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3D UNWRAPPED PHASE RETRIEVAL WITH CODED APERTURE IS
REDUCIBLE TO PROJECTION TOMOGRAPHY

ALBERT FANNJIANG

Abstract. A discrete framework of 3D tomographic phase retrieval with a coded aper-
ture under the Rytov and Born approximations is analyzed. With the introduction of a
beam splitter together with coded and uncoded apertures in the measurement, the dataset
of diffraction patterns is reducible to that of projections under various measurement uncer-
tainties such as sample heterogeneities, unknown orientations and positions.

Without a beam splitter, this data reducibility holds true for random conical tilt (RCT)
and orthogonal tilt (OT) schemes widely used in cryo-EM without the assumption of any
preferred orientations for the particles on the sample grid. This approach has the potential
of leveraging highly successful projection-based techniques in cryo-EM to process diffraction
data collected under uncertainties.

The resulting phase unwrapping problem for 3D projection tomography is solved by the
proposed sampling schemes including as special cases (i) the conical tilting of range at least
π at a conical angle slightly greater than π/4, (ii) the orthogonal dual-axis tilting of a tilt
range at least π/2 for each axis and (iii) a combination of a conical tilting of range at least
π/2 at any conical angle τ ∈ (π/4, π/2] and an orthogonal single-axis tilting of a tilt range
at least τ .

1. Introduction

Diffraction plays a central role in ab initio structure determination by high resolution X-ray
and electron microscopies due to high sensitivity of phase contrast mechanism [2, 27, 33].
Compared to the real-space imaging with lenses such as transmission electron microcopy,
lensless diffraction methods are aberration free and have the potential for delivering equiva-
lent resolution with fewer photons/electrons [14,35].

While single crystal X-ray diffraction remains as the most widely used technique for struc-
tural determination, a complete diffraction data set with a signal-to-noise ratio (SNR) of 2
at 2Å resolution requires at a minimum crystal size of 1.8 micron in theory [34]. However,
limited crystallinity of many materials often makes it challenging to obtain sufficiently large
and well-ordered crystals for X-ray diffraction. In addition, the so called crystallographic
phase problem arises with macroscopic crystals as a result of fundamental under-sampling
of diffraction patterns highly concentrated at the Bragg peaks [45].

On the other hand, extremely intense X-ray free-electron lasers (XFELs) have driven the
development of serial crystallography with sub-micron sized crystals, a technique that is
also increasingly applied at synchrotron sources as well [6, 8]. Here acquiring snapshots
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Figure 1. Serial crystallography: A stream of identical particles of various
orientations scatter incident X-ray with diffraction patterns measured at far
field.

from many tiny crystals instead of a rotation series from a single crystal avoids dose ac-
cumulation, henceforth permitting higher fluence and smaller diffracting volume, without
the need for cryogenic cooling. Despite of the high intensity of XFEL pulses, the short
femtosecond pulse duration can outrun radiation damage effects in so called serial femtosec-
ond nanocrystallography (SFX). This process of “diffraction-before-destruction” allows the
pristine radiation-damage-free state of the object to be recorded with the unique benefit of
pulse-intensity-limited, instead of radiation-damage limited, SNR [38,49].

Despite the electron’s 104 − 106 times stronger scattering cross section than X-ray’s, the
diffraction-before-destruction regime requires the coherent concentration of about 107 elec-
trons to femtosecond duration, a still challenging feat due to pulse broadening effects such as
Coulomb repulsion and energy dispersion [3,63]. As a result, electron diffraction/microscopy
for structural determination is currently performed with low dose and cryo-cooling to miti-
gate radiation damage.

All of the above methods attempt lens-less 3D structural determination from the diffraction
patterns of identical particles of various orientations, which collectively will be referred to in
this paper as 3D phase retrieval (see Figure 1 and 2).

In contrast to 3D phase retrieval, single-particle cryo-electron microscopy (cryo-EM) pro-
duces, through electromagnetic lenses, real-space images of many well-separated sub-micron
sized particles. These images are object projections convoluted by a point-spread function,
due to lens aberration and aperture limitation, and contain both amplitude and phase in-
formation. Hence there is no “phase problem” as in X-ray crystallography [25]. But in
comparison to lensless electron diffraction, cryo-EM’s lens-based advantage comes at a sub-
stantial cost in SNR [14,27].

Likewise, conventional X-ray computed tomography (CT), while ignoring diffraction effect,
uses absorption as the dominant contrast mechanism and produces real space images that
are object projections (via Beer-Lambert’s law) convoluted with a point spread function
representing the measurement device [47]. The difference is that X-ray CT usually deals
with macroscopic objects with full control of orientation while in cryo-EM, single particles’
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Figure 2. Serial crystallography with a coded aperture

orientations are random and need to be sorted out from electron micrographs. While single
particles entail random orientations for both cryo-EM and SFX, the former is more mature
in detector technology [24], sample preparation as well as software development. Cryo-EM
has the capacity of atomic resolution and is currently the dominant method of choice when
the samples are macromolecules of limited crystallinity [5, 13,27].

For lack of a better term, we shall refer to 3D structural determination from projection data
(or their nonlinear functions, c.f. (7)), with the delta function as the point-spread function,
as pure projection tomography or simply projection tomography (PT). In other words, PT is
the idealized set-up of cryo-EM and X-ray CT. Depending on the context we shall refer to
either a (coded or uncoded) diffraction pattern or a projection as a “snapshot”.

The basic thesis of the present work is that under noiseless measurements with a coded
aperture (Figure 2), 3D phase retrieval is informationally equivalent to PT under various
proposed measurement schemes. Our motivation is that a projection data set is much better
suited for particle classification and orientation alignment. Instead of performing classifica-
tion and alignment with diffraction patterns, as usually practiced [36, 42, 57], it should be a
better strategy to first transform a diffraction data set into a projection data set (at least
when SNR is greater than 1. See Section 10 for discussion about the noise issue at SNR much
less than 1.) and then leverage the advanced techniques of classifying and aligning projection
data, a main driving force behind the successes of single-particle cryo-EM [43,54,56].

A key piece of our approach is the introduction of a beam splitter which directs the beams
through a coded and uncoded aperture and thus provides two independent snapshots of the
same exit waves (Figure 3). The combination of a coded and uncoded aperture enables the
reduction of diffraction pattern data to projection data (Section 6 and 7). Importantly, the
reduction process does not rely on the knowledge of the relative position and orientation
between the object frame and the device frame and is immune to various measurement
uncertainties discussed in more details in Section 5.

We extend the analysis to the widely used schemes of random conical tilt and orthogonal
tilt from cryo-EM [25,40], both of which collect pairwise measurement data by rotating the
sample holder. Instead of the beam splitter, the relative orientation information provided
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Figure 3. Simultaneous measurement of two diffraction patterns, one coded
and one uncoded, with a beam splitter.

by different sample tilts facilitates data reducibility for these schemes if carried out with a
coded aperture (Section 8).

In Section 9, we present phase unwrapping schemes for the resulting 3D projection tomog-
raphy including three readily implementable examples: (i) A conical tilting of range at least
π at a conical angle slightly greater than π/4; (ii) An orthogonal dual-axis tilting of a tilt
range at least π/2 for each axis; (iii) A combination of a conical tilting of range at least π/2
at any conical angle τ ∈ (π/4, π/2] and an orthogonal single-axis tilting of a tilt range at
least τ . It turns out that the widely used single-axis tilting can not unambiguously unwrap
the phases in general regardless of the tilt range.

In the rest of the paper, we first discuss the continuous forward model in Section 2, a discrete
framework in Section 3 and coded diffraction patterns in Section 4. We conclude in Section
10 with a discussion on the noise issue.

2. Forward model

Let us review the forward model of 3D phase retrieval with a coded aperture.

