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This paper presents an analysis of stability and detection for broad-band synthetic
aperture imaging in Rician fading media. A main result is the stability condition
BNK2/(K + 1) � M where K is the Rician factor, B is the effective number of
coherence bands, N is the effective number of array elements and M is the number
of (widely separated) targets. A statistical scheme is introduced to reduce the un-
certainty when the stability regime is not realized. The imaging methods are tested
numerically with randomly distributed discrete scatterers and comparisons with the
imaging with the full response matrices are made. The resolution study reveals sev-
eral interesting effects: First, given the same measurement resources the synthetic
aperture imaging has a better resolution performance, although is less stable, than
the full response matrix imaging; second, for both imaging methods, the cross-range
resolution decreases with the aperture (N fixed) and the antenna spacing (the total
aperture fixed) while the range resolution increases with both parameters.

I. INTRODUCTION

We investigate synthetic aperture imaging in a cluttered environment with one antenna
in this paper. An important feature of the propagation channel considered here is that the
mean or coherent signals do not vanish. This is the case for what is called, in the wireless
literature, Rician fading channel where in addition to incoherent signals there is a significant,
nonfluctuating multipath component [15]. Typically a Rician channel arises when there is
line-of-sight between the antennas and the targets.

The measurement configuration that we consider is motivated by Synthetic Aperture
(SA) radars or lidars. SA imaging is a technique where a synthetic aperture is created
by moving a source along a trajectory and repeatedly interrogating a search area by firing
repeated pulses from the antenna and measuring the responses, see Fig. 1. This approach
has many applications in remote sensing and elsewhere. The image formation is obtained
via a matched filter technique and typically analyzed in the Born approximation [1]. This
important imaging technique is however sensitive to noise and recent studies focus on the
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FIG. 1: Synthetic aperture radar (SAR) imaging configuration

role of noise in the image formation [18]. In synthetic aperture imaging high resolution is
obtained via a chirped pulse combined with a deramping step.

In the present work we consider a simplified configuration with sampling at a set of well
separated frequencies and a set of fixed probing locations along the measurement path, there-
fore neglecting the Doppler effect associated with the relative motion between the antenna
and targets. In addition to simplify the stability and resolution analysis, this “static con-
figuration” is also suitable in applications where the medium is time independent and the
relative motion is slow. Our first main interest is then in the stability of the image formed
from these measurements, that is, to what extent the image and the appearance of targets
in it will depend sensitively on the particular clutter that happens to be in the scenery. This
is a continuation of the work in [8].

Let M be the number of sufficiently separated (point) targets and B the number of
sufficiently separated frequencies. Let K be the Rician factor which is the ratio of the
coherent power to the fluctuating (incoherent) power. N be the number of sufficiently
separated (point) antennas, Let N be the number of sufficiently separated measurement
positions that the antenna will take in the whole process. Our study is not restricted to
antenna paths of any particular geometry; they can be straight, circular or arbitrary.
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We show that for a Rician fading channel a sufficient condition for imaging stability is

K2

K + 1
BN �M. (1)

In contrast, let us consider the following imaging configuration with a real, non-synthetic
aperture: there is exactly one transmitting/receiving antenna at each of the N measurement
positions. Each time an antenna emits a probing impulse all N antennas receive the re-
sponses. For each frequency, the impulse responses form a matrix called the response matrix
or the multistatic data matrix. In comparison, SA imaging, as simplified here, uses only the
diagonal elements of the response matrices. The imaging performance with the full response
matrices has been analyzed previously [8] and shown to be stable if

KBN �M. (2)

Condition (1) reduces to (2) when K � 1 i.e. the medium is nearly deterministic. On the
other hand, when K � 1, (1) becomes K2BN � M which is significantly worse than (2).
In the middle range K ≈ 1, (1) is worse than (2) by a factor of two. The difference in the
stability performance between the SA and the full response matrix imaging will be apparent
in our numerical simulations (Figure 5).

The mean-zero case (K = 0) of the Rayleigh fading channels occurs in the diffuse regime
which is beyond the scope of the present work. However it is noteworthy that the above
stability condition bears certain resemblance to the stability condition for time reversal
communications through the Rayleigh fading channels analyzed in [4] and [5].

In addition, our resolution analysis and numerical study reveal several interesting effects:
(i) with N,B fixed the SA imaging, although less stable, has a better resolution performance
than imaging with the response matrices; (ii) for both imaging methods, the cross-range
resolution decreases with the aperture (with N fixed) and the antenna spacing (with the
total aperture fixed) while the range resolution increases with both parameters.

Finally we develop a detection scheme to improve the imaging performance when the
stability regime is not reached. We continue here the line of research set forth in [6].

II. MULTI-FREQUENCY ARRAY IMAGING

Let H(x,y;ω) be the transfer (a.k.a. Green) function of the propagation channel at the
frequency ω from point y to x. Denote Hmn(ω) = H(xm,yn;ω). Let H(ω) = [Hmn(ω)] be
the transfer matrix between the antennas located at yn, 1 ≤ n ≤ N and targets located
at xm, 1 ≤ m ≤ M . Reciprocity implies that H(ω) is a symmetric matrix. Moreover,
H∗mn(ω) = Hmn(−ω) where ∗ stands for complex conjugation.

