example of
randomized measurement leading to optimal information retrieval. Previously, the effect of
a random (binary) mask on Fourier phasing has been observed in [25].

Comparison can also be made with ptychography [3,15,22,23] which is a coherent diffrac-
tive imaging method that uses multiple diffraction patterns obtained through the scan of a
localized illumination on the specimen. The adjacent illuminations have to overlap around
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60 - 70 % in every dimension. This corresponds to at least 3 illuminations for every point
of the object and roughly more than 3 Fourier measurements in two dimensions. In fact,
random phase mask has been recently deployed in the ptychographic approach to X-ray mi-
croscopy to enhance its performance with the extra benefit of reduced dynamic range of the
recorded diffraction patterns [16].

A critique that can be leveled against our random mask approach is the use of exact
knowledge of the mask which is not always available. We present an approach specifically
to the problem of high uncertainty in mask phases that goes well beyond the stability to
mask errors demonstrated already in [6]. We will show that nearly perfect recovery can be
achieved with high uncertainty in mask phases.

We extend two uniqueness results of [5] to the present setting with phase-uncertain mask
(PUM). Instead of running phasing algorithms with a fixed erroneous mask, we design al-
gorithms to recover the object and the mask simultaneously. At each iteration, the object
and the mask are updated alternatively, aiming at fitting the object constraint, the mask
constraint as well as the Fourier intensity data. As shown below our numerical schemes can
accurately recover the object with close to 50% uncertainty in mask phases.

The paper is organized as follows. We state the uniqueness theorems for phasing with a
random PUM in Section 2 and give the proofs in Appendices A and B. We discuss the basic
algorithm of Alternating-Error-Reduction (AER) and prove the residual reduction property
in Section 3 and Appendix C. We discuss the Douglas-Rachford-Error-Reduction (DRER)
algorithm in Section 4 and the algorithms with two sets of Fourier intensity data in Section 5.
We present numerical results in Section 7 and conclude in Section 8. A preliminary version
of the results is given in [7].

2. Uniqueness

The effect of a mask amounts to changing the original object f to the masked object

g(n) = µ(n)f(n), n ∈ Zd(1)

where µ is an array representing the mask and d is the dimension. In the standard phasing
problem the uniform mask (UM) with µ ≡ 1 is used. In our approach the mask µ is random
and only roughly known. In this paper, we will focus on the case of phase masks

µ(n) = exp (iφ(n)), φ(n) ∈ [0, 2π), n ∈ Zd(2)

We assume that the true phase angles φ(n), in radian, of the unknown mask lie within δπ
from the given initial estimates φ0(n) for all n, i.e.

φ(n) ∈ Jφ0(n)− δπ, φ0(n) + δπK.(3)

Here and below we adopt the following notation: θ ∈ Ja, bK means{
a(mod 2π) ≤ θ(mod 2π) ≤ b(mod 2π) if a(mod 2π) ≤ b(mod 2π)
a(mod 2π) ≤ θ(mod 2π) < 2π or 0 ≤ θ ≤ b(mod 2π) else

.

For ease of notation, we shall write below the inequality (3) as φ(n) ∈ Jφ0(n)± δπK.
Let n = (n1, . . . , nd) ∈ Zd and z = (z1, . . . , zd) ∈ Cd. Define the multi-index notation zn =

zn1
1 zn2

2 . . . znd
d . Let C(N ) denote the set of finite complex-valued functions on Zd vanishing

outside N = {0 ≤ n ≤ N},N = (N1, N2, . . . , Nd). Here m ≤ n if mj ≤ nj, ∀j. Set
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|N | =
d∏
j=1

(Nj + 1). An object is said rank ≥ 2 if the convex hull of its support has a

dimension ≥ 2.
The z-transform F (z) =

∑
n f(n)z−n of f ∈ C(N ) is an analytic continuation, from the

d-dimensional torus, of the the Fourier transform for z = (exp (2πiω1), . . . , exp (2πiωd)), ωj ∈
[0, 1].

If the absolute value of the Fourier transform is sampled on the lattice

L =
{
ω = (ω1, ..., ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

}
(4)

then the autocorrelation function Cf (n) =
∑

m∈N f(m + n)f(m) is uniquely determined.
Roughly half of the frequencies in each dimension are harmonic and half are non-harmonic.
Hence sampling on L corresponds to the oversampling ratio σ = |L|/|N | ≈ 2d.