In 3D diffractive imaging, the thickness of the object is no longer negligible and the X-ray
propagation through the object must be accurately modeled. This is often accomplished by
an approximate solution to the Helmholtz equation

∆u(r) + κ2n2(r)u(r) = 0, r = (x, y, z)(1)

where κ = 2π/λ is the wavenumber and n(r) ∈ C is the complex refractive index of the
object. The real and imaginary components of n describe the dispersive and absorptive
aspects of the wave-matter interaction. The real part of n is directly related to electron
density in the case of X-ray and Coulomb field in the case of electron waves.
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In X-ray [65] as well as high-energy electron [32], the object is approximately modeled as a
quasi-phase object with the far field

u(r) = ui(r)e
iκψ(r),(2)

the incident wave ui = eiκz and the surrogate function ψ

ψ(x, y, z) =
1

2

∫ z

−∞
(n2(x, y, z′)− 1)dz′ =

∫ z

−∞
f(x, y, z′)dz′, f := (n2 − 1)/2.(3)

The integral ψ(x, y,+∞) is the z-projection of the object f .

Alternatively and more simply, (2)-(3) follows from the paraxial wave equation:

iκ
∂

∂z
v + ∆⊥v + κ2fv = 0, v := e−iκzu(4)

by dropping the transverse Laplacian ∆⊥.

In electron diffraction, (2)-(3) is known as the high-energy approximation [32] while in optics,
it is known as the Rytov approximation in the high frequency limit [47, 53]. It resembles
the geometrical optics and hence describes some features of multiple (small-angle) scat-
tering [16]. On the other hand, unlike geometrical optics, the Rytov approximation also
includes diffraction effect and allows large phase fluctuations for many applications, repre-
senting a significant improvement over the Born approximation (a.k.a. the weak-phase-object
approximation in cryo-EM [25]) which amounts to

eiκψ ≈ 1 + iκψ(5)

for κ|ψ| � 1.

However, the phase fluctuations appearing in the exponent implies that u yields only the
information of the projection ψ modulo 4π/κ, hence the problem of phase unwrapping [10,30].
The solution for phase unwrapping is critical in revealing the depth dimension of the object.
Phase unwrapping problem does is not present in X-ray CT, which neglects diffraction, or
cryo-EM, which operates under the Born approximation.

For the set-up of Figure 2, after the X-ray exits the object, the exit wave is then masked by
a random mask µ with the far field at the detector given by

F [uie
iκψ � µ](6)

where F is the Fourier transform. The detector, however, measures only the intensities of
the far field, erasing the phase information.

In contrast, the PT’s data set under the Rytov approximation consists of the complex expo-
nential of projections:

uie
iκψ(7)

where ψ is an object projection in the direction of optical axis.

We will analyze measurement schemes that are combinations of coded and uncoded apertures
under the Rytov and Born approximations. But first we have to discuss a framework for
discretizing the forward model.

5



3. Discrete set-up

To describe tomographic experiments, we need two reference frames: the object frame xyz
attached to the object and the device frame XY Z with Z as the optical axis (z = Z in
Section 2).

Following the framework in [1] we first discretize the object with respect to the object
frame. The goal is to establish the discrete version of the Fourier slice theorem (Proposition
3.1).

Let Jk, lK denote the integers between and including the integers k and l. We define a 3D
n× n× n object as the set

f = {f(i, j, k) ∈ C : i, j, k ∈ Zn}(8)

where

Zn =

{
J−n/2, n/2− 1K if n is an even integer;
J−(n− 1)/2, (n− 1)/2K if n is an odd integer.

(9)

We define three families of line segments, the x-lines, y-lines, and z-lines. Formally, a x-line,
denoted by `x(α,β)(c1, c2), is defined as

`x(α,β)(c1, c2) :

[
y
z

]
=

[
αx+ c1

βx+ c2

]
c1, c2 ∈ Z2n−1, x ∈ Zn(10)

To avoid wraparound of x-lines with |α|, |β| ≤ 1, we can zero-pad f in a larger lattice Z3
p

with p ≥ 2n− 1. This is particularly important when it comes to define the X-ray transform
by a line sum (cf. (17)-(19)) without wrapping around the object domain.

Similarly, a y-line and a z-line are defined as

`y(α,β)(c1, c2) :

[
x
z

]
=

[
αy + c1

βy + c2

]
c1, c2 ∈ Z2n−1, y ∈ Zn,(11)

`z(α,β)(c1, c2) :

[
x
y

]
=

[
αz + c1

βz + c2

]
c1, c2 ∈ Z2n−1, z ∈ Zn.(12)

We denote the sets of all x-lines, y-lines, and z-lines by Lx,Ly, and Lz, respectively.

Also, we denote the family of lines that corresponds to a fixed pair (α, β) and variable
intercepts (c1, c2) by `x(α,β), `y(α,β) and `z(α,β) for a family of parallel x-lines, y-lines, and
z-lines, respectively. Note that `x(1,β) = `y(1,β), `x(α,1) = `z(1,α) and `y(α,1) = `z(α,1).

Let fx be the continuous interpolation of f in the directions perpendicular to x as fol-
lows:

fx(i, y, z) =
∑
j∈Zn

∑
k∈Zn

f(i, j, k)Dp(y − j)Dp(z − k), y, z ∈ R(13)

where Dp is the p-periodic Dirichlet kernel given by

Dp(t) =
1

p

∑
l∈Zp

ei2πlt/p =

{
1, t = mp, m ∈ Z

sin (πt)
p sin (πt/p)

, else.
(14)
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In particular, [Dp(i− j)]i,j∈Zp is the p× p identity matrix.

Similarly we define the interpolation of f perpendicular to y and z, respectively, as

fy(x, j, z) =
∑
i∈Zn

∑
k∈Zn

f(i, j, k)D2
p(x− i, z − k), x, z ∈ R;(15)

fz(x, y, k) =
∑
i∈Zn

∑
j∈Zn

f(i, j, k)D2
p(x− i, y − j), x, y ∈ R,(16)

where

D2
p(k) := Dp(k1)Dp(k2), k = (k1, k2)

is the 2D p-periodic Dirichlet kernel.

By interpolating from the grid points (13)-(16), we have extended f from Z3
p to the hyper-

planes x = i, y = j or z = k, where i, j, k ∈ Zp.

Having extended the domain of f to the hyperplanes x = i, y = j or z = k, where i, j, k ∈
Z2n−1, we define the discrete projections as the following line sums

fx(α,β)(c1, c2) =
∑
i∈Zn

fx(i, αi+ c1, βi+ c2),(17)

fy(α,β)(c1, c2) =
∑
j∈Zn

fy(αj + c1, j, βj + c2)(18)

fz(α,β)(c1, c2) =
∑
k∈Zn

fz(αk + c1, βk + c2, k)(19)

with c1, c2 ∈ Z2n−1. With zero-padding, we define projections on Z2
p, for p ≥ 2n− 1.

The 3D Fourier transform f̂ of the object f , supported in Z3
n, is given by

f̂(ξ, η, ζ) =
∑

i,j,k∈Zn

f(i, j, k)e−i2π(ξi+ηj+ζk)/p =
∑

i,j,k∈Zp

f(i, j, k)e−i2π(ξi+ηj+ζk)/p(20)

where the range of the Fourier variables ξ, η, ζ can be extended from the discrete interval Zp

to the continuum [−(p − 1)/2, (p − 1)/2]. Note that by definition, f̂ is a p-periodic band-
limited function. The associated 1-D and 2-D (partial) Fourier transforms are similarly
defined p-periodic band-limited functions.

3.1. Projection support constraint. The actual support of the projections (17)-(19) for
0 ≤ α, β ≤ 1 and odd integer n, for example, is contained in⋃

i∈Zn

(Zn − bαic)× (Zn − bβic)(21)

where b·c denotes the floor function. In turn, the set in (21) is a subset of{⋃
i∈Zn

(Zn − bαic)

}
×

{⋃
i∈Zn

(Zn − bβic)

}
= Z`α × Z`β(22)
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where

`α = 2 · b1
2

(1 + |α|)(n− 1)c+ 1, `β = 2 · b1
2

(1 + |β|)(n− 1)c+ 1.(23)

The same support constraint Z`α × Z`β with (23) applies to the case with |α|, |β| ≤ 1 and
odd integer n.