We decompose the random transfer function into the mean H̄ and the fluctuations h,Eh =
0, as

H(x,y;ω) = H̄(x,y;ω) + h(x,y;ω). (3)
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The mean and fluctuations are also known as the coherent and diffuse fields, respectively.
We write H̄(ω) = [H̄mn(ω)] and h(ω) = [hmn(ω)] with hmn(ω) = h(xm,yn;ω).

Our main assumptions are (i) the separations of the frequencies ωl, l = 1, 2, ..., B used for
imaging are larger than the coherence bandwidth βc of the channel (ii) the spacings of the
antennas are wider than the coherence length `c of the channel, see here Section V B and
[7] for a more detailed discussion. Moreover, we assume the idealized situation when h is
circularly Gaussian with zero mean. As a result of these assumptions we have

E
{
hij(ωk)h

∗
mn(ωl)

}
≈ η2δimδjnδk,l, E

{
hij(ωk)hmn(ωl)

}
≈ 0, ∀i, j,m, n, (4)

where η2 is the intensity of fluctuations.
Let µ be the typical magnitude of the mean transfer function and let K be the Rician

factor defined as

K =
µ2

η2
,

which will play an important role in the sequel. Let u(x) be the imaging field (to be specified
later) which is supposed to exhibit the location and the resolution of the hidden targets. We
would like to derive the conditions under which the normalized variance of the imaging field
u:

R(x) =
|Eu(x)|2

E
(
|u|2(x)

)
− |E

(
u(x))|2

,

tends to infinity. This is the stability result alluded to earlier. Note that R(x) can be
interpreted as a signal-to-interference ratio (SIR).

We assume that the multiple targets are point scatterers themselves but the multiple
scattering effect involving the targets are negligible (e.g., when they are far apart and/or
their scattering strength is weak). This assumption is a form of so called distorted wave
Born approximation (DWBA). In the simulation presented in Section V A, the scattering
strength of the targets is much smaller than that of the clutter so that DWBA is valid but
the numerical scheme is exact and does not use DWBA.

We consider the method of the differential response. In this approach, probing signals
of various frequencies are first used to survey the random media in the absence of targets.
Then in the presence of targets (with unknown locations) the same set of probing signals are
used again to survey the media which is assumed to be fixed. The differences between these
two responses is called the differential responses which is then used to image the targets.

The differential responses received by the antenna at the location yn for tar-
gets at locations xi, 1 ≤ i ≤ M are, under the assumption of DWBA, given by∑M

i=1 τi(ωl)Hin(ωl)Hin(ωl), l = 1, ..., B. We then construct the imaging function by the
matched-filter-type expression

u(x) =
B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)H
2
ij(ωl)P (yj,x;ωl), (5)
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with τi(ωl) the reflectivity of target i at frequency ωl. Following the analysis of [8] we use
the conjugate phase-factor of the mean Green function as the back-propagator P (x,y;ω).

In practice, as discussed in Section IV, the real part of u tends to behave more stably
than u itself and will be used as imaging function throughout the paper, even though for
the sake of notational simplicity the stability analysis below is carried out for u.

III. STABILITY ANALYSIS

In this section we derive for Rician channels the stability condition (1). Under this
stability condition the imaging field u(x) is approximately equal to its mean Eu(x).

Observe first that the expectation for u is given by

Eu(x) =
B∑
l=1

M∑
i=1

N∑
n=1

τi(ωl)P (x,yn;ωl)
(
H̄2
in(ωl) + E

[
h2
in(ωl)

])
P (yn,x;ωl)

≈
B∑
l=1

M∑
i=1

N∑
n=1

τi(ωl)P (x,yn;ωl)H̄
2
in(ωl)P (yn,x;ωl)

= O(|τ |µ2BN). (6)

Note that the apparent missing of a factor M in the above estimate is due to the choice of P
as the phase-factor of the mean Green function. With this choice the leading contribution is
from the few targets closest to the point x and thus there will be effectively only O(1) terms
in the above summation over i [8].

Note also that the expression for u contains a product of elements of H. As a result, the
expectation of u involves the second order moments of h and the variance of u involves the
fourth order moments of h. In calculation of the fourth order moments we shall use the
assumption of a Gaussian statistics. The Gaussian assumption is widely used and includes
the Rician and Rayleigh fading channels in wireless modeling [3], [15].

Using the Gaussian moment assumption we obtain

E|u(x)|2 ≈
∣∣∣ B∑
l=1

M∑
i=1

N∑
n=1

τi(ωl)P (x,yn;ωl)H̄
2
in(ωl)P (yn,x;ωl)

∣∣∣2
+4E

{∣∣∣ B∑
l=1

M∑
i=1

N∑
n=1

τi(ωl)P (x,yn;ωl)H̄inhin(ωl)P (yn,x;ωl)
∣∣∣2}

+E
{∣∣∣ B∑

l=1

M∑
i=1

N∑
n=1

τi(ωl)P (x,yn;ωl)h
2
in(ωl)P (yn,x;ωl)

∣∣∣2} (7)
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which becomes after using (4)

E|u(x)|2 ≈
∣∣Eu(x)

∣∣2 + 2η2

B∑
l=1

M∑
i=1

N∑
n=1

|τi(ωl)|2
∣∣P (x,yn;ωl)

∣∣2H̄inP (yn,x;ωl)H̄
∗
inP

∗(yn,x;ωl)

+2η2

B∑
l=1

M∑
i=1

N∑
n=1

|τi(ωl)|2P (x,yn;ωl)H̄in(ωl)P (yn; x;ωl)P
∗(x,yn;ωl)H̄

∗
in(ωl)P

∗(yn,x;ωl)