However, the uniqueness of the autocorrelation given the Fourier intensity data does not
imply the uniqueness of the object.

First, there are three types of global ambiguities: (a) constant global phase, f(·) −→
exp (iθ)f(·), for some θ ∈ [0, 2π), (b) spatial shift, f(·) −→ f(· + m), for some m ∈ Zd,
(c) conjugate inversion, f(·) −→ f(N− ·). Conjugate inversion produces the so-called twin
image.

Our basic tool is the following improved result of irreducibility [12, 13] with, however, a
more practical and useful perspective.

Proposition 1. [5] Let f be a finite complex-valued object of rank ≥ 2. Let {µ(n)} be
continuous random variables on nonzero real algebraic varieties {V(n)} in C(' R2) with
an absolutely continuous joint distribution with respect to the standard product measure on∏

n∈Σ V(n) where Σ ⊂ Nd is the support set of f . Then the z-transform of the masked object
(1) is irreducible up to a power of z−1 with probability 1.

The main point here is that while the classical result [12, 13] works for generic (thus
random) objects from a certain ensemble Proposition 1 deals with a given, deterministic
object of rank ≥ 2. This improvement is achieved by endowing the probability measure on
the ensemble of masks, which we can manipulate, instead of the space of objects, which we
can not control, as in the standard setting.

As a consequence of Proposition 1, the global ambiguities are the sole ambiguities possible
as far as the masked object (1) is concerned [12].

This is not all. We are able to remove all ambiguities, with the only exception of a global
phase, for the original object f even when the random mask is only roughly known.

Theorem 1. Let f be a real-valued object of rank ≥ 2. Suppose the exact mask phases
{φ(n)} are independently and uniformly distributed on [−γπ, γπ). Suppose the uncertainty
of the mask estimate µ0 = {exp (iφ0(n))} in (3) is δ < γ/2.

Suppose that another real-valued image f̃ and mask estimate µ̃ = {exp (iφ̃(n))} satisfying

φ̃(n) ∈ Jφ0(n)± δπK(5)

together produce the same Fourier intensity data on L as do f and µ. Then, with probability
no less than 1 − |N |(2δ/γ)bS/2c, f̃(n) = ±f(n) ∀n and furthermore φ̃(n) = θ + φ(n) for a
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constant θ ∈ [0, 2π) wherever f(n) 6= 0. Here bS/2c is the greatest integer at most half the
image sparsity S which is the number of nonzero pixels.

Remark 1. If the object is known to be non-negative, then δ can be any number in [0, 1)
and uniqueness holds with probability no less than 1− |N |(δ/γ)bS/2c.

For complex-valued objects uniqueness requires two independent sets of Fourier intensity
data.

Theorem 2. Let f be a complex-valued object of rank ≥ 2. Let the first mask µ(1) = µ in
Theorem 1 with the initial mask estimate µ0 satisfying (5).

Suppose the second mask µ(2) is exactly known and the z-transform of µ(2)f is irreducible
up to a power of z−1. Moreover, assume the non-degeneracy condition that there is no m 6= 0
such that µ(2)(n + m)f(n + m) = exp (iξ) exp (iη(n))µ(2)(n)f(n),∀n, and no m such that

µ(2)(m− n)f(m− n) = exp (iξ) exp (iη(n))µ(2)(n)f(n), ∀n, for some ξ ∈ [0, 2π), |η(n)| ≤
πδ. Here the over-bar notation means complex conjugacy.

Suppose that for a phase mask µ̃ with (5) and an object f̃ the two pairs of masked ob-

jects µf and µ̃f̃ , µ(2)f and µ(2)f̃ , respectively, produce the same Fourier magnitudes on
L. Then with probability no less than 1 − |N |(δ/γ)bS/2c f̃(n) = exp (iα1)f(n),∀n, and
µ̃(n) = exp (iα2)µ(n) if f(n) 6= 0, where α1, α2 ∈ [0, 2π).

Remark 2. Clearly, most objects and masks obey the non-degeneracy condition.

The proofs of Theorems 1 and 2 are given in Appendices A and B, respectively.
Both theorems assert that not only the uniqueness of the object but also the uniqueness

of the mask, up to a constant phase, inside the object support. This motivates the design of
our numerical schemes that turn out to be capable of enforcing uniqueness and hence nearly
perfect recovery even in the presence of high uncertainty in mask phases.