3.2. Fourier slices and common lines. The Fourier slice theorem concerns the 2-D dis-
crete Fourier transform f̂x(α,β) defined as

f̂x(α,β)(η, ζ) =
∑
j,k∈Zn

fx(α,β)(j, k)e−i2π(ηj+ζk)/p,(24)

and the 3-D discrete Fourier transform given in (20) where the ξ, η and ζ are the coordinates
of the Fourier space in the object frame.

It is straightforward, albeit somewhat tedious, to derive the discrete Fourier slice theorem
which plays an important role in our analysis.

Proposition 3.1. [1] (Fourier slice theorem) For a given family of x-lines `x(α, β) with
fixed slopes (α, β) and variable intercepts (c1, c2). Then the 2D discrete Fourier transform

f̂x(α,β) of the x-projection fx(α,β) and the 3D discrete Fourier transform f̂ of the object f
satisfy the equation

f̂x(α,β)(η, ζ) = f̂(−αη − βζ, η, ζ).(25)

Likewise, we have

f̂y(α,β)(ξ, ζ) = f̂(ξ,−αξ − βζ, ζ),(26)

f̂z(α,β)(ξ, η) = f̂(ξ, η,−αξ − βη).(27)

For ease of notation, we denote by t the direction of projection, x(α, β), y(α, β) or z(α, β) in
the reference frame attached to the object. Let Pt denote the origin-containing (continuous)
plane orthogonal to t in the Fourier space and let Lt1,t2 := Pt1 ∩Pt2 be the common line for
t1, t2 not parallel to each other. A corollary then is that Lt1,t2 is the 1-D Fourier transform
of the iterated projections (in t1, t2) of the 3D object.

Finally, we note the covariance property w.r.t. spatial shift of the discrete projection as
follows.

Instead of the definition (17), define the discrete projection with additional offsets d1, d2

as

f ′x(α,β)(c1, c2) =
∑
i∈Zn

fx(i, αi+ c1 + d1, βi+ c2 + d2).(28)

By the same derivation of Proposition 3.1, we have

f̂ ′x(α,β)(η, ζ) = f̂(−αη − βζ, η, ζ)ei2π(ηd1+ζd2)/p(29)

= f̂x(α,β)(η, ζ)ei2π(ηd1+ζd2)/p
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which amounts to, unsurprisingly, a spatial shift of the projection fx(α,β), i.e.

f ′x(α,β)(c1, c2) = fx(α,β)(c1 − d1, c2 − d2).

Thus by (29), the uncoded diffraction pattern has the invariance property

|f̂ ′x(α,β)|2(η, ζ) = |f̂x(α,β)|2(η, ζ).(30)

4. Diffraction pattern

Let T denote the set of directions t employed in the tomographic measurement, which can
be coded (as in Figure 2) or uncoded (as in Figure 1). To fix the idea, let p = 2n − 1 in
(14).

Let the Fourier transform F of the projection eiκft(n) be written as

Ft(e
−i2πw) =

∑
n∈Z2

p

e−i2πn·weiκft(n), w ∈
[
− 1

2
,
1

2

]2

.

In the absence of a random mask (µ ≡ 1), the intensities of the Fourier transform can be
written as

|Ft(e
−i2πw)|2 =

∑
n∈Z2

2p−1

∑
n′∈Z2

p

eiκft(n′+n)e−iκft(n′)

 e−i2πn·w, w ∈
[
− 1

2
,
1

2

]2

,(31)

which is called the uncoded diffraction pattern in the direction t. Here and below the
over-line notation means complex conjugacy. The expression in the brackets in (31) is the
autocorrelation function of eiκft .

The diffraction patterns are then uniquely determined by sampling on the grid

w ∈ 1

2p− 1
Z2

2p−1(32)

or by Kadec’s 1/4-theorem on any following irregular grid [66]

{wjk, j, k ∈ Z2p−1 : |(2p− 1)wjk − (j, k)| < 1/4}.(33)

With the Nyquist, regular (32) or irregular (33), sampling, the diffraction pattern contains
the same information as does the autocorrelation function of ft.

The following result is our basic tool.

Proposition 4.1. [18] Let µ be the phase mask with phase continuously and independently
distributed. If eiκgt � ν produces the same diffraction pattern as eiκft � µ, then for some
mt ∈ Z2, θt ∈ R

eiκgt(n)ν(n) =

{
eiθteiκft(n+mt)µ(n + mt)

eiθte−iκft(−n+mt)µ(−n + mt).
(34)

for all n.
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After taking logarithm, (34) becomes

κgt(n)− i ln ν(n) =

{
θt + κft(n + mt)− i lnµ(n + mt)

θt − κft(−n + mt)− i lnµ(−n + mt)
mod 2π.(35)

If µ is completely known, i.e. ν = µ, then (35) becomes

κgt(n)− i lnµ(n) =

{
θt + κft(n + mt)− i lnµ(n + mt)

θt − κft(−n + mt)− i lnµ(−n + mt)
mod 2π.(36)

Our goal is to prove that with a sufficiently large T , (36) yields g = f and µ = ν, up to a
constant phase factor, almost surely, i.e. mt = 0 and θt = const. for all t.

5. Information Equivalence under uncertainties

In conventional X-ray crystallography, a single millimeter-sized crystal’s position and orien-
tation can be precisely adjusted by a goniometer to produce a complete set of diffraction
patterns [34]. In this case, there are essentially no sample uncertainties beside thermal and
mechanical vibrations.

When a large number of nano-crystals and macromolecules are employed in measurement,
they usually come with a variety of heterogeneities such as size, shape, conformational vari-
ability and other disorders due to imperfect processes of sample preparation [12,44,46].

The second type of uncertainties is related to sample delivery including, but not limited
to, liquid jets [9], fixed-target arrays [37,67] and goniometer-based approaches [15] in X-ray
diffraction. The latter two approaches also enable serial crystallography to be implemented
with electron diffraction [7, 64].

In a fixed-target approach, for example, a large number of particles are held at known loca-
tions on a micro-patterned grid, which is raster-scanned during radiation exposure. Rough
features on the wafer surface cause the particles to adopt random orientations, allowing
efficient sampling of the Fourier space [9, 50].

On the other hand, when liquid jet is used to deliver a stream of micro-sized crystals for X-ray
serial crystallography, precise location and orientation information is lost and the resulting
diffraction patterns are harder to align [8, 9].

The third type of uncertainties has to do with large noise in the measurement data. Low
SNR is primarily due to weak interaction with matter in the case of X-ray and low dosage
in the case of electron. We will return to the noise issue in Section 10 and carry on with the
analysis under the assumption of noiseless data.

The relative orientation between the object and the measurement set-up can be described
by the Euler angles between the object frame xyz and the device frame XY Z with Z as the
optical axis represented in the object frame by x(α, β), y(α, β) or z(α, β), abstractly denoted
by t. The transformation from xyz to XY Z can be described by an intrinsic rotation about
the z axis followed by a tilt and an extrinsic rotation about the Z axis (the precession of the
object).
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In particular, the intrinsic rotation is the key mechanism for providing diverse views of the
object in the (regular or random) conical reconstruction methods in cryo-EM which handle
the precession by 2D alignment algorithms [25].

There remains the minor ambiguity of the relative displacement of the two frames, resulting
in variable off-sets between the two frames from one snapshot to another. The invariance
property (30) of an uncoded diffraction pattern will be useful in dealing with the location
uncertainty.