+η4

B∑
l=1

M∑
i=1

|τi(ωl)|2
N∑
n=1

(∣∣P (x,yn;ωl)
∣∣2∣∣P (yn,x;ωl)

∣∣2
+P (x,yn;ωl)P

∗(yn,x;ωl)P
∗(x,yn;ωl)P (yn,x;ωl)

)
=
∣∣Eu(x)

∣∣2 +O(|τ |2η2(µ2 + η2)BMN), as B,N →∞. (8)

Therefore, for an active array, we have R� 1 when (1) holds.
If the stability criterion (1) is satisfied then the coherent part of the imaging function cor-

responding to a target that appears clearly and does not depend sensitively on the particular
clutter realization corresponding to a particular h.

IV. STATISTICAL DETECTION

For detection, it is more convenient to work with a real-valued imaging field such as the
real-part of (5)

uR(x) = <
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)H
2
ij(ωl)P (yj,x;ωl)

}
. (9)

Moreover, since the absolute values of u and uR are close to each other at the target locations
and hence the numerical plot of |uR| often appears more stable than that of |u|, see Figure
4.

Under the Gaussian assumption expression (9) has a χ2 distribution. To simplify the
discussion we neglect the quadratic-in-h terms. This can be justified when, e.g. K � 1, see
Appendix B. Then (9) becomes

uR(x) = <
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)
(
H̄2
ij(ωl) + 2H̄ij(ωl)hij(ωl)

)
P (yj,x;ωl)

}
(10)
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which has the Gaussian distribution of the mean and variance:

E(uR(x)) = <
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)H̄
2
ij(ωl)P (yj,x;ωl)

}
(11)

Var(uR(x)) = 2η2

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2|P (x,yj;ωl)|2|P (yj,x;ωl)|2|H̄ij(ωl)|2

= 2η2

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2|H̄ij(ωl)|2. (12)

Here we have used the fact |P (x,y;ω)| = 1 since the back-propagator P is chosen to be the
conjugate phase factor of the mean Green function. For simplicity we consider the case of
identical point targets τi = τ, i = 1, ...,M .

For each point x in the search domain, we postulate the alternatives:{
H0(x) : x is far away from any target;

H1(x) : x is close to a target.

By the assumption that the targets are widely separated, the mean of uR under hypothesis
H0 should be approximately zero while under H1 it can be approximated by

ν(x) =
B∑
l=1

N∑
j=1

τ(ωl)|H̄(x,yj;ωl)|2, (13)

in view of (11), since one target will dominate the summation over i in (11). (13) can be
calculated with the knowledge of τ and H̄. On the other hand, the variance under either
hypothesis is the same as

σ2 = 2η2

B∑
l=1

M∑
i=1

N∑
j=1

|τ(ωl)|2|H̄ij(ωl)|2

which is independent of the test point x but dependent on the locations of the targets.
In the numerical experiment below, we make the approximation |H̄ij(ωl)| ≈ µ(ωl) as-

suming that the targets are roughly the same distance from the array and estimate σ2 to
be

σ2 ≈ 2η2MN

B∑
l

|τ(ωl)|2µ(ωl) (14)

assuming that the total number M of point targets is known.
The Neyman-Pearson lemma states that when choosing between H0 and H1 with a pre-

scribed false alarm rate α the likelihood ratio test that rejects H0 in favor of H1 if the
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corresponding likelihood is above a threshold (eγ) is the most powerful test. The threshold
is determined by

p.d.f. of uR(x)|H1

p.d.f. of uR(x)|H0

= e−
1

2σ2 (uR−ν)2/e−
1

2σ2 u
2
R = e−

1
2σ2 (−2uRν+ν2) > eγ (15)

which implies

uR
σ
>
γσ

ν
+

ν

2σ
. (16)

Under the hypothesis H0,

Y0 ≡
uR
σ

∼ N(0, 1).

Consequently, for the false alarm rate α we have

γσ

ν
+

ν

2σ
= Q−1(1− α),

where Q is the standard cumulative Gaussian probability function. Hence

γ =
ν

σ
Q−1(1− α)− ν2

2σ2
(17)

On the other hand, under the hypothesis H1,

Y1 ≡
uR − ν
σ

∼ N(0, 1)

and the detection rule (16) gives rise to a miss probability β satisfying

γσ

ν
− ν

2σ
= Q−1(β). (18)

By (17) and (18), we obtain the detection rate Pd ≡ 1− β as a function of α:

Pd = 1−Q(Q−1(1− α)− ν

σ
). (19)

The graphs of Pd as a function of α are called the Receiver Operating Characteristic (ROC)
curves which are parametrized by the unknown ν(x)/σ.

The ROC curves are shown in Fig. 2 with B = 20, N = 6, M = 7 and different K’s. For
these parameters, the quadratic-in-h terms in the imaging function begin to have a smaller
magnitude than the linear-in-h terms for K > 1/2. Although the curves are determined by
ν/σ only, they are different at any search point x because the Rician factor K is a function
of the location x in general.

Clearly the above detection scheme is based on some rough approximations and not
entirely satisfactory. Moreover, the extension to the case with significantly varying τ ’s and
distances from the aperture is cumbersome. In our numerical experiments, however, it seems
to have a reasonable performance with a suitably chosen false alarm rate (Figure 8).
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FIG. 2: ROC curves with B = 20 frequencies, N = 6 antennas, and M = 7 targets at various K’s.