3. Alternating Error Reduction (AER)

Let Λ be the diagonal matrix with diagonal elements {µ(n)} and let Φ represent the
discrete Fourier transform. Denote the Fourier intensity data vector by Y = |ΦΛf | where
Λf(n) = µ(n)f(n).

3.1. Object Update. Given the object estimate fk and mask estimate µk at the k-th
iteration, we use standard phasing algorithms to obtain fk+1.

Let O denote the ensemble of objects f̃ satisfying various object constraints (see Sec-
tion 7). Let Po be the orthogonal projection onto O (cf. [6] for details about numerical
implementation of Po) and Pf,k = Λ−1

k Φ−1T ΦΛk, where T is the intensity fitting operator

(6) T G(ω) =

{
Y (ω) exp (i]G(ω)) if |G(ω)| > 0
Y (ω) if |G(ω)| = 0

.

Here and below ]z ∈ [0, 2π) denotes the wrapped phase angle of z. When z = 0, ]z is taken
to be 0 unless specified otherwise.

Error Reduction (ER) takes the form fk+1 = PoPf,kfk which can be conveniently repre-
sented by the diagram in Figure 1(a).

Let r(f̃ , µ̃) = ‖ |ΦΛ̃f̃ | − Y ‖ denote the residual. Here and below ‖ · ‖ stands for the
Euclidean norm. With a phase mask, ER enjoys the residual reduction property [6, 8]:
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fk+1, fk
µk // gk

Φ−1T Φ
��

f ′k

Po

OO

g′k
µ−1
k

oo

(a) object update

µk+1, µk
fk+1 // νk

Φ−1T Φ
��

µ′k

Qm

OO

ν ′k
f−1
k+1

oo

(b) mask update

Figure 1. Alternating Error Reduction (AER) between object and mask.

r(fk+1, µk) ≤ r(fk, µk).(7)

3.2. Mask Update. Based on the newly updated object estimate fk+1, we define Qf,k as

(8) µ′k = Qf,kµk(n) =

 Φ−1T ΦΛkfk+1(n)/fk+1(n) if fk+1(n) 6= 0

µk(n) else
.

Let M be the ensemble of phase masks satisfying the phase uncertainty constraint (5):

M = {µ̃ | ∀n, |µ̃(n)| = 1 and ]µ̃(n) ∈ Jφ0(n)± δπK}.(9)

Let Qm be the orthogonal projection ontoM. Note that Qm can be computed pixel by pixel
as follows.

Let a = (φ0(n)− δπ)(mod 2π), b = (φ0(n) + δπ)(mod 2π) and

c =

{
π + (a+ b)/2 (mod 2π), if a ≤ b

(a+ b)/2 (mod 2π), else.

Then Qm can be expressed as

Qmµ
′
k(n) =

 exp (i]µ′k(n)) if ]µ′k(n) ∈ Ja, bK
exp (ib) if ]µ′k(n) ∈ Jb, cK
exp (ia) if ]µ′k(n) ∈ Jc, aK.

(10)

Since the the object and the mask have interchangeable roles, we set µk+1 = QmQf,kµk in
the spirit of ER (see Fig. 1(b)). Note the differences between the mask update rule here and
that of the extended ptychographical engine (ePIE) ((4) in [15]): First, (8) uses the newly
updated object fk+1 while ePIE uses the previous one. Second, more importantly, the rough
prior knowledge about the mask is enforced by Qm here while ePIE does not consider this
aspect.

Now we prove the following residual reduction property.

Lemma 1. With Qm we have

r(fk+1, µk+1) ≤ r(fk+1, µk)

The proof of Lemma 1 is given in Appendix C.
Define the Alternating Error Reduction (AER) as

(fk+1, µk+1) = (PoPf,kfk,QmQf,kµk).(11)
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In words, AER alternates between updating the object and the mask estimates until the
iteration converges.

Lemma 1 and (7) together yield the following residual reduction property for AER.

Theorem 3. AER (11) has the residual reduction property: r(fk+1, µk+1) ≤ r(fk, µk).

