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BLIND PTYCHOGRAPHY: UNIQUENESS & AMBIGUITIES

ALBERT FANNJIANG AND PENGWEN CHEN

Abstract. Ptychography with an unknown mask and object is analyzed for general pty-
chographic measurement schemes that are strongly connected and possess an anchor.

Under a mild constraint on the mask phase, it is proved that the masked object estimate
must be the product of a block phase factor and the true masked object. This local unique-
ness manifests itself in the phase drift equation that determines the ambiguity at different
locations connected by ptychographic shifts.

The proposed mixing schemes effectively connects the ambiguity throughout the whole
domain such that a distinct ambiguity profile arises and consequently possess the global
uniqueness that the block phases have an affine profile and that the object and mask can
be simultaneously recovered up to a constant scaling factor and an affine phase factor.

1. Introduction

Ptychography is the scanning version of coherent diffractive imaging (CDI) [6] that acquires
multiple diffraction patterns through the scan of a localized illumination on an extended
object (Fig. 1). The redundant information in the overlap between adjacent illuminated
spots is then exploited to improve phase retrieval methods [39, 43, 45]. Ptychography origi-
nated in electron microscopy [19,25,26,29,37,38,44] and has been successfully implemented
with X-ray, optical and terahertz waves [8, 18, 46, 48, 51, 52, 54]. Recently ptychography has
been extended to the Fourier domain [40, 41, 60]. In Fourier ptychography, illumination an-
gles are scanned sequentially with a programmable array source with the diffraction pattern
measured at each angle.

Ptychographic CDI has its origin in a concept developed for the crystallographic phase prob-
lem: Hoppe [25] pointed out that if one can make the Bragg peaks of crystalline diffraction
patterns interfere, information about their relative phases can be obtained and therefore
suggested to use a localized illumination instead of the usual extended plane wave. Due
to the Fourier convolution theorem, the crystal’s diffraction peaks in the resulting far-field
pattern are then convolved with the Fourier transform of the localized illumination. When
the extent of the illumination is shrunk to about the same order of magnitude as the crys-
talline unit cell, this leads to overlap between adjacent Bragg peaks and thus the desired
interferences. While these interferences already allow to determine the relative phases, the
twin-image ambiguity remains. Hoppe showed that an unambiguous result can be obtained
by recording another diffraction pattern at a slightly shifted position of the localized illumi-
nation. Hoppe [26] further discussed the extension of ptychography to non-periodic objects
and the possibility of scanning transmission electron diffraction microscopy.
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Figure 1. Simplified ptychographic setup showing a Cartesian grid used for
the overlapping raster scan positions. Adapted with permission from [36]
©The Optical Society.

An important development in ptychography since the work of Thibault et al. [51, 52] is
the potential of simultaneous recovery of the object and the illumination (blind ptychog-
raphy). Blind ptychographic reconstruction is affected by many factors such as the type
of illumination and the amount of overlap between adjacent illuminations. In practice,
numerical reconstruction with the widely used algorithm, the extended Ptychographic It-
erative Engine (ePIE), and its variants typically require 60-70% overlap between adjacent
illuminations [5, 31, 33] (see Section 9 for more discussion). The convergence of numerical
reconstruction is monitored with the residual of the ptychographic data or the difference
between successive estimates [20, 23,33,52,53,56].

Even in the noiseless case, however, numerical convergence does not necessarily imply recov-
ery of the mask and the object. To ensure that a vanishing residual (data fitting) implies
a vanishing reconstruction error in the noiseless case, we need a theory of uniqueness of
solution. To be sure, a completely blind ptychography or phase retrieval is untenable.