V. RANDOMLY DISTRIBUTED POINT SCATTERERS

In this section we present first the Foldy-Lax formulation which defines the point scatterer
model that we use for the simulations, see [9, 13, 14]. This model also gives directly a
numerical scheme for computing the channel response and we comment on this scheme in
more detail in Appendix A. An important ingredient in the matched field imaging is the
choice for propagator that give the imaging function via backpropagation. The matched field
corresponds to applying the adjoint of the mapping from scattering medium to observations.
It can be interpreted respectively as backpropagation or time reversal of the observed field.
We comment in Section V B on the mean (Green’s) field that follows from effective medium
theory and how it relates to the imaging function. Then we present some numerical results
for our imaging scheme using only the raw imaging function uR(x) as well as the detection
based scheme that we introduced above.

A. Foldy-Lax formulation

We discuss the discrete model with many point scatterers randomly distributed through-
out the space. We refer the reader to the next section for discussion of the mean Green’s
function, especially its phase factor, of this case, see (22) in particular.

Let the randomly distributed point scatterers of refractive index nj be located at rj, j =
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FIG. 3: The transverse (left), at x = 5000, and longitudinal (right), at y = 2500, profiles of the
intensity of the Green function at wavelength 70 with 1000 randomly distributed particles whose
n2 − 1 is 70.

1, 2, 3, ...J and letG(x,y;ωl) be the Green’s function. Then the Lippman-Schwinger equation
becomes in this case [12]

G(x,yn;ωl) = G0(x,yn;ωl) +
J∑
j=1

τj(ωl)G0(x, rj;ωl)G(rj,yn;ωl), n = 1, ..., N

where the scattering strength τj of the j-th scatterer is given by

τj(ωl) = ω2
l (n

2
j − 1). (20)

The Lippman-Schwinger equation is valid for all x except at the actual scatterer locations
x = ri. Thus, to determine G(rj,yn;ωl), we replace the Lippman-Schwinger equation by the
Foldy-Lax equation

G(rm,yn;ωl) = G0(rm,yn;ωl) +
J∑

j=16=m

τj(ωl)G0(rm, rj;ωl)G(rj,yn;ωl), n = 1, ..., N (21)

where the divergent self-field term has been removed. Finding the field G(rj,yn;ωl) is then
reduced to inverting a matrix with entries

δij − (1− δij)τjG0(ri, rj), i, j = 1, 2, ...J.

Once the G(rj,yn;ωl)s are determined, they can be substituted in the Lippman-Schwinger
equation to find the wave field at any location. The numerical scheme is further explicated
in Appendix A.

In our simulations, 1000 or 3000 point scatterers are uniformly randomly distributed in
the domain [2000, 4000]× [0, 5000], while the whole computation domain is [−5000, 5000]×
[0, 5000]. Some profiles of the Green function are shown in Fig. 3
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B. Phase factor of the mean Green function

According to the effective medium theory, the mean transfer function in three spatial
dimensions takes the following form

H̄(x,y;ω) ∼ e−
r
2`
eikr

r
, r = |x− y|, (22)

where the mean-free path ` is related to the extinction cross section σt by

` =
1

ρσt
,

with ρ density of particles. Note that when the particle size a is much greater than the
wavelength λ, σt ≈ 2πa2, a = radius of particles, and independent of frequency.

On the other hand, when the particle size is much smaller than the wavelength, the
extinction cross section usually depends on the frequency as well. In the case of Rayleigh
scattering without absorption, the scattering cross section scales like ω−4

` ∼ ρ−1(c0/ω)4a−6 (23)

where c0 is the background phase velocity [12] In the formulation of the matched field we
retain only the travel time part of the mean Green’s function, corresponding to: eikr, and
back-propagation of the wave field.

C. Imaging and detection simulations

In the simulations we use N = 6 or 11 antennas equally spaced on the side x = −5000, y ∈
[1500, 3500] (total aperture A = 2000) and B = 20 frequencies corresponding to equally
spaced wavelengths in the range from 52 to 90. Recall also that the imaging is based
on the difference field. Seven targets are located at [3100, 100], [2800, 1000], [4000, 1600],
[3300, 2100], [4500, 3000], [3000, 4000], and [3500, 4800]. As explained in Appendix A, we do
not make use of distorted wave Born approximation.

Figure 4 demonstrates that uR is a more stable imaging function than u itself and that
the imaging performance deteriorates as the number of clutter particles increases.

Figure 5 shows the difference in the stability performance between the imaging with SA
and the response matrices (i.e. for each source location the reflected field is measured at
all other antenna positions). The SA imaging configuration corresponds to having available
only the diagonal elements of the response matrices and hence is generally less stable as our
stability analysis predicts.

Figure 6 and Figure 7 show the numerical resolution curves for one target point in the
medium with 1000 scatterers and the free-space, respectively. The resolution (vertical axis)
is defined as the distance from the target where the the imaging function has dropped to
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FIG. 4: |u| (left) v.s. |uR| (right) for seven targets with 20 frequencies and 11 antennas ( total
aperture = 2000). n2 − 1 of the clutter and the targets are 50 and 1, respetively. The top plots
are simulated with 1000 particles and the bottom plots with 3000 particles. Note the difference in
magnitude between the top and the bottom plots. The plots of |uR| tend to be more stable than
those of |u|.

half of its value at the target location. And for each case we compare the SA resolution to
that with the full response matrices .