In our numerical tests, we find that while Qm works well for real-valued objects, for
complex-valued objects the following alternative rule works better

Q̂mµ
′
k(n) =

{
exp (i]µ′k(n)) if ]µ′k(n) ∈ Ja, bK
µ0(n), else

(12)

where µ0 is the initial mask estimate. With Q̂m we have the alternative version of AER

(fk+1, µk+1) = (PoPf,kfk, Q̂mQf,kµk).(13)

4. Alternating Douglas-Rachford and Error-Reduction (DRER)

AER (either version) by itself converges slowly, typically taking up to several thousands
steps for accurate recovery in our numerical tests. To speed up convergence we consider the
Douglas-Rachford (DR) algorithm [4,14], also called the averaged alternating reflections [2],
which coincides with the hybrid input-output (HIO) algorithm for the parameter β = 1 when
object value constraints are not imposed [1]

(14) fk+1 =
I +RoRf,k

2
fk

where Ro = 2Po − I, Rf,k = 2Pf,k − I are reflection operators.
Define the DRER iteration as

(fk+1, µk+1) =

(
1

2
(I +RoRf,k)fk,QmQf,kµk

)
(15)

and the alternative version as

(fk+1, µk+1) =

(
1

2
(I +RoRf,k)fk, Q̂mQf,kµk

)
.(16)

To strictly enforce the mask constraint, we do not use DR for mask update.

5. AER/DRER with two sets of data

Let µ(1) = µ and µ(2) be two masks with which two sets of Fourier intensity data Y = |ΦΛf |
and Y (2) = |ΦΛ(2)f | are measured on L. Let T and T (2) be the intensity fitting operators
corresponding to Y and Y (2), respectively.

For simplicity of presentation we assume the second mask (random or deterministic) is
exactly known and independent from the first mask which is random. In this case, there is
no need for the second mask update.

Suppose fk and µk are the image and the mask recovered at the end of the k-th iteration.
At the (k + 1)-st iteration, the image is first updated from fk to fk+1 based on µk and µ(2).
Let Pk = Λ−1

k Φ−1T ΦΛk and P(2) = (Λ(2))−1Φ−1T (2)ΦΛ(2).
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The AER and DRER algorithms with two masks are respectively

(fk+1, µk+1) =
(
PoP(2)Pkfk,QmQf,kµk

)
, k = 0, 1, · · ·(17)

(fk+1, µk+1) =

(
1

2
(I +Ro(2P(2)Pk − I))fk,QmQf,kµk

)
.(18)

The following alternative versions work better for complex-valued objects:

(fk+1, µk+1) =
(
PoP(2)Pkfk, Q̂mQf,kµk

)
, k = 0, 1, · · ·(19)

(fk+1, µk+1) =

(
1

2
(I +Ro(2P(2)Pk − I))fk, Q̂mQf,kµk

)
(20)

6. Extension to general masks

The preceding discussion is limited to the case of phase masks. It is easy to extend the
above results to general masks, if the mask intensities are certain (i.e. exactly known) and
strictly positive, as follows.

Let the mask be rewritten as µ(n) = |µ|(n) exp (iφ(n)), with |µ(n)| > 0,∀n ∈ N , where

|µ| is certain and φ is uncertain as before. Define the auxiliary object f̃(n) = f(n)|µ|(n).
The Fourier phasing problem for the object f and the mask µ is equivalent to that for the
auxiliary object f̃ and the phase mask exp (iφ) which can be solved as above. The original
object can then be recovered by dividing the recovered auxiliary object by the known, nonzero
mask intensities |µ|.

In this extension, any uncertainty of the mask intensities is converted into that of the
object. So in case that |µ| is unknown or highly uncertain our approach needs substantial
modification to proceed unless the object intensities are known a priori. For example, if
the object is a phase object (|f | = 1) then we can proceed as if the object were f̃ = f |µ|
and the mask were exp (iφ). After the auxiliary object is recovered, the phase object can be
recovered by normalization.

7. Numerical Simulations
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(a) 282× 282 cameraman
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(b) 512× 512 mandrill
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(c) 200× 200 phantom

Figure 2. Test images of loose support (a)(c) and tight support (b)
7



 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) HRM
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(b) LRM

Figure 3. (a) HRM and (b) LRM. The gray scale represents the phase range
[0, 1] in the unit of 2π.