In contrast, a coded diffraction pattern is not invariant w.r.t. translation since the random
mask breaks the symmetries associated with all rigid motions. But this symmetry-breaking
property, when used in proper circumstances, provides complementary advantages to those
of an uncoded diffraction pattern as rigorously established in [18].

Let us now introduce the notation for describing the location uncertainty for a given t. Let
f ∗t denote the projection ft translated by some lt ∈ Z2, i.e.

f ∗t (n) = ft(n + lt), subject to supp(f ∗t ) ⊆ Z2
n.(37)

We assume that each (coded or uncoded) snapshot is taken for f ∗t (not ft). The invariance
property (30) can be restated as

|F(eiκft)|2 = |F(eiκf∗t )|2.(38)

We say that for a given f ∈ On := {g : supp(g) ⊆ Z3
n}, 3D phase retrieval and PT are

informationally equivalent with respect to T if, for a given f ∈ On and any g ∈ On, the
following two statements are logically equivalent:

|F(µ� eiκg∗t )| = |F(µ� eiκf∗t )|, ∀t ∈ T ;(39)

eiκg∗t = eiκf∗t , ∀t ∈ T(40)

where g∗t and f ∗t are defined as in (37). Eq. (40) clearly is equivalent to the phase unwrapping
problem:

g∗t(n) = f ∗t (n) mod 2π/κ, ∀n, t ∈ T .(41)

6. Reduction with pairwise measurements

To explicitly carry out the reduction to PT under all the uncertainties discussed above, let
us consider the measurement scheme stylized in Figure 3 where a beam splitter is inserted
behind the object and the mask placed in only one of two light paths behind the splitter.
The reader is referred to [39,41,52] for recent advances in X-ray splitters.

Our first result is the reduction to projection data per snapshot.

Theorem 6.1. Let f ∈ On with the singleton T = {t} for any t. Consider a random phase
mask µ(n) = exp[iφ(n)] with independent, continuous random variables φ(n) ∈ R. Suppose
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Figure 4. Simultaneous illumination of the object with one coded and one
uncoded diffraction pattern measured in two directions.

that for g ∈ On, eiκg∗t produces the same pair of coded and uncoded diffraction patterns as
eiκf∗t (Figure 3), i.e.

|F(eiκg∗t )|2 = |F(eiκf∗t )|2(42)

|F(µ� eiκg∗t )|2 = |F(µ� eiκf∗t )|2(43)

Then eiκg∗t = eiκf∗t almost surely.

The proof of Theorem 6.1 is given in Appendix A. All the measurement uncertainties are
transferred to projection data by phase retrieval with a beam splitter. The presence of a
beam splitter facilitates measurement of the physical quantities on the right hand side of
(42)-(43) without the information of relative orientation and position of the two frames.

Theorem 6.1 clearly generalizes to an arbitrary T of any cardinality.

Corollary 6.2. Theorem 6.1 holds true for any direction set T .

To numerically transform a pair of diffraction patterns to a projection, we can leverage the
well established phase retrieval algorithms [23]. See more discussion in Section 10.

To do away with a beam splitter, consider simultaneous illuminations by two beams of
directions t0, t1 with only one exit wave masked by the coded aperture as depicted in Figure
4 . Both beams’ intensities are then measured by detectors at far field. The scheme in Figure
3 is equivalent to the limiting case with t0 = t1.

The scheme in Figure 4 inspires the following result.
12



Theorem 6.3. Let f ∈ On. Consider a random phase mask µ(n) = exp[iφ(n)] with inde-
pendent, continuous random variables φ(n) ∈ R. Suppose that for two directions t0 6= t

|F(eiκg∗t0 )|2 = |F(eiκf∗t0 )|2(44)

|F(µ� eiκg∗t )|2 = |F(µ� eiκf∗t )|2(45)

Then eiκg∗t = eiκf∗t almost surely.

The proof of Theorem 6.3 is given in Appendix B. Instead of a beam splitter, the precise
arrangement of the two beams facilitate reconstruction of the projection data by information
overlap in the common line. Note that the two beams need not be coherent with each other
for the scheme to work since the measurement data are diffraction patterns.

Since a Fourier slice intersects with another slice along a common line, we can generalize
Theorem 6.3 as follows.

Corollary 6.4. Suppose that under the same assumptions in Theorem 6.3, (44) and (45)
hold true for t0 ∈ T0 and t ∈ T , respectively, where |T0| ≥ 1. Then eiκg∗t = eiκf∗t for all t ∈ T
almost surely.

7. Reduction under Born approximation

Under the first-order Born assumption (5) the exit wave is given by

vB(x, y) = 1− i

2κ

∫
dz′f(x, y, z′).(46)

At the second stage, the exit wave vB is multiplied by the mask function µ and then prop-
agates into the far-field as F(µ · vB) where F is the Fourier transform in the transverse
variables. The measured coded diffraction pattern |F(µ · vB)|2 is given by

|F(µ · vB)|2 = |F(µ)|2 +
1

κ
={Fµ · F(µ

∫
fdz′)}+

1

4κ2
|F(µ

∫
fdz′)|2(47)

where = denotes the imaginary part.

Adopting the dark-field mode of imaging, we use the nonlinear term

|F(µ� ft)|2, t ∈ T ,(48)

i.e. coded diffraction patterns of the scattered waves, as the basis for reconstruction. With
the dataset given by (48), the information equivalence with respect to T is then defined by
the logical equivalence of the following two statements

|F(µ� g∗t)| = |F(µ� f ∗t )|, ∀t ∈ T ;(49)

g∗t = eiθtf ∗t , θt ∈ R, ∀t ∈ T(50)

for a given f ∈ On and any g ∈ On.

The following results are analogous to Theorem 6.1, Corollary 6.2, Theorem 6.3 and Corollary
6.4.
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Theorem 7.1. Let f ∈ On with the singleton T = {t} for any t. Consider a random phase
mask µ(n) = exp[iφ(n)] with independent, continuous random variables φ(n) ∈ R. Suppose
that supp(ft) is not a subset of a line and that for g ∈ On, g∗t produces the same pair of
coded and uncoded diffraction patterns as f ∗t ,i.e.

|F(g∗t)|2 = |F(f ∗t )|2(51)

|F(µ� g∗t)|2 = |F(µ� f ∗t )|2(52)

Then almost surely g∗t = eiθtf ∗t for some constant θt ∈ R.

The proof of Theorem 7.1 is given in Appendix C.

Corollary 7.2. Theorem 7.1 holds true for any direction set T .

Theorem 7.3. Let f ∈ On. Consider a random phase mask µ(n) = exp[iφ(n)] with inde-
pendent, continuous random variables φ(n) ∈ R. Suppose that supp(ft) is not a subset of a
line and that for g ∈ On

|F(g∗t0)|
2 = |F(f ∗t0)|

2(53)

|F(µ� g∗t)|2 = |F(µ� f ∗t )|2(54)

for t0 6= t. Then almost surely g∗t = eiθtf ∗t for some constant θt ∈ R.

The proof of Theorem 7.3 is given in Appendix D.

Corollary 7.4. Suppose that under the same assumptions in Theorem 7.3, (53) and (54)
hold true for t0 ∈ T0 and t ∈ T , respectively, where |T0| ≥ 1. Then g∗t = eiθtf ∗t for all t ∈ T
almost surely.

7.1. Sector constraint. X-rays interact rather weakly with matter so the complex refrac-
tive index is often denoted as

n = 1− δ − iβ, 0 < |δ|, β � 1,(55)

where the real part of the refractive index is often less than 1 (i.e. δ > 0) and the imaginary
part β is the absorption coefficient.

By (3) and (55),

f =
1

2
(n2 − 1) ≈ −δ − iβ(56)

and hence ft satisfies the so called sector condition introduced in [18], i.e.

∠ft(n) ∈ [a, b], |a− b| < 2π,(57)

for all n ∈ Z3
2, where a and b are two constants independent of n (a = −π, b = 0 in the case

of β > 0). Moreover, for X-ray at wavelength 1Å, β is typically much smaller than δ > 0
resulting in a very narrow sector about the negative real axis.