First of all, even with a complete prior information of the mask/illumination, we have shown
in a recent work [7] that twin-image ambiguity does arise if the Fresnel number of the
commonly used Fresnel illumination takes on certain values, resulting in poor reconstruction
and hinting on the benefits of avoiding symmetry and increasing complexity of the mask.
A simple way to avoid symmetry and increase complexity is to use a random mask for
illumination. Random masking is a form of coded aperture and has found applications in
many imaging modalities and significant improvements on imaging qualities [1,2,4,7,10,11,
15,21,27,28,30–32,34,42,47,49,50,55,57–59].

For nonptychographic phase retrieval, the capability of a randomly coded aperture in remov-
ing all the ambiguities, including the translation and twin-image ambiguities, was rigorously
analyzed in [12]. Moreover, uniqueness theory for blind phase retrieval with a plain and a
randomly coded diffraction pattern has been developed in [16] which assumes slight prior
knowledge about the phase range of the random mask. In other words, with a plain and a
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randomly coded diffraction pattern one can uniquely and simultaneously determine both the
unknown object and the unknown mask. In contrast, in blind ptychography we work with
just one unknown mask which is more challenging. As random masks are typically harder to
calibrate (but easier to fabricate) than a deterministic mask, blind ptychography and phase
retrieval is particularly useful when a random mask is used.

This paper concerns the uniqueness question for blind ptychography with a randomly phased
mask under certain prior information. We exhibit examples to show these priors are in some
sense necessary. Moreover, we aim to characterize a general class of measurement schemes
that avoid the pitfalls of the regular raster scan shown in Figure 1 (see Examples 6.4 and
6.5).

1.1. Inherent ambiguities. Let us begin with two inherent ambiguities to blind ptychog-
raphy.

Let Jk, lK denote the integers between and including the integers k and l. Let M0 := Z2
m =

J0,m− 1K2 be the initial window area, i.e. the support of the mask µ0. LetM be the object
domain containing the support of the discrete object f .

Let T be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by µt the t-shifted probe for all t ∈ T and Mt the domain of µt. Let f t the object
restricted to Mt. We refer to each f t as a part of f and write f = ∨tf t where ∨ is
the “union” of functions consistent over their common support set. In ptychography, the
original object is broken up into a set of overlapping object parts, each of which produces
a µt-coded diffraction pattern. The totality of the coded diffraction patterns is called the
ptychographic measurement data. Let ν0 (with t = (0, 0)) and g = ∨tgt be any pair of the
probe and the object estimates producing the same ptychography data as µ0 and f , i.e. the
diffraction pattern of νt�gt is identical to that of µt�f t where νt is the t-shift of ν0 and gt

is the restriction of g to Mt. For simplicity, we assume the periodic boundary condition on
M (i.e. discrete torus). The periodic boundary condition refers to the measurement scheme
when the mask crosses over the boundaries of the object domainM and should not be taken
as the assumption of f being a periodic object. The latter implies the former but not vice
versa.

Consider the probe and object estimates

ν0(n) = µ0(n) exp(−ia− ir · n), n ∈M0(1)

g(n) = f(n) exp(ib+ ir · n), n ∈M(2)

for any a, b ∈ R and r ∈ R2. For any t, we have the following calculation

νt(n) = ν0(n− t)

= µ0(n− t) exp(−ir · (n− t)) exp(−ia)

= µt(n) exp(−ir · (n− t)) exp(−ia)

and hence for all n ∈Mt, t ∈ T

νt(n)gt(n) = µt(n)f t(n) exp(i(b− a)) exp(ir · t).(3)
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(a) (b)

Figure 2. A complete undirected graph (a) representing four connected ob-
ject parts (b) where the grey level indicates the number of coverages by the
mask in four scan positions.

Since for each t, νt � gt is the phase factor exp(i(b− a)) exp(ir · t) times µt � f t where �
is the entry-wise (Hadamard) product, g and ν0 produce the same ptychographic data as f
and µ0. This holds true regardless of the set T of shifts and the mask.