In this section, we test our numerical schemes by performing phasing with a PUM.
The original images are the 256×256 cameraman, the 138×184 phantom and the 512×512

mandrll (Fig.2(c)). We surround the first two images by dark (i.e. zero-valued) borders to
create the 282×282 cameraman and the 200×200 phantom of loose supports (Fig. 2(a)&(b)).
Objects of loose support are harder to recover than the same objects of tight support (without
zero-padding).

First we consider the case with γ = 1. Let {φ0(n)} and {ψ(n)} be two independent
sets of independent uniform random variables over [−π, π). Define the mask phases φ(n) =
φ0(n) + δψ(n). We refer to the corresponding mask µ = exp [iφ] as a full-ranged high
resolution mask (HRM), Fig. 3(a).

To demonstrate that the random mask approach is stable with respect to the correlation
length of the mask, we define a full-ranged low resolution mask (LRM) as follows. Let

{φ̃0(n)} and {ψ̃(n)} be two independent sets of independent uniform random variables over
[−π, π).

Convolving exp (iφ̃0) with the kernel function

gc(x) =

{
exp [−c2/(c2 − |x|2)], |x| ≤ c

0, else

with c = 5 and normalizing the outcome to have modulus one we obtain the LRM estimate
µ0 = exp [iφ0], Fig. 3(b). Repeating the same procedure with exp [iψ̃] we obtain exp [iψ].
We then set the LRM µ = exp (iφ) with phase φ = φ0 + δψ. The resulting mask phases and
their estimates are uniform random variables over [−π, π) with a correlation length of about
10 pixel sizes and hence have much lower (100 times less) degrees of diversity than HRM.
Consequently HRM tends to yield a better perform in recovery than LRM (cf. Fig. 8).

When a second set of Fourier data is used (for complex-valued objects), the data are
synthesized with a UM (i.e. µ(2) = 1).
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A standard way to utilize the oversampled data for σ > 1 is to enlarge the original image
by adding corresponding number of zero pixels which is then enforced as an additional object
constraint. This procedure is called the oversampling method [18] and implemented in all
our simulations with σ = 4.

7.1. Error and Residual. To estimate the recovery, we define relative error and relative
residual as follows. Let f̂ and µ̂ be the recovered image and mask respectively. The relative
error of reconstruction is defined as

e(f̂) =

{
‖f − f̂‖/‖f‖ if absolute uniqueness holds

min
α∈[0,2π)

‖f − exp (iα)f̂‖/‖f‖ if uniqueness holds only up to a global phase .

Let Λ̂ be the diagonal matrix whose diagonal elements are µ̂(n). The relative residual is
defined as

ρ(f̂ , µ̂) =
‖ Y − |ΦΛ̂Pof̂ | ‖

‖Y ‖
where Po is introduced to enforce the object constraints in the case of DRER.

7.2. Performance study of AER and DRER. First we use AER (11) to recover the non-
negative images with the stopping rule ‖fk+1−fk‖/‖fk‖ < 0.05% and one LRM of uncertainty
δ = 0.3. The results, shown in Fig. 4, are noisy and inaccurate with 36.56% error for the
cameraman, 59.50% error for the phantom and 44.28% for the mandrill. Consistent with the
residual reduction property (Theorem 3), the residual curves in Fig. 4 are monotonically
decreasing.

Much improvement can be gained by running DRER, followed by AER. For real-valued
objects, we use the version of DRER (15). DRER (15) is stopped when ‖fk+1 − fk‖/‖fk‖ <
1%, with the maximum of 500 steps, and AER (11) is terminated when ‖fk+1 − fk‖/‖fk‖ <
0.05%, with the maximum of 500 steps. As shown in Figure 5, the results are 90 DRER and
6 AER steps with 1.26% error for the cameraman, 72 DRER and 5 AER with 0.37% error
for the phantom and 61 DRER and 6 AER with 0.96% error for the mandrill. Consistent
with Theorem 1, the mask errors occur only outside the object supports.

Next we consider the case of the complex-valued objects without phase constraint and with
one UM and one LRM of uncertainty δ = 0.3. We apply the alternative versions of DRER
(20) and AER (19) which tend to produce better results than (15) and (11) for complex-
valued objects. DRER (20) is stopped when ‖fk+1 − fk‖/‖fk‖ < 1%, with the maximum of
500 steps, and AER (19) is terminated when ‖fk+1− fk‖/‖fk‖ < 0.05%, with the maximum
of 500 steps. Fig. 6 shows the results for object phases randomly distributed on [0, 2π). Both
algorithms ran their full course of 500 steps with 6.43% error for the cameraman, 2.20% error
for the phantom and 4.62% for the mandrill. The mask errors occur only outside the object
supports, consistent with Theorem 2.