The sector condition (57) enables reduction without the uncoded diffraction pattern (44).
14



(a) Coincidence sampling

=⇒
(b) Equivalent tilt geometry

Figure 5. Coincident data collection implemented by the random conical tilt
and orthogonal tilt in cryo-EM both of which collect pairs of measurement
data of a fixed relative orientation corresponding to the angle about 50 deg
and 90 deg, respectively, between the two beams [25,40].

Theorem 7.5. [18] Let f ∈ On with the singleton T = {t} for any t and satisfy the sector
condition (57). Consider a random phase mask µ(n) = exp[iφ(n)] with independent uniform
random variables φ(n) over [0, 2π]. Suppose that supp(ft) is not a subset of a line and that
for g ∈ On, g∗t produces the same coded diffraction pattern as f ∗t . Then with probability at
least

1− n2

∣∣∣∣b− a2π

∣∣∣∣bSt/2c

(58)

g∗t = eiθtf ∗t for some constant θt ∈ R where St is the number of nonzero pixels of ft.

Corollary 7.6. Theorem 7.5 holds true for any direction set T with probability at least∏
t∈T

(
1− n2

∣∣∣∣b− a2π

∣∣∣∣bSt/2c
)
.(59)

The sector constraint (57) can be readily incorporated in phase retrieval algorithms and the
resulting performance improves with a narrower sector as already indicated in the probability
estimate (58) [20].

8. Random conical tilt and orthogonal tilt

The main idea in Figure 4 can be realized in a different way with a fixed-target sample
delivery by the scheme random conical tilt (RCT) or orthogonal tilt (OT) commonly used
in cryo-EM. Both schemes collect pairs of measurement data of fixed relative orientations
[25,40].
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In a fixed-target approach, samples mounted on solid supports are raster-scanned through the
beam. To achieve high hit rates and consistently produce diffraction patterns, the sample
support should ideally be periodically structured and present the samples at known and
well-defined positions [58].

As shown in Figure 5 (b), many particles are randomly located and oriented on a grid which
can be precisely tilted about a tilt axis by a goniometer. But we need not assume the particles
on the sample grid to take any preferred orientations, as often the case in cryo-EM [25]. With
dose-fractionated beams, the diffraction patterns of the same particles in the two orientations
are measured with coded and uncoded apertures in correspondence with Figure 4.

The main difference between the schemes of Figure 4 and Figure 5(b) is that in the former
approach the diffraction-before-destruction idea is implemented with two coincident beams
with SNR limited only by the intensities of femtosecond XFEL pulses whereas in the latter a
maximal radiation dose has to be fractionated resulting in smaller radiation-damage-limited
SNR. With 104 − 106 times stronger scattering cross section and 103 times weaker radiation
damage per scattering, electron diffraction is better suited for the implementation of RCT
and OT.

These caveats aside, Corollary 6.4 and 7.4 can be modified as follows.

Corollary 8.1. Let T0 and T in Corollary 6.4 and 7.4 be the set of directions in the object
frame of the particles on the sample grid in the two tilt positions, respectively. Then, under
the Rytov and Born approximations, respectively

eiκg∗t = eiκf∗t(60)

g∗t = eiθtf ∗t for some constant θt ∈ R,(61)

for all t ∈ T almost surely.

9. Phase unwrapping

For each projection considered separately in (41), there are an infinite number of solutions
of 2D phase unwrapping. What type of schemes T would guarantee that the unwrapped
phase in 3D can be uniquely determined (i.e. g(n) = f(n),∀n ∈ Z3

n)?

A simple approach is based on the continuity of the projection’s dependence on the direction
t. For simplicity of presentation, let us assume f ∗t = ft, g

∗
t = gt, i.e. lt = 0 for all t ∈ T in

(37).

Let Tε denote the graph with the nodes given by t ∈ T and the edges defined between any
two nodes t1, t2 ∈ T such that |∠t1t2| ≤ ε (such edges are called ε-edges). We call T is
ε-connected if Tε is a connected graph. We say that two nodes t1, t2 are ε-connected if there
is an ε-edge between them.

Suppose that T is ε-connected for certain ε (to be determined later). The continuous de-
pendence of gt, ft on t implies that gt1 − gt2 and ft1 − ft2 are small if ∠t1t2 is sufficiently
small. On the other hand, ht1 − ht2 is an integer multiple of 2π/κ where ht := gt − ft.
Then for ε-connected T , ht(n) is a constant for each n and hence gt − ft is independent of
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t. A rough calculation gives the estimate O(1/n) for the needed closeness ε of two adjacent
projections.

Example 9.1. Consider the following set of projections:

{(1, αl, βl) : l = 1, . . . , n} ∪ {(0, α0, β0), (0, 0, 1)}(62)

with the property that |(α0, β0)| 6= 0 and {αlη + βlζ : l = 1, . . . , n} has n distinct members
for any fixed pair (η, ζ) 6= (0, 0).

Suppose that (41) holds true with ht := gt − ft being independent of t in (62). Namely, for
t = (1, α, β) and some c(·, ·) independent of α, β,

ĥx(α,β)(j, k) = c(j, k)(63)

and hence by Fourier Slice Theorem

ĥ(−αj − βk, j, k) = c(j, k)(64)

for j, k ∈ Zp.

Let

ĥ(ξ, η, ζ) =
∑
m

ĥηζ(m)e−2πimξ/p(65)

with

ĥηζ(m) =
∑
l

ĥη(m, l)e
−2πilζ/p(66)

and

ĥη(m, l) =
∑
k

h(m, k, l)e−2πikη/p.(67)

By the support constraint supp(h) ∈ Z3
n, (64)-(65) becomes the n× n Vandermonde system

V ĥηζ =


c(η, ζ)
c(η, ζ)

...
c(η, ζ)

(68)

with the all-one vector I and

V = [Vij], Vij = e−2πiξij/p, ξi = −αiη − βiζ(69)

for {αi, βi : i = 1, . . . , n}. The Vandermonde system is nonsingular if and only if {ξi : i =
1, . . . , n} has n distinct members.

Since the system (68) has a unique solution, we identify ĥηζ(·) as

ĥηζ(·) = c(η, ζ)δ(·).

For m 6= 0, ĥηζ(m) = 0 for all η, ζ and hence ĥη(m, l) = 0 for all l and m 6= 0. Likewise for
(67), we select n distinct values of η to perform inversion of the Vandermonde system and
obtain

h(m, k, l) = 0, m 6= 0.(70)
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Figure 6. A sphere representing all projection directions in the object frame.
Any two of the three great circular arcs, when sufficiently sampled, provide
enough information for unwrapping the object phases (cf. (73) with α = 0).
This is an example of dual-axis tilting, each of range π/2.

In other words, h is supported on the (y, z) plane. Consequently the projection of h in the
direction of (0, α0, β0) would be part of a line segment and, hence by the assumption of ht’s
independence of t = (1, αl, βl), l = 1, . . . , n, ht is also a line object for all these directions.

That is to say, h is supported on the z-axis. Now that (0, 0, 1) ∈ T , the projection of h in
(0, 0, 1) is Kronecker’s delta function δ at the origin and hence, for some ` ∈ Z,

g(n)− f(n) =
2π

κ
`δ(n)(71)

where δ is Kronecker’s delta function at the origin.

The ambiguity on the right hand side of (71) can be further eliminated by limiting the
maximum variation of the object between two adjacent grid points to less than π/κ. This
will also lead to an explicit upper bound on ε but here we will content ourselves with the
rough bound ε = O(1/n).

Collecting and extending the above analysis, we obtain the next result.