In addition to the affine phase ambiguity (1)-(2), a scaling factor (g = cf, ν0 = c−1µ0, c > 0) is
inherent to any blind ptychography. However, when the mask is exactly known (i.e. ν0 = µ0

up to a constant phase factor), r = 0 and c = 1 so neither ambiguity can occur.

In addition, for the regular raster scan (Fig. 1), it is well known that blind ptychography
is susceptible to many other artifacts [51]. For a complete analysis of these ambiguities, the
reader is referred to Ref. [13].

A crucial question then is, Under what conditions are the scaling factor and the affine phase
ambiguity the only ambiguities in blind ptychography? We aim to answer this question in
this paper.

Briefly and informally, we summarize the results as follows.

1.2. Contributions. The first basic requirement of our method is the strong connectivity
property of the object with respect to the measurement scheme. It is useful to think of
connectivity in graph-theoretical terms (Fig. 2): Let the ptychographic experiment be rep-
resented by a complete graph Γ whose notes correspond to {f t : t ∈ T }. Given any positive
integer s, an edge between two nodes corresponding to f t and f t′ is s-connective if

|Mt ∩Mt′ ∩ supp(f)| ≥ s(4)

where | · | denotes the cardinality. In the case of full support (i.e. supp(f) = M), (4)
becomes |Mt ∩Mt′ | ≥ s. An s-connective reduced graph Γs of Γ consists of all the nodes
of Γ but only the s-connective edges. Two nodes are adjacent (and neighbors) in Γs iff they
are s-connected. A chain in Γs is a sequence of nodes such that two successive nodes are
adjacent. In a simple chain all the nodes are distinct. Then the object parts {f t : t ∈ T }
are s-connected if and only if Γs is a connected graph, i.e. every two nodes is connected by
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Figure 3. Sparse objects such as this image of corn grains, where the dark
area represents zero pixel value, can be challenging to ptychographic mea-
surements. The two red-framed blocks are not connected even though they
overlap. The object part in the lower-right block is not an anchor since the
object support does not touch the four sides of the block while the object
part in the upper-left block is an anchor. Indeed, the two corn grains at the
lower-left and upper-right corners alone of the latter block suffice to create a
tight support.

a chain of s-connective edges. Loosely speaking, an object is strongly connected w.r.t. the
ptychographic scheme if s� 1.

The second requirement is the existence of an anchoring part. Informally speaking, an object
part f t is an anchor if its support touches four sides ofMt (Figure 3). Specifically, an object
part f t is an anchor if f t has a tight support in Mt, i.e.

Box[supp(f t)] =Mt(5)

where Box[E] stands for the box hull, the smallest rectangle containing E with sides parallel
to e1 = (1, 0) or e2 = (0, 1). An object part does not have a tight support if and only
it has a loose support. Clearly, f t has a tight support if and only if Twin(f t) does since
Box[supp(f t)] = Box[supp(Twin(f t))] + m for some m. In the case supp(f) = M, any
object part is an anchor. For an extremely sparse object such as shown in Figure 3, the
anchoring assumption can pose a challenge.

For the unknown mask, we need some prior information called the mask phase constraint
(MPC):
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Figure 4. ν0 satisfies MPC if ν0(n) and µ0(n) form an acute angle for all n.

The mask estimate ν0 has the property <(ν̄0 � µ0) > 0 at every pixel (where
� denotes the component-wise product and the bar denotes the complex con-
jugate).

See Figure 4. MPC can be relaxed as | arg[ν0(n)/µ0(n)]| < π/2 for sufficiently large per-
centage of n. For simplicity of presentation, however, we shall work with the technically
simplifying version as above.

Even with the perfect knowledge of the mask amplitude, MPC allows a large relative er-
ror √

1

π

∫ π/2

−π/2
|eiφ − 1|2dφ =

√
2(1− 2

π
) ≈ 0.8525

when arg[ν0] is selected randomly and uniformly in the interval | arg[ν0(n)/µ0(n)]| < π/2.