Three interesting observations are in order.
(i) The SA resolution is consistently better than that with the full response matrices. The

difference is more pronounced in the cross-range resolution than in the range resolution.
(ii) The cross-range resolutions in both cases decrease with the aperture, consistent with

the physical intuition. On the contrary, the range resolutions in both cases increase (slowly)
with the aperture. In this comparative study, the number of antennas N = 11 is fixed.

(iii) Also, not shown in the figures, the resolutions have a similar behavior with respect
to the change in the antenna spacing (with A fixed, hence N changing accordingly).

In Appendices B and C we give an asymptotic analysis supporting these counterintuitive
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FIG. 5: SA (left) and full response matrix (right) imaging plots of |u| with seven targets cluttered
by 1000 particles and 6 antennas (total aperture = 2000). n2 − 1 of the clutter and the targets
is 70 and 1, respectively. Note the difference in the magnitude scale between the two plots. The
plot on the left is less stable than the plot on the right, as the theory predicts. The SA imaging
plot here is also less stable than the plots on the left column in Figure 4 due to the increase in the
clutter reflectivity and the decrease in the antenna number. In Figure 8, where |uR|, instead of |u|
is plotted, the SA imaging is improved by using a statistical detection scheme.

effects.
Finally we apply the statistical detection scheme to reduce the level of uncertainty. The

result is shown in Figure 8 (right). Note that the image now is “cleaned-up” relative to the
raw image.

VI. CONCLUSIONS

We have revisited the problem of imaging a set of point targets based on the scattered
wave field at a number of discrete frequencies as recorded by an antenna array. The target
scatterers are masked by a large number of “clutter” particles. Here we consider a SA imaging
array and use difference field for imaging. When imaging in clutter it is fundamental to
identify whether the constructed image will be statistically stable, meaning that the coherent
features in the image that corresponds to the target scatterers dominate the incoherent
noise caused by the clutter. We have identified a fundamental sampling criterion that must
be satisfied for having statistical stability that essentially says that the Rician number of
the channel must be large relative to the ratio of the target degrees of freedom to the
measurement degree of freedom. We have also set forth a hypothesis based framework that
gives an explicit rule for deciding on the presence of a scatterer at a particular location, which
optimally adapts to the clutter present in the scenery at hand. Finally our resolution analysis
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FIG. 6: Comparison of range (bottom) and cross-range (top) resolutions with synthetic aperture
(red) and full response matrices (blue). n2 − 1 of the clutter and the target equal to 50 and 1,
respectively. 11 antennas and 1000 particles are used in the simulation. The horizontal axis is the
aperture size.

have revealed several interesting effects: First, given the same measurement resources (N,B)
SA imaging has a better resolution performance, although is less stable, than response matrix
imaging; second, for both imaging methods, the cross-range resolution decreases with the
aperture and the antenna spacing while the range resolution increases (slightly) with the
two parameters.
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FIG. 7: Resolutions for the free space: the range (bottom) and cross-range (top) resolutions with
synthetic aperture (red) and full response matrices (blue).

Appendix A: The Foldy-Lax formulation

Let xm,m = 1, ...,M be the locations of the M target points and xM+j, j = 1, ..., J the
locations of the J clutter points. The wave field U(r, ω) for a source at yi in the presence of
both clutter and target particles satisfies

U(r, ω) = G0(yi, r;ω) +
M+J∑
m=1

τ(xm, ω)G0(r,xm;ω)U(xm, ω) (A1)

15



FIG. 8: SA imaging plot of |uR| (left) and statistical detection figure (right) of 7 targets with 6
transducers and 20 frequencies. The number of clutter scatterers is 1000. n2 − 1 of the clutter
and the targets are 70 and 1, respectively. The false-alarm-rate α of the detection algorithm is
0.15%. The red triangles denote the true targets’ locations and the blue stars are the results of
the detection. When α is low, it is possible to miss some of the targets and when α is high, false
targets may show up.

The scattering amplitude function at scatterer m is τm = τ(xm, ω). Evaluation at the
scatterers then gives the Foldy-Lax equations:

U(xj, ω) = G0(yi,x1;ω) +
∑
m 6=j

τmG0(x1,xm;ω)U(xm, ω), j = 1, ...,M + J.

Consequently, the wave field at the target locations is determined by
U(x1, ω)
U(x2, ω)

...
U(xM+J , ω)

 = F−1
ω


G0(yi,x1;ω)
G0(yi,x2;ω)

...
G0(yi,xM+J ;ω)

 (A2)

where

Fω =


1 −τ2G0(x1,x2;ω) . . . −τM+JG0(x1,xM+J ;ω)

−τ1G0(x2,x1;ω) 1 . . . −τM+JG0(x2,xM+J ;ω)

. . . . . .
. . . . . .

−τ1G0(xM+J ,x1;ω) −τ2G0(xM+J ,x2;ω) . . . 1

 .
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The vector on the left hand side of (A2) in turn determines the scattered field through (A1).

For m = 1, . . . ,M + J , define the vector ~G0(xm) as

~G0(xm, ω) = (G0(xm,y1;ω), G0(xm,y2;ω), . . . , G0(xm,yN ;ω))T .