Still next, we consider complex images with the π/2-sector constraint that the object
phases are randomly distributed in [0, π/2]. In the setting of X-ray diffractive imaging the
real part represents the effective density of coherently diffracting electrons and the imaginary
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(a) e(f̂) ≈ 36.56% (b)
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(c) r(f̂ , µ̂) ≈ 6.84%

(d) e(f̂) ≈ 44.28% (e)
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(f) r(f̂ , µ̂) ≈ 7.87%

(g) e(f̂) ≈ 59.50% (h)
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(i) r(f̂ , µ̂) ≈ 10.74%

Figure 4. Recovery of non-negative images by AER with one LRM of δ = 0.3.
The middle column shows the absolute phase differences between µ and µ̂. The
right column shows the relative residual at each iteration.

part represents the attenuation effect, so both of them are usually positive [19]. With the
sector constraint, we found that the following stopping rule can significantly reduce the
number of iterations: DRER (20) is stopped if the residual increases in five consecutive steps,
with the maximum of 500 steps, and AER (19) is terminated when ‖fk+1−fk‖/‖fk‖ < 0.05%,
with the maximum of 500 steps. Fig. 7 shows the results with one UM and one LRM of
uncertainty δ = 0.3. With the new stopping rule and the sector constraint, 21 DRER and
500 AER steps took place with 2.62% error for the cameraman, 23 DRER and 500 AER
steps with 1.47 % error for the phantom and 23 DRER and 500 AER steps with 2.16% for
the mandrill.

Fig. 8 shows the averaged relative error e(f̂), after 5 runs of independently chosen initial
guesses for the object, with or without mask update, as a function of the mask uncertainty
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(a) e(f̂) ≈ 1.26% (b)
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(f) ρ(f̂ , µ̂) ≈ 0.23%

(g) e(f̂) ≈ 0.37% (h)
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(i) ρ(f̂ , µ̂) ≈ 0.12%

Figure 5. Recovery of non-negative images with one LRM of δ = 0.3. (a)

the recovered cameraman f̂ by 90 DRER + 6 AER steps. (d) the recovered

mandrill f̂ by 61 DRER + 6 AER steps. (g) the recovered phantom f̂ by
72 DRER + 5 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

of HRM or LRM for non-negative images (a)(d)(g), complex-valued images under the π/2-
section condition (b)(e)(h) and complex-valued images images with totally random phases
(c)(f)(i). We use the same stopping rules and updating rules as above for each case, except
that the maximum number of steps is changed to 200+δ ·1000 for DRER and AER separately
to deal with variable uncertainty.

Without mask update the error curves are roughly linear with the noise amplification
factor roughly 2 (blue and black curves), consistent with our previous results reported in [6].
With mask update, the results (pink and red curves) are drastically improved in all cases.
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(a) e(f̂) ≈ 6.43% (b)
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(c) ρ(f̂ , µ̂) ≈ 2.66%

(d) e(f̂) ≈ 4.62% (e)
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(f) ρ(f̂ , µ̂) ≈ 2.04%

(g) e(f̂) ≈ 2.20% (h)
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(i) ρ(f̂ , µ̂) ≈ 1.31%

Figure 6. Recovery of unconstrained complex-valued images with one UM
and one LRM of δ = 0.3. (a) absolute values of the recovered cameraman f̂ by

500 DRER + 500 AER steps. (d) absolute values of the recovered mandrill f̂ by

500 DRER + 500 AER steps. (g) absolute values of the recovered phantom f̂
by 500 DRER + 500 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

Fig. 9 shows the relative error versus the range of mask phases. Consistent with the lower
bound for uniqueness probability 1− |N |(δ/γ)bS/2c in Theorems 1 and 2, the error starts to
drop precipitously around γ ≈ 0.3. The recovery of the mandrill has the best performance
near the threshold γ ≈ δ probably because it has the highest sparsity S among the tested
images. It is also surprising that the nonnegative mandrill image can be accurately recovered
with γ slightly greater than 0.2 (Fig. 9(a)).
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(a) e(f̂) ≈ 2.62% (b)
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(c) ρ(f̂ , µ̂) ≈ 1.12%