Theorem 9.2. Let T be a ε-connected scheme containing any one of the following three
sets of projections:

(x) {(1, αl, βl) : l = 1, . . . , n} ∪ {(0, 1, β0), (0, 0, 1)}
(y) {(βl, 1, αl) : l = 1, . . . , n} ∪ {(β0, 0, 1), (1, 0, 0)}
(z) {(αl, βl, 1) : l = 1, . . . , n} ∪ {(1, β0, 0), (0, 1, 0)}

with the property that

{αlξ + βlη : |αl|, |βl| < 1, l = 1, . . . , n} has n distinct elements for each (ξ, η) 6= (0, 0).(72)
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(a) (b)

Figure 7. (a) Geometry of conical tilt. A single-axis tilt orbit is a great
circle, corresponding to a conical angle π/2; (b) Conical tilts about an axis of
obliquity may be parametrized as in Theorem 9.2.

Suppose that the maximum variation of the object f between two adjacent grid points is less
than π/κ and (41) holds for a sufficiently small ε = O(1/n). Then g = f .

Since |αl|, |βl| < 1, none of the schemes (x), (y), (z), alone can be ε-connected (for suffi-
ciently small ε), but some combination of the three can as shown by the following explicit
scheme:

T = {(1, l
q
, α), (

l

q
, 1, α), (0, 1,

l

q
), (0,

l

q
, 1) : l = 0, . . . , q}(73)

with q sufficiently large and fixed |α| < 1. By the symmetry of projection, we may assume
α ≥ 0. The family of t ∈ T moves along a latitude for a range π/2 from (1, 0, α) to (0, 1, α)
and then along a longitude for a range arccos(α) to (0, 0, 1) (see Figure 6 for α = 0) where
arccos(α) > π/4 since α < 1.

The scheme (73) is a combination of a conical tilting (the latitudinal movement above) of
range π/2 at any conical angle τ ∈ (π/4, π/2] and an orthogonal single-axis tilting (the
longitudinal movement above) of range τ . Single-axis tilting (maximal range π due to the
symmetry of projection) and conical tilting (maximal range 2π) are two most widely used
data collection schemes in cryo-EM [25]. When τ = π/2, the combination becomes an
orthogonal dual-axis tilting of a tilt range π/2 for each axis (Figure 6).

More conveniently, instead of being split into a conical tilting and a single-axis tilting, the
schemes in Theorem 9.2 can be implemented as one conical tilting of range π with the tilt
axis, say pointing at (1, 1, 1), and a conical angle slightly greater than π/4 (Figure 7).

On the other hand, single-axis tilting (corresponding to conical angle π/2) is not covered
by Theorem 9.2 and contains certain blindspot as exhibited in Example 9.1. This can be
remedied by another single-axis tilting as shown in Figure 6 which is an example of a dual-
axis tilting with the tilt range π/2 for each axis [51].
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In summary, we have identified three sampling schemes that can be conveniently implemented
to unwrap phases under the guarantee of Theorem 9.2:

• A conical tilting of range π at a conical angle slightly greater than π/4 (or slightly
smaller than 3π/4);

• An orthogonal dual-axis tilting of a tilt range at least π/2 for each axis;

• A combination of a conical tilting of range at least π/2 at any conical angle τ ∈
(π/4, π/2] and an orthogonal single-axis tilting of a tilt range at least τ .

10. Conclusions and discussion

3D phase retrieval is a form of ptychography by rotations instead of by shifts as in standard
ptychography. The key to any form of ptychography is information redundancy, which in
this case lies in the common lines between any pairs of Fourier slices (Corollary 6.4 and
7.4).

To this end, the coded aperture leverages the information redundancy by spreading the
shared information across the two intersecting Fourier slices. In particular, this enables the
reduction from diffraction data to projection data for the data collection schemes of random
conical tilt and orthogonal tilt without the assumption of any preferred orientations for the
particles on the sample grid (Corollary 8.1).

With the introduction of a beam splitter (Theorem 6.1 and 7.1), the information overlap
further extends from a common line to that of the whole Fourier slice with improved perfor-
mance in resolution and noise stability. Moreover, the coded aperture can be simultaneously
calibrated with the object by effective algorithms [19,21,23].

Effective algorithms for implementing the schemes of Theorem 6.1 and 7.1 are based on the
following two projection operators: The first is P1 unto the range space of the matrix

A =

[
Φ diag{µ}

Φ

]
.(74)

where Φ is the p2 × n2 oversampled Fourier matrix; the second is P2 unto the 2p2-dim torus
defined by the diffraction pattern data:

Y := {y ∈ C2p2 : |y|2 = d}
where d is the vectorized data consisting of coded and uncoded diffraction patterns. The for-
mer is explicitly given by P1 = AA† where A† is the pseudo-inverse of A and the latter

P2z =
√
d� sgn(z), z ∈ C2p2(75)

where sgn(z) is the phase factor vector of z [22].

For reconstruction in the setting of Theorem 7.5, P2 is the same as (75) but P1 = AA†P0

where A = Φ diag{µ} and P0 the real-space projection unto the sector constraint (see [20]
and references therein).

The combination of coded and uncoded apertures can be further leveraged to produce effec-
tive initialization for reconstruction [11,22].
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With the measurement scheme in Figure 3, 4 and 5, diffraction patterns can be converted
into projections without the knowledge of relative orientations and locations between the
object and device frames, enabling classification and alignment by techniques developed for
single-particle cryo-EM such as the common-line methods [60, 62], the maximum-likelihood
methods [43,59] and the Bayesian methods [54–56].

In particular, the Bayesian methods have a greater capability for mitigating noise than the
common-lines based techniques, which require a high SNR dataset to work [25], and play
an important role in cryo-EM’s reaching the milestone of atomic resolution [13] . With
everything else being equal, the Bayesian methods applied to projection data [54–56] are
expected to outperform those applied to diffraction patterns [26, 42].

We show that 3D phase unwrapping can be achieved with three readily implementable
schemes (Theorem 9.2): (i) The conical tilting of range π at a conical angle slightly greater
than π/4; (ii) The orthogonal dual-axis tilting of a tilt range at least π/2 for each axis; (iii)
A combination of a conical tilting of range at least π/2 at any conical angle τ ∈ (π/4, π/2]
and an orthogonal single-axis tilting of a tilt range at least τ .

Note that the minimum total radiation dose for each scheme is proportional to the scheme’s
minimum total length, which is, respectively, π/

√
2, π and 1

2
(1 + 1/

√
2)π for scheme (i), (ii)

and (iii).

It is also interesting to compare the phase unwrapping conditions of Theorem 9.2 with Orlov’s
condition that the continuous sampling orbit intersects any great circle on the unit sphere.
Orlov’s condition is the necessary and sufficient condition for the existence of a unique
solution by the method of filtered back propagation (FBP) for 3D projection tomography
under the Born approximation (thus no wrapped phases) [17]. Notably, among the three
phase unwrapping schemes above, only scheme (ii) satisfies Orlov’s condition. In contrast,
while a single-axis tilting of tilt range π satisfies Orlov’s condition by itself, it can not
unambiguously unwrap the phases in general.

Let us turn to the noise issue not explicitly addressed by our results.

For example, given a noisy data set of diffraction patterns at a certain SNR, what would be
the corresponding SNR of the data set of the resulting projection tomography? How many
snapshots are needed to overcome the measurement noise and uncertainties?

The first question has as much to do with the reconstruction method as the information
content of the datasets. Our previous numerical studies suggest plausible noisy information
equivalence in the sense that the reconstructed projection dataset under the Born approxi-
mation has comparable SNRs (noise amplification factor close to 1 for SNR down to about
2) [11, 23]. This is eventually tenable since the SNR of the diffraction-before-destruction
approach is limited only by the intensities of femtosecond X-ray pulses which can be contin-
uously amplified as XFEL technologies progress.