For any strongly connective scheme under the assumptions of MPC and anchoring, we prove
the local uniqueness result for blind ptychography (Theorem 3.1 and 3.3) that with high
probability (exponentially close to 1 in s) in the random selection of µ0,

νt � gt = eiθtµt � f t, t ∈ T ,(6)

for some constants θt ∈ R (called block phases) if g and νt produce the same diffraction
pattern as f and µt for all t ∈ T . As shown by Examples 4.1 and 4.2, both MPC and the
anchoring assumption are in some sense necessary for (6) to hold.

We refer to the ambiguity equation (6) as the local uniqueness property since θt may be more
complicated than just an affine profile, θ0 + t · r, for some r ∈ R2, as in (3). Indeed, the
affine phase ambiguity (1)-(2) means that the relation (6) with an affine profile in θt is the
best to hope for. On the other hand, we say that the global uniqueness holds if the affine
phase ambiguity and the scaling factor ambiguity are the only ambiguities. We say that a
ptychographic scheme is complete for a given object if the global uniqueness holds.

The ambiguity equation (6) can be transformed into the phase drift equation which plays
the key role in our theory. Consider the object ambiguity represented by

h(n) ≡ ln g(n)− ln f(n), ∀n ∈M,

provided that both f and g are non-vanishing. The phase drift equation

h(n + t)− h(n + t′) = iθt − iθt′ mod i2π, ∀n ∈M0, ∀t, t′ ∈ T(7)
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equates the difference in the object ambiguity in different blocks with the phase drift in the
block phase.

Most important, we show that the mixing schemes, introduced here for the first time, “mix”
the ambiguity so completely that a distinct ambiguity profile (affine phase plus scaling factor)
arises and the global uniqueness holds true (Theorem 8.3). The mixing schemes include the
special case of small perturbations of the regular raster scan (Theorems 7.4 and 7.5). On
the other hand, while the global uniqueness fails for the regular raster scan, the block phases
nevertheless have an affine profile (Proposition 6.1).

The rest of the paper is organized as follows. In Section 2, we formulate the basic building
block of the ptychographic measurement and discuss ambiguities in standard phase retrieval
with one coded diffraction pattern. In Section 3 we consider the ptychography with two over-
lapping diffraction patterns and prove the local uniqueness for the masked object (Theorem
3.1). We then extend the local uniqueness to the multi-part ptychography (Theorem 3.3). In
Section 4 we demonstrate with examples that the prior information of MPC and anchoring
is necessary for the local uniqueness result (Examples 4.1 and 4.2). In Section 5, we develop
the phase drift equation that holds the key to the global uniqueness result. In Section 6, we
exhibit additional ambiguities associated with the regular raster scan (Examples 6.4 and 6.5)
and prove that the block phases of the raster scan must have an affine profile (Proposition
6.1). In Section 7, we prove the global uniqueness theorems for the perturbed raster scans
with the overlap ratio greater than 50% (Theorems 7.4 and 7.5). In Section 8, we give an
example showing that the minimum overlap ratio 50% is necessary for the perturbed raster
scans to be ptychographically complete and introduce the mixing schemes which are ptycho-
graphically complete and whose block phases must have an affine profile (Theorem 8.3). We
conclude in Section 9 and discuss a few practical implications of our theory. A preliminary
version of this paper was presented in [14].

2. Coded diffraction pattern

We start with the set-up of coded diffraction patterns [35].

Let f 0 be a part of the unknown object f restricted to the initial block M0 = Z2
m,m < n,

and let the Fourier transform of f 0 be written as

F (e−i2πw) =
∑
k∈M0

e−i2πk·wf 0(k), w = (w1, w2).