(d) e(f̂) ≈ 2.16% (e)
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(f) ρ(f̂ , µ̂) ≈ 1.03%

(g) e(f̂) ≈ 1.47% (h)
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(i) ρ(f̂ , µ̂) ≈ 0.80%

Figure 7. Recovery of the π/2-sector constrained images with one UM and

one LRM of δ = 0.3. (a) absolute values of the recovered cameraman f̂ by 21

DRER + 500 AER steps. (d) absolute values of the recovered mandrillf̂ by

23 DRER + 500 AER steps. (g) absolute values of the recovered phantom f̂
by 23 DRER + 500 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

8. Conclusion

We proved the uniqueness, up to a global phase, for phasing with PUM with probability
exponentially close to one, depending on the object sparsity and mask uncertainty. We de-
signed algorithms that achieve nearly perfect recovery for mask uncertainty up to half of that
promised by the uniqueness results. Additional object constraint such as the sector condition
increases the degree of uncertainty in the mask that can be dealt with by our algorithms.
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Figure 8. Averaged relative error e(f̂) of 5 independent runs versus the per-
centage of mask uncertainty for nonnegative images (left column), π/2-sector
images (middle column) and unconstrained images in the order of cameraman,
mandrill and phantom (top to bottom). The stopping rules and mask updat-
ing rules are the same as described in the main text for each case with the
maximum of 200 + 1000 · δ steps for DRER and AER separately.

As a by-product of object recovery the unknown mask can be recovered accurately within
the object support. The numerical performance is robust with respect to the correlation in
the mask as well as various types of noises as shown in the previous study [6]. An important
parameter controlling the performance of our methods is the diversity of the mask phases.
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(b) π/2-sector images
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(c) Unconstrained images

Figure 9. Relative error versus the mask phase range γ for (a) nonnegative,
(b) π/2-sector and (c) unconstrained images with δ = 0.3.

Our method can be easily extended to general masks with phase and amplitude modulation
if the mask amplitudes are known exactly. If the mask amplitudes are also uncertain, the
proposed method will have to be substantially modified. This will be a topic of future study.

Appendix A. Proof of Theorem 1

Proof. In view of Proposition 1, there exist some m and θ ∈ [0, 2π) such that either

(21) µ̃(n)f̃(n) = exp (iθ)µ(m + n)f(m + n)

or

(22) µ̃(n)f̃(n) = exp (iθ)µ(m− n)f(m− n).

In the case of (21) with any m 6= 0 and any θ ∈ [0, 2π),

f̃(n) = exp (iθ)
|µ(m + n)| exp (iφ(n + m))

|µ̃(n)| exp (i]µ̃(n))
f(n + m).

Consider the bS/2c independently distributed r.v.s. of µ(n + m) where f(n + m) 6= 0
corresponding to bS/2c nonoverlapping pairs of points {n,n + m}. For every n where

f(n + m) 6= 0, a proper choice of ]µ̃(n) makes f̃(n) real-valued if and only if either

φ(n + m) ∈ Jφ0(n)− θ − ]f(n + m)± δπK

or
φ(n + m) ∈ J(φ0(n)− θ − ]f(n + m) + π)± δπK

However, φ(n + m) is independently and uniformly distributed in [−γπ, γπ], so it falls

in these two regions with probability at most 2δ/γ. The probability for every such f̃(n)

to be real-valued is at most 2δ/γ and hence the probability for all f̃(n) with m 6= 0 to be
real-valued is at most (2δ/γ)bS/2c.

The union over m 6= 0 of these events has probability at most |N |(2δ)bS/2c. Therefore,

with probability at least 1−|N |(2δ)bS/2c, m = 0 and exp (iθ)µ(n)f(n) = µ̃(n)f̃(n) ∀n which

further implies that f̃(n) = ±f(n) ∀n and µ̃(n) = ± exp (iθ)µ(n) on n where f(n) 6= 0.

Likewise the probability for all f̃(n) given by (22) to be real-valued for any m is at most
|N |(2δ)bS/2c. �
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Appendix B. Proof of Theorem 2

Proof. In view of Proposition 1, for some m1,m2 and θ1, θ2 ∈ [0, 2π) either

(23) exp (iθ1)µ(n + m1)f(n + m1) = µ̃(n)f̃(n)

or

(24) exp (iθ1)µ(m1 − n)f(m1 − n) = µ̃(n)f̃(n)

as well as

(25) exp (iθ2)µ(2)(n + m2)f(n + m2) = µ(2)(n)f̃(n)

or

(26) exp (iθ2)µ(2)(m2 − n)f(m2 − n) = µ(2)(n)f̃(n).