For the second question above, consider 3D projection tomography at low SNR. Depending
on the sampling geometry but with full knowledge of it, SNR in 3D projection tomography
under the Born approximation with Poisson noise is estimated to be about twice the square
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root of the ratio of the mean total number of scattered photons detected during the scan
and the total number of spatially resolved voxels [31].

Currently about 100 X-ray photons or similar order of magnitude are scattered from a single
molecule per snapshot, so reconstructing a volume of, say 106 voxels at SNR = 2 in single-
molecule 3D projection tomography requires at least 104 snapshots. Many more snapshots
will be needed with the current form of serial crystallography whose datasets consist primarily
of uncoded diffraction patterns.

Nevertheless, a large number of extremely noisy snapshots suggests an alternative, likely
better approach to data processing. Instead of reconstructing the projection data from each
pair of diffraction patterns as suggested at the beginning of Section 10, one can process
the whole dataset of coupled coded and uncoded diffraction patterns together to achieve
orientation alignment and object reconstruction simultaneously, for which Corollary 6.2, 6.4,
7.2, 7.4 and 7.6 provide a proof of concept. This will be our future work of research.
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Appendix A. Proof of Theorem 6.1

Since both diffraction patterns are from the same snapshot, we reset the object frame to
have lt = 0.

Suppose the first alternative in (36) holds with mt 6= 0. By (42), eiκft and eiκgt have the
same autocorrelation function and hence∑

n

eiκ(ft(n+k)−ft(n)) =
∑
n

eiκ(ft(n+mt+k)−ft(n+mt))ei(φ(n+mt+k)−φ(n+k))e−i(φ(n+mt)−φ(n))

for all k, or equivalently∑
n

eiκ(ft(n+mt+k)−ft(n+mt))(76)

=
∑
n

eiκ(ft(n+mt+k)−ft(n+mt))ei(φ(n+mt+k)−φ(n+mt)−φ(n+k)+φ(n))

by change of index, n→ n + mt, on the left hand side of equation. Define

∆kft(n + mt) := ft(n + mt + k)− ft(n + mt)

and rewrite (76) as

0 =
∑
n

[
ei(φ(n+mt+k)−φ(n+mt)−φ(n+k)+φ(n)) − 1

]
eiκ∆kft(n+mt),(77)

for all k. We want to show that the probability of the event (77) is zero. Indeed, the right
hand side of (77) almost surely does not vanish for any k as follows.
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Let us consider those summands in (77), for any fixed k, that share a common φ(l), for any
fixed l, in the expression. Clearly, there are at most four such terms:[

ei(φ(l)−φ(l−k)−φ(l−mt)+φ(l−k−mt)) − 1
]
eiκ∆kft(l−k)(78)

+
[
ei(φ(l+k)−φ(l)−φ(l+k−mt)+φ(l−mt)) − 1

]
eiκ∆kft(l)

+
[
ei(φ(l+mt)−φ(l−k+mt)−φ(l)+φ(l−k)) − 1

]
eiκ∆kft(l−k+mt)

+
[
ei(φ(l+k+mt)−φ(l+mt)−φ(l+k)+φ(l)) − 1

]
eiκ∆kft(l+mt).

Since the continuous random variable φ(l) does not appear in other summands and hence
is independent of them, (77) implies that (78) (and the rest of (77)) must vanish almost
surely.

For k that are linearly independent of mt, the four independent random variables

φ(l− k−mt), φ(l + k−mt), φ(l− k + mt), φ(l + k + mt)(79)

appear separately in exactly one summand in (78). Consequently, (78) (and hence (77))
almost surely does not vanishes for k that are linearly independent of mt.

On the other hand, if k is parallel to mt 6= 0, then for any

k 6∈ {±mt0 ,±
1

2
mt0 ,±2mt0}

the four terms in (79) appear separately in exactly one summand in (78). Consequently,
(78) almost surely does not vanishes.

Thus whenever the first alternative in (36) holds true mt = 0 and eiκgt = eiθteiκft for some
constant θt independent of the grid point.

Next, we show that the second alternative in (34) is false. By (42), we have∑
n

eiκ(ft(n+k)−ft(n)) =
∑
n

e−iκ(ft(−n+mt+k)−ft(−n+mt))e−i(φ(−n+mt+k)+φ(n+k))ei(φ(−n+mt)+φ(n))

for all k, or equivalently∑
n

eiκ(ft(n+mt+k)−ft(n+mt))(80)

=
∑
n

e−iκ(ft(−n+mt+k)−ft(−n+mt))e−i(φ(−n+mt+k)+φ(n+k))ei(φ(−n+mt)+φ(n))

by change of index, n→ −n + mt, on the left hand side of equation. With

∆kft(−n + mt) := ft(−n + mt + k)− ft(−n + mt)

we rewrite (80) as

0 =
∑
n

[
ei(−φ(−n+mt+k)+φ(−n+mt)−φ(n+k)+φ(n)) − 1

]
e−iκ∆kft(−n+mt)(81)

for all k. We want to show that the right hand side of (81) almost surely does not vanish
for any k.
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As before, consider those summands in (81), for any fixed k, that share a common φ(l), for
any fixed l, in the expression. Clearly, there are at most four such terms:[

ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1
]
e−iκ∆kft(l)(82)

+
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
e−iκ∆kft(l−k)

+
[
ei(−φ(−l+mt)+φ(−l+k+mt)−φ(l)+φ(l−k)) − 1

]
e−iκ∆kft(−l+mt)

+
[
ei(−φ(−l−k+mt)+φ(−l+mt)−φ(l+k)+φ(l)) − 1

]
e−iκ∆kft(−l−k+mt)

With φ(l) appearing in no other terms, (81) implies that (82) must vanish almost surely.

Some observations are in order. First, both φ(l) and φ(−l+mt) appear exactly once in each
summand in (94). Second, the following pairings of the other phases

{φ(l + k), φ(−l− k + mt)}, {φ(l− k), φ(−l + k + mt)}
also appear exactly twice in (94). As long as k 6= 0 and 2l 6= mt, these two pairs are not
identical and hence

0 =
[
ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1

]
e−iκ∆kft(l)(83)

+[ei(φ(−l−k+mt)−φ(−l+mt)+φ(l+k)−φ(l)) − 1]e−iκ∆kft(−l−k+mt)

0 =
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
e−iκ∆kft(l−k)

+[ei(φ(−l+mt)−φ(−l+k+mt)+φ(l)−φ(l−k)) − 1]e−iκ∆kft(−l+mt)

both of which are almost surely false because the two factors[
ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1

]
,
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
differ with their complex conjugates in a random manner independently from ft.

Therefore, the second alternative in (36) almost surely does not hold true.

In summary, the first alternative in (36) holds with mt = 0, namely

κgt(n) = θt + κft(n) mod 2π

almost surely. Now that gt(n) = ft(n) = 0 for n ∈ Z2
p \Z`α ×Z`β for t = (1, α, β) due to the

support constraint (22)-(23), so θt must be an integer multiple of 2π.

The argument is complete.

Appendix B. Proof of Theorem 6.3

Let

f ∗t0(n) = ft0(n + lt0), f ∗t (n) = ft(n + lt)

g∗t0(n) = gt0(n + lt0), g∗t(n) = gt(n + lt)

for some lt0 , lt. The invariance property (38) of the uncoded diffraction patterns are inde-
pendent of lt0 :

|F(eiκft0 )|2 = |F(eiκf∗t0 )|2, |F(eiκgt0 )|2 = |F(eiκg∗t0 )|2(84)

and hence we may assume lt0 = lt = 0 by resetting the object frame.
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The structure of the argument is entirely analogous to the proof of Theorem 6.1 with the
exceptions that k is now limited to Pt0∩Pt as a result of applying Fourier slice theorem.

To adapt the argument with one Fourier slice to the setting of two Fourier slices we slightly
abuse the notation and treat the boldfaced vectors in Appendix A as embedded in the 3D
Fourier space here.