Under the Fraunhofer approximation, the diffraction pattern can be written as

|F (e−i2πw)|2 =
∑
k∈M̃0

{ ∑
k′∈M0

f 0(k′ + k)f 0(k′)

}
e−i2πk·w, w ∈ [0, 1]2(8)

where

M̃0 = {(k1, k2) ∈ Z2 : −m+ 1 ≤ k1 ≤ m− 1,−m+ 1 ≤ k2 ≤ m− 1}
and f 0 assumes the value zero outside ofM0. Here and below the over-line notation means
complex conjugacy.
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The expression in the brackets in (8) is the autocorrelation function of f 0 and the summation

over n takes the form of Fourier transform on the enlarged grid M̃0. Hence sampling |F |2
on the grid

L =
{

(w1, w2) | wj = 0,
1

2m− 1
,

2

2m− 1
, · · · , 2m− 2

2m− 1

}
(9)

provides sufficient information to recover the autocorrelation function.

A randomly coded diffraction pattern measured with the mask µ0 is the diffraction pattern
for the masked object f̃ 0(n) = f 0(n)µ0(n) where the mask function µ0 is a finite array of
random variables. The masked object is also called the exit wave in the parlance of optics
literature. In other words, a coded diffraction pattern is just the plain diffraction pattern of
a masked object.

We assume randomness in the phases θ of the mask function µ0(n) = |µ0|(n)eiθ(n) where
θ(n) are independent, continuous real-valued random variables. In other words, each θ(n)
is independently distributed with a probability density function pγ supported on (−γπ, γπ]
with a constant γ ∈ [0, 1]. Continuous phase modulation can be experimentally realized with
various techniques such as spread spectrum phase modulation [59].

We also require that |µ0|(n) 6= 0,∀n ∈ M0 (i.e. the mask is transparent). This is necessary
for unique reconstruction of the object as any opaque pixels of the mask would block the
transmission of the object information.

First we review the case of a plain diffraction pattern (µ0 ≡ 1).

Proposition 2.1. [22] Let the z-transform F (z) =
∑

n f
0(n)z−n be given by

F (z) = αz−m
p∏

k=1

Fk(z), m ∈ N2, α ∈ C(10)

where Fk, k = 1, . . . , p, are non-monomial irreducible polynomials. Let G(z) be the z-
transform of another finite array g0(n). Suppose |F (e−i2πw)| = |G(e−i2πw)|,∀w ∈ [0, 1]2.
Then

G(z) = |α|eiθz−p

(∏
k∈I

Fk(z)

)(∏
k∈Ic

Fk(1/z̄)

)
, for some p ∈ N2, θ ∈ R,(11)

where I is a subset of {1, 2, . . . , p}.

Remark 2.2. The undetermined monomial factor z−p in (11) corresponds to the translation

invariance of the Fourier intensity data while the altered factors Fk(1/z̄) corresponds to
the conjugate inversion invariance of the Fourier intensity data (see Corollary 2.4 below).
The conjugate inversion of f 0, called the twin image, in M0 is defined by Twin(f 0)(n) =
f̄ 0((m,m)− n).

Next consider a random mask µ0 and assume that f 0 is not a linear object. An object is a
linear object if its support is a subset of a line. We recall a result in [12] that the z−transform

of the non-line masked object f̃ 0(n) = f 0(n)µ0(n) is irreducible, up to a monomial.
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Proposition 2.3. [12] Suppose f 0 is not a linear object and let µ0 be the phase mask with
phase at each point continuously and independently distributed. Then with probability one the
z-transform of the masked object f̃ 0 = f 0 � µ0 does not have any non-monomial irreducible
polynomial factor.

A similar result can be proved for masks whose phases are discrete random variables by using
more advanced tools from algebraic geometry (e.g. [3], Proposition 4.1).

The following corollary is what we will need for proving the local uniqueness theorems.

Corollary 2.4. Under the assumptions of Proposition 2.3, if another masked object g̃0 :=
ν0g0 produces the same diffraction pattern as f̃ 0 = µ0f 0, then for some p and θ

f̃ 0(n + p) = e−iθg̃0(n) or eiθ Twin(g̃0)(n)(12)

for all n ∈M0.