The full response matrix R is an N ×N square matrix given by

R(ω) =

τ1
~G0(x1, ω) τ2

~G0(x2, ω) . . . τM+J
~G0(xM+J , ω)

F−1
ω


~GT

0 (x1, ω)
~GT

0 (x2, ω)
...

~GT
0 (xM+J , ω)


where T denotes the matrix transpose.

Similarly, we can simulate the wave fields in the presence of clutter particles only. Note
that in the Foldy-Lax simulation, we do not make the DWBA assumption.

Appendix B: Reduced Imaging Field

We show that under the condition K � 1 the quadratic-in-h terms in (9) is negligible.
First we write explicitly

uR(x) = <
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)H
2
ij(ωl)P (yj,x;ωl)

}
= <

{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)H̄
2
ij(ωl)P (yj,x;ωl)

}
(B1)

+<
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)2H̄ij(ωl)hij(ωl)P (yj,x;ωl)
}

(B2)

+<
{ B∑
l=1

M∑
i=1

N∑
j=1

τi(ωl)P (x,yj;ωl)h
2
ij(ωl)P (yj,x;ωl)

}
(B3)

The (B1) term is a deterministic term, while the (B2) and (B3) terms are random with
mean zero. We show next that the variance of (B2) is larger than that of (B3) in the case
K � 1.

The variance of (B2) is

2η2

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2|P (x,yj;ωl)|2|P (yj,x;ωl)|2|H̄ij(ωl)|2

= 2η2

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2|H̄ij(ωl)|2

≈ 2µ2η2BMN |τ |2,
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and the variance of (B3) is

η4

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2|P (x,yj;ωl)|2|P (yj,x;ωl)|2

= η4

B∑
l=1

M∑
i=1

N∑
j=1

|τi(ωl)|2

≈ η4BMN |τ |2.

The ratio of the former to the latter is proportional to K � 1.

Appendix C: Cross-range resolution

To simplify the resolution analysis we use the paraxial approximation and consider the
two dimensional case. The Green function for the paraxial wave in the free space is

G0(x, z) = eikz
√

k

i2πz
exp

[
i
kx2

2z

]
(C1)

where z and x are the longitudinal and transverse coordinates, respectively. In the associated
random counterpart called the Markovian model [17], the mean Green function has a similar
form

Ḡ(x, z) = e−k
2C0zeikz

√
k

i2πz
exp

[
i
kx2

2z

]
(C2)

which again has the same phase factor as the free space Green function. Since we assume
the stability regime, the Markovian model and the free-space case yield the similar results.
So we will focus on the resolution analysis for one point target in the free space.

We choose the unit system so that the phase velocity is one and ω = k.

1. Imaging with the response matrices

Let (x0, z0) be the location of the target. The imaging field u with the full response
matrices is

u(x, z) =
1

2π

B∑
l=1

N∑
n,j=1

|ωl|z−1
0 e2iωl(z0−z)e−i

ωl|x−yn|
2

2z e
i
ωl|x0−yn|

2

2z0 e−i
ωl|x−yj |

2

2z e
i
ωl|x0−yj |

2

2z0 (C3)

For convenience we use an even number of frequencies such that ωi = −ωB+1−i (i =
1, . . . , B/2). Consequently, the imaging field (C3) is real-valued.
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Set z = z0 and use the approximation

N∑
n=1

e
−iωl|x−yn|

2

2z0 e
i
ωl|x0−yn|

2

2z0

≈
(
ei`aωl(x−x0)/z0 − 1

)−1

e
−i ωl

2z0
(x2−|x0|2)

(
e
−iωl

z0
(x0−x)·yN+1 − e−i

ωl
z1

(x0−x)·y1
)
, (C4)

assuming that |`aωl(x0 − x)| � z0 where `a is the antenna spacing. Hence we have

u(x, z0) ≈ 1

2π

B∑
l=1

N∑
n,j=1

|ωl|z−1
0 e

−iωl
z0

(|x|2−|x0|2)

×
(
ei`aωl(x−x0)/z0 − 1

)−2(
e
i
ωl
z0

(x−x0)·yN+1 − ei
ωl
z0

(x−x0)·y1
)2

Suppose that ε ≡ x−x0 is so small that the expansion in the powers of ε can be truncated
at the second order, namely

e
−iωl

z0
(x2−|x0|2)

= 1− iωl
z0

ε(2x0 + ε)− ω2
l

2z2
0

ε2(2x0 + ε)2 + o(ε2)

= 1− iε2ωlx0

z0

− ε2(i
ωl
z0

+
2ω2

l x
⊥2
0

z2
0

) + o(ε2),

(
ei`aωl(x−x0)/z0 − 1

)−2

=
−z2

0

ω2
l `

2
aε

2

(
1− iωl`aε

z0

− 5ω2
l `

2
aε

2

12z2
0

+O(ε2)
)

and

e
i
ωl
z0

(x−x0)·yN+1 − ei
ωl
z0

(x−x0)·y1 = iεN`a
ωl
z0

{
1 +

iωl
2z0

ε(yN+1 + y1)

− ω2
l

6z2
0

ε2(y2
N+1 + yN+1y1 + y2

1)
}

+ o(ε2).