Appendix C. Proof of Theorem 7.1

The proof of Theorem 7.1 is analogous to that of Theorem 6.1, except with the addi-
tional complication of possible vanishing of the object function under the Born approxi-
mation.

Similar to Proposition 4.1, for the diffraction pattern given by (48) we have the following
characterization.

Proposition C.1. [18] Let µ be the phase mask with phase continuously and independently
distributed. Suppose that supp(ft) is not a subset of a line and another masked object pro-
jection g∗t := νgt produces the same diffraction pattern as f ∗t = µ� ft. Then for some p and
θ

f ∗t (n + p) = e−iθg∗t(n) or eiθ Twin(g∗t)(n)(85)

for all n.

If µ is completely known, then ν = µ and (85) becomes

gt(n)µ(n) =

{
eiθtft(n + mt)µ(n + mt)

eiθtft(−n + mt)µ(−n + mt).
(86)

First suppose that the first alternative in (86) and we want to show that mt = 0, which then
implies that gt(·) = eiθtft(·).

Equality of the uncoded diffraction (51) implies that the autocorrelation of gt equals that of
ft and hence by (86)∑
n∈Z2

p

ft(n + k)ft(n) =
∑
n∈Z2

p

ft(n + k + mt)ft(n + mt)µ(n + k + mt)µ(n)µ(n + k)µ(n + mt)

which, after change of index n→ n + mt on the left hand side, becomes

0 =
∑
n∈Z2

p

ft(n + k + mt)ft(n + mt)
[
ei(φ(n+k+mt)−φ(n+mt)+φ(n)−φ(n+k)) − 1

]
(87)

for all k ∈ Z2
2p−1. It is convenient to consider the autocorrelation function as (2p−1)-periodic

function and endow Z2
2p−1 with the periodic boundary condition.
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Let us consider those summands on the right side of (87), for any fixed k, that share a
common φ(l), for any fixed l. Clearly, there are at most four such terms:[

ei(φ(l)−φ(l−k)−φ(l−mt)+φ(l−k−mt)) − 1
]
ft(l)ft(l− k)(88)

+
[
ei(φ(l+k)−φ(l)−φ(l+k−mt)+φ(l−mt)) − 1

]
ft(l + k)ft(l)

+
[
ei(φ(l+mt)−φ(l−k+mt)−φ(l)+φ(l−k)) − 1

]
ft(l + mt)ft(l− k + mt)

+
[
ei(φ(l+k+mt)−φ(l+mt)−φ(l+k)+φ(l)) − 1

]
ft(l + k + mt)ft(l + mt).

Since the continuous random variable φ(l) does not appear in other summands and hence is
independent of them, (87) implies that (88) (and the rest of (87)) vanishes almost surely.

Suppose mt 6= 0 and consider any k that is linearly independent of mt. The four independent
random variables

φ(l− k−mt), φ(l + k−mt), φ(l− k + mt), φ(l + k + mt)(89)

appear separately in exactly one summand in (88). Consequently, (88) can not vanish,
unless

ft(l)ft(l− k) = 0, ft(l)ft(l + k) = 0(90)

ft(l + mt)ft(l− k + mt) = 0, ft(l + mt)ft(l + k + mt) = 0(91)

in (88).

On the other hand, if k is parallel to mt 6= 0, then for any

k 6∈ {±mt0 ,±
1

2
mt0 ,±2mt0}(92)

the four terms in (89) appear separately in exactly one summand in (88). Consequently,
(88) (and hence (87)) almost surely does not vanishes unless (90) and (91) hold.

Consider k = 0 which satisfies (92) if mt 6= 0. Clearly (90)-(91) with k = 0 implies that
ft ≡ 0, which violate the assumption that supp(ft) is not a subset of a line. Thus mt = 0
in the first alternative in (86).

Next we prove that the second alternative in (86) is false for all mt. Otherwise, by (51) we
have∑

n∈Z2
p

ft(n + k)ft(n)

=
∑
n∈Z2

p

ft(−n− k + mt)ft(−n + mt)µ(−n− k + mt)µ(n + k)µ(n)µ(−n + mt)

which, after change of index n→ −n− k + mt on the left hand side, becomes

0 =
∑
n∈Z2

p

ft(−n− k + mt)ft(−n + mt)
[
ei(−φ(−n−k+mt)+φ(−n+mt)−φ(n+k)+φ(n)) − 1

]
(93)

for all k ∈ Z2
2p−1.
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Consider those summands in (93), for any fixed k, that share a common φ(l), for any fixed
l. Clearly, there are at most four such terms:[

ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1
]
ft(l)ft(l + k)(94)

+
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
ft(l− k)ft(l)

+
[
ei(−φ(−l+mt)+φ(−l+k+mt)−φ(l)+φ(l−k)) − 1

]
ft(−l + mt)ft(−l + k + mt)

+
[
ei(−φ(−l−k+mt)+φ(−l+mt)−φ(l+k)+φ(l)) − 1

]
ft(−l− k + mt)ft(−l + mt)

which must vanish under (93).

Some observations are in order. First, both φ(l) and φ(−l+mt) appear exactly once in each
summand in (94). Second, the following pairings of the other phases

{φ(l + k), φ(−l− k + mt)}, {φ(l− k), φ(−l + k + mt)}(95)

also appear exactly twice in (94). As long as

k 6= 0(96)

& l 6= mt/2,

the two sets in (95) are not identical and, since each contains at least one element that is
independent of the other, we have

0 =
[
ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1

]
ft(l)ft(l + k)(97)

+[ei(φ(−l−k+mt)−φ(−l+mt)+φ(l+k)−φ(l)) − 1]ft(−l− k + mt)ft(−l + mt)

0 =
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
ft(l− k)ft(l)(98)

+[ei(φ(−l+mt)−φ(−l+k+mt)+φ(l)−φ(l−k)) − 1]ft(−l + mt)ft(−l + k + mt).

Because the two factors[
ei(−φ(l)+φ(l+k)−φ(−l+mt)+φ(−l−k+mt)) − 1

]
,
[
ei(−φ(l−k)+φ(l)−φ(−l+k+mt)+φ(−l+mt)) − 1

]
differ with their complex conjugates in a random manner independently from ft, both (97)
and (98) are almost surely false unless

ft(l)ft(l + k) = 0, ft(l)ft(l− k) = 0,(99)

ft(−l + mt)ft(−l− k + mt) = 0, ft(−l + mt)ft(−l + k + mt) = 0.(100)

On the other hand, if l = mt/2 but k 6= 0, then

l + k = −l + k + mt 6= −l− k + mt = l− k,(101)

and hence (94) = 0 becomes

0 =
[
ei(−2φ(l)+φ(l+k)+φ(l−k)) − 1

]
ft(l)ft(l + k) + [ei(−2φ(l)+φ(l+k)+φ(l−k)) − 1]ft(l− k)ft(l)

implying (99). In other words, (99) holds true for k 6= 0.

Now we show that (99) for k 6= 0 implies that ft has at most one nonzero pixel.

Suppose that ft(l) 6= 0 for some l. Then by (99), ft(n) = 0 for all other n 6= l, i.e. ft is a
singleton which contradicts the assumption that supp(ft) is not a subset of a line.
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Consequently the second alternative in (86) is false almost surely. The proof is now com-
plete.

Appendix D. Proof of Theorem 7.3

The invariance property (30) of the uncoded diffraction patterns are independent of lt0 :

|F(ft0)|2 = |F(f ∗t0)|
2, |F(gt0)|2 = |F(g∗t0)|

2(102)

and hence we may assume lt0 = lt = 0 by resetting the object frame.

The structure of the argument is entirely analogous to the proof of Theorem 7.1 with the
exceptions that k is now limited to Pt0∩Pt as a result of applying Fourier slice theorem.

To adapt the argument with one Fourier slice to the setting of two Fourier slices we slightly
abuse the notation and treat the boldfaced vectors in Appendix C as embedded in the 3D
Fourier space here.
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