There are four possible combinations of (23), (24), (25) and (26).
In the case of (23)&(25), we have

(27) exp (iθ1)µ(n + m1)µ(2)(n)f(n + m1) = exp (iθ2)µ(2)(n + m2)µ̃(n)f(n + m2).

For any m1 6= 0 and any θ1, θ2 ∈ [0, 2π), consider the bS/2c pairs of independently
distributed r.v.s. of µ(n+m1) where f(n+m1) 6= 0 corresponding to bS/2c non overlapping
sets of points {n,n+m1}. For every n, a proper choice of µ̃(n) makes (27) true if and only
if

φ(n + m1)

∈ J(φ0(n) + θ2 − θ1 + φ(2)(n + m2)− φ(2)(n) + ]f(n + m2)− ]f(n + m1))± δπK(28)

where φ(2)(n) = ]µ(2)(n).
Since φ(n + m1) are independently and uniformly distributed in [−γπ, γπ], (28) holds for

each n with probability at most δ/γ and hence (27) holds for all n at once with probability
at most (δ/γ)bS/2c.

The union over m1 6= 0 of these events has probability at most |N |(δ/γ)bS/2c. Therefore,
with probability at least 1− |N |(δ/γ)bS/2c, m1 = 0 and (27) becomes

µ(n)

µ̃(n)
= exp (iθ2 − iθ1)

µ(2)(n + m2)f(n + m2)

µ(2)(n)f(n)
.

Moreover, if µ(2)f satisfies the non-degeneracy condition, then m2 = 0, f̃(n) = exp (iθ2)f(n), ∀n,
and µ̃(n) = exp (iθ1 − iθ2)µ(n), if f(n) 6= 0, with probability at least 1− |N |(δ/γ)bS/2c.

In the case of (23)&(26), we have

(29) exp (iθ1)µ(n + m1)µ(2)(n)f(n + m1) = exp (iθ2)µ̃(n)µ(2)(m2 − n)f(m2 − n).

The same argument applies and m1 = 0 with probability at least 1−|N |(δ/γ)bS/2c, and (29)
becomes

µ(n)

µ̃(n)
= exp (iθ2 − iθ1)

µ(2)(m2 − n)f(m2 − n)

µ(2)(n)f(n)
,

which violates the non-degeneracy condition. In other words, (23)&(26) holds with proba-
bility at most |N |(δ/γ)bS/2c.

Similar conclusions follow in the case of (24)&(25) and (24)&(26). �
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Appendix C. Proof of Lemma 1

Proof. Since the operator T enforces the measured Fourier intensities Y

r(fk+1, µk+1) = ‖ |ΦΛk+1fk+1| − Y ‖
≤ ‖ΦΛk+1fk+1 − T ΦΛkfk+1‖ = ‖Λk+1fk+1 − Φ−1T ΦΛkfk+1‖

by the unitarity of the Fourier transform. By splitting the summation and using the definition
(8), the rightmost term becomes ∑

fk+1(n)6=0

|fk+1|2(n)
∣∣∣µk+1(n)− µ′k(n)

∣∣∣2 +
∑

fk+1(n)=0

∣∣∣Φ−1T ΦΛkfk+1(n)
∣∣∣2
1/2

.(30)

Now since µk+1(n) = Qmµ
′
k(n) is a pixel-wise projection of µ′k(n), |µk+1(n) − µ′k(n)| ≤

|µk(n)− µ′k(n)| and hence (30) is less than or equal to

≤

 ∑
fk+1(n)6=0

|fk+1|2(n)
∣∣∣µk(n)− µ′k(n)

∣∣∣2 +
∑

fk+1(n)=0

∣∣∣Φ−1T ΦΛkfk+1(n)
∣∣∣2
1/2

= ‖Λkfk+1 − Φ−1T ΦΛkfk+1‖ = ‖ΦΛkfk+1 − T ΦΛkfk+1‖
= ‖ |ΦΛkfk+1| − Y ‖ = r(fk+1, µk)

which is the desired result. �
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