Then the imaging function becomes

u(z0, x)

=
N2

2πz0

B∑
l=1

|ωl|
(

1− iωl`aε

z0

− 5ω2
l `

2
aε

2

12z2
0

)(
1− iε2ωlx0

z0

− ε2(i
ωl
z0

+
2ω2

l x
⊥2
0

z2
0

)
)

×
(

1 +
iωl
2z0

ε(yN+1 + y1)− ω2
l

6z2
0

ε2(y2
N+1 + yN+1y1 + y2

1)
)2

+ o(ε2) (C5)
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Let A = (N − 1)`a be the total aperture of the array. Without loss of generosity, let
yN = A/2 and y1 = −A/2. We separate (C5) into terms of different powers of ε:

O(ε0) =
N2ε0

2πz0

B∑
l=1

|ωl| (C6)

O(ε) =
iN2ε

2πz2
0

(yN + y1 − 2x0)
B∑
l=1

|ωl|ωl = 0 (C7)

O(ε2) =
N2ε2

2πz0

B∑
l=1

|ωl|
{
− iωl

z0

+
ω2
l

z2
0

(
− 2x⊥2

0 + 2x0(yN+1 + y1)

−1

3
(y2
N+1 + yN+1y1 + y2

1)− 1

4
(yN+1 + y1)2 − 5

12
`2
a + `a(yN + y1 − 2x0)

)}
=

N2ε2

2πz3
0

{
− 2x2

0 − `2
a −

A

12
(A+ 2`a)

} B∑
l=1

|ωl|3 < 0 (C8)

The conditions (C7) and (C8) ensure that the point-target location is the local maximum
of the imaging field (C3) along the cross-range direction. We define the (cross-range) reso-
lution to be the (transverse) distance to the target location where u has dropped to half of
its local maximum value and compute

O(ε2)

O(ε0)
=

∑B
l=1 |ωl|3

2z2
0

∑B
l=1 |ωl|

{
− 2x2

0 − `2
a −

A

12
(A+ 2`a)

}
ε2 (C9)

The resolution is inversely proportional to the square-root of the minus coefficient of ε2. For
x0 = 0, `a � A and a narrow bandwidth ωl ≈ ω we recover the classical Rayleigh formula
∼ z0/(Aω).

The other consequence of defining resolution as fixed percentage drop from the peak
value of the imaging function is that for a fixed A the resolution decreases as `a increases
(N decreases), resulting the optimal resolution with N = 2.

2. SA imaging

SA corresponds to having only the diagonal elements of the response matrices. In this
case,

u(x, z) =
1

2π

B∑
l=1

N∑
n=1

|ωl|z−1
0 e2iωl(z0−z)e−i

ωl|x−yn|
2

z e
i
ωl|x0−yn|

2

z0 .
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Following the same calculation as above, we have

u(z0, x)

=
1

2πz0

B∑
l=1

|ωl|
(
e2i`aωl(x−x0)/z0 − 1

)−1

e
−iωl

z0
(|x|2−|x0|2)

(
e

2i
ωl
z0

(x−x0)·yN+1 − e2i
ωl
z0

(x−x0)·y1
)

=
N

2πz0

B∑
l=1

|ωl|
(

1− iωl`aε

z0

− ω2
l `

2
aε

2

3z2
0

)(
1− iε2ωlx0

z0

− ε2(i
ωl
z0

+
2ω2

l x
⊥2
0

z2
0

)
)

×
(

1 +
iωl
z0

ε(yN+1 + y1)− 2ω2
l

3z2
0

ε2(y2
N+1 + yN+1y1 + y2

1))
)

+ o(ε2).

The break-down of terms of different powers of ε are:

O(ε0) =
Nε0

2πz0

B∑
l=1

|ωl|

O(ε1) =
iNε1

2πz2
0

(yN + y1 − 2x0)
B∑
l=1

|ωl|ωl = 0 (C10)

O(ε2) =
Nε2

2πz0

B∑
l=1

|ωl|
{
− iωl

z0

+
ω2
l

z2
0

(
− 2x⊥2

0 + 2x0(yN+1 + y1)

−2

3
(y2
N+1 + yN+1y1 + y2

1)− 1

3
`2
a − 2`ax0

)}
=

Nε2

2πz3
0

{
− 2x2

0 − `2
a −

A

6
(A+ 2`a)

} B∑
l=1

|ωl|3 < 0 (C11)

Again, the conditions (C10) and (C11) ensure that the point-target location is the local
maximum of the imaging field (C10). The resolution is inversely proportional to the square-
root of the following expression

− O(ε2)

ε2O(ε0)
=

∑B
l=1 |ωl|3

2z2
0

∑B
l=1 |ωl|

{
2x2

0 + `2
a +

A

6
(A+ 2`a)

}
(C12)

For x0 = 0 and `a � A, the above calculations predict a smaller resolution in the case of SA
by a factor of 1/

√
2 in view of (C9)-(C12).
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Appendix D: Range Resolution

1. Imaging with the full response matrices

Setting z = z0 we have

u(x, z0) =
1

2π

B∑
l=1

N∑
n,j=1

|ωl|z−1
0 e−2iωlεe

i
ωl|x0−yn|

2

2
(− 1

z
+ 1
z0

)
e
i
ωl|x0−yj |

2

2
(− 1

z
+ 1
z0

)

which can be approximated by

1

2π`2
a

B∑
l=1

|ωl|z−1
0 e−2iωlε(

∫ x0+(A+`a)/2

x0−(A+`a)/2

e
i
ωl|x0−yn|

2

2
(− 1

z
+ 1
z0

)
dyn)2

provided that the antennas are so finely spaced that the summation over yn, yj can be
replaced by integral.

Calculating with up to the second-order-in-ε as before we have∫ (A+`a)/2

−(A+`a)/2

eix
2Υdx =

∫ (A+`a)/2

−(A+`a)/2

(
1 + ix2Υ− 1

2
x4Υ2 + o(Υ2)

)
dx

= (A+ `a) +
1

12
i(A+ `a)

3Υ− 1

160
(A+ `a)

5Υ2 + o(Υ2) (D1)

and consequently

u(x, z0) =
1

2π`2
a

B∑
l=1

|ωl|z−1
0 e−2iωlε(A+ `a)

2

×
(

1 +
i(A+ `a)

2

12

ωlε

2z0(z0 + ε)
− (A+ `a)

4

160

ω2
l ε

2

4z2
0(z0 + ε)2

+ o(ε2)
)2

=
N2

2π

B∑
l=1

|ωl|z−1
0 (1− 2iωlε− 2ω2

l ε
2 + o(ε2))

{
1 +

i(A+ `a)
2ωlε

12z2
0

−(A+ `a)
4ω2

l ε
2

576z4
0

− i(A+ `a)
2ωlε

2

12z3
0

− (A+ `a)
4ω2

l ε
2

320z4
0

+ o(ε2)
}
.
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The zero-th, first, and second order terms of ε are

O(ε0) =
N2ε0

2πz0

B∑
l=1

|ωl| (D2)

O(ε1) =
iN2ε1

2πz0

(−2 +
(A+ `a)

2

12z2
0

)
B∑
l=1

|ωl|ωl = 0 (D3)

O(ε2) =
N2ε2

2π

B∑
l=1

|ωl|z−1
0

{
− 2ω2

l −
i(A+ `a)

2ωl
12z3

0

+
(A+ `a)

2ω2
l

6z2
0

− 7(A+ `a)
4ω2

l

1440z4
0

}
= −N

2ε2

2πz0

{
2− (A+ `a)

2

6z2
0

+
7(A+ `a)

4

1440z4
0

} B∑
l=1

|ωl|3 < 0 (D4)

(D4) is negative since the propagation distance z0 is typically larger than the aperture size A
in the paraxial regime. The conditions (D3) and (D4) ensure that the point-target location
is the local maximum of the mean imaging field (C10) in the longitudinal direction. The
resolution is inversely proportional to the square-root of the following expression

− O(ε2)

ε2O(ε0)
=

∑B
l=1 |ωl|3

2
∑B

l=1 |ωl|

{
2− (A+ `a)

2

6z2
0

+
7(A+ `a)

4

1440z4
0

}
. (D5)

If we completely neglect the second and the third terms in (D5) then we obtain the longitu-
dinal resolution

∼

( ∑B
l=1 |ωl|∑B
l=1 |ωl|3

)1/2

which is inversely proportional to the bandwidth, a classical result. When we take into
account the perturbative effect of the aperture, the change of sign in the second term in
(D5) says that the resolution increases with A as manifest in the bottom plot of Figure 7.
Also, contrary to the case of cross-range resolution, the range resolution increases, for a fixed
A, as `a increases (N decreases).
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2. SA imaging

Following the same calculation with the SA imaging function we have up to the second
order in ε

Eu(x0, z) =
1

2π

B∑
l=1

N∑
n=1

|ωl|z−1
0 e−2iωlεe

−iωl|x0−yn|2( 1
z
− 1
z0

)

≈ 1

2π`a

B∑
l=1

|ωl|z−1
0 e−2iωlε

∫ x0+(A`a)/2

x0−(A+`a)/2

e
−iωl|x0−yn|2( 1

z
− 1
z0

)
dyn

=
1

2π`a

B∑
l=1

ωlz
−1
0 e−2iωlε(A+ `a)

×
(

1 +
i(A+ `a)

2

12

ωlε

z0(z0 + ε)
− (A+ `a)

4

160

ω2
l ε

2

z2
0(z0 + ε)2

+ o(ε2)
)

=
N

2π

B∑
l=1

|ωl|z−1
0 (1− 2iωlε− 2ω2

l ε
2 + o(ε2))

×
(

1 +
iωl(A+ `a)

2

12z2
0

ε− iωl(A+ `a)
2

12z3
0

ε2 − ω2
l (A+ `a)

4

160z4
0

ε2 + o(ε2)
)

Then the ε terms are given below,

O(ε0) =
Nε0

2πz0

B∑
l=1

|ωl| (D6)

O(ε1) =
iNε1

2πz0

(−2 +
(A+ `a)

2

12z2
0

)
B∑
l=1

|ωl|ωl = 0 (D7)

O(ε2) = −Nε
2

2πz0

(
2− (A+ `a)

2

6z2
0

+
(A+ `a)

4

160z4
0

) B∑
l=1

|ωl|3 < 0 (D8)

The conditions (D7) and (D8) ensure that the point-target location is the local maximum
of the imaging field (C10) along the range direction in the paraxial regime. The resolution
is inversely proportional to the square-root of the following quantity

− O(ε2)

ε2O(ε0)
=

∑B
l=1 |ωl|3

2
∑B

l=1 |ωl|

{
2− (A+ `a)

2

6z2
0

+
(A+ `a)

4

160z4
0

}
. (D9)

24



Comparing (D9) with (D5) we see that the difference is in the third terms of the respective
expressions resulting a slightly better resolution for the SA imaging.
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