Proof. Let F̃ and G̃ be the z-transforms of f̃ 0 and g̃0, respectively. By Proposition 2.3 and
(11),

G̃(z) = eiθz−pF̃ (z) or eiθz−pF̃ (1/z̄), for some p, θ and all z.

which after substituting z = exp (−i2πw) becomes

G̃(e−i2πw) = eiθeiw·pF̃ (e−i2πw) or eiθeiw·pF̃ (e−i2πw), for some p, θ and all z.

Note that G̃(e−i2πw) and F̃ (e−i2πw) are the Fourier transforms of g̃0 and f̃ 0, respectively.
Therefore in view of Remark 2.2 we have

g̃0(n) = eiθf̃ 0(n− p) or eiθ Twin(f̃ 0)(n− p), ∀n ∈M0,

which is equivalent to (12). �

3. Local uniqueness

First let us consider two-part ptychography where M =M0 ∪Mt.

We need two pieces of prior information: one on the mask phase and the anchoring assump-
tion on an object part.

Mask Phase Constraint (MPC): Let µ0 be a nonvanishing random mask with phase
at each pixel distributed continuously and independently according to a probability density
function pγ nonvanishing in (−γπ, γπ] with a constant γ ≤ 1.

Let

α(n) exp[iφ(n)] = ν0(n)/µ0(n), α(n) > 0, ∀n ∈M0.(13)

We say that ν0 satisfies MPC(γ) if, for all n ∈M0 and some constant φ0

|φ(n)− φ0| ≤ δπ mod 2π,(14)

where

δ < min (γ, 1/2) .(15)
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The larger γ is, the more phase diversity there is in the mask; the larger δ is, the weaker the
MPC(γ) is as a constraint. When γ > 1/2, MPC(γ) can be written simply as

<(ν̄0(n)µ0(n)) > 0, ∀n ∈M0.(16)

We demonstrate the necessity of MPC(γ) in Example 4.1.

The following theorem gives sufficient conditions of the local uniqueness for 2-part ptychog-
raphy.

Theorem 3.1. Let f 0 and f t be a non-linear objects. Suppose that an arbitrary object
g = g0∨gt, where g0 and gt are defined on M0 and Mt, respectively, and an arbitrary mask
ν0 defined on M0 produce the same ptychographic data as f and µ0. Moreover, suppose that
ν0 satisfies MPC(γ) and that f 0 and g0 are an anchor, i.e.

Box[supp(f 0)] = Box[supp(g0)] =M0.(17)

Let

s = min{|S0|, |S ′0|} ≥ 2(18)

where

S0 =M0 ∩Mt ∩ supp(f 0), S ′0 =M0 ∩Mt ∩ supp(Twin(f 0)).

Then for some constants θ0, θt ∈ R, the following relations

ν0 � g0 = eiθ0µ0 � f 0(19)

νt � gt = eiθtµt � f t(20)

hold true with probability at least

1− cs, c < 1,(21)

where the positive constant c depends only on δ, γ, pγ in MPC(γ) .

Remark 3.2. The anchoring assumption can be relaxed to that of object support constraint
(OSC) (see Appendix A).

The proof of Theorem 3.1 is given in Appendix B.

Theorem 3.1 can be readily extended to the case of multi-part ptychography as follows.

Let T = {tk ∈ Z2 : k = 0, . . . , Q − 1} denote the set of all shifts in a ptychographic
measurement. Let Mk ≡Mtk and fk ≡ f tk .

We say that fk and f l are s-connected if

|Mk ∩Ml ∩ supp(f)| ≥ s ≥ 2(22)

(cf. (18)) and that {fk : k = 1, · · · , Q− 1} are s-connected if there is an s-connected chain
between any two elements.
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Theorem 3.3. Let {fk, k = 0, · · · , Q− 1} be s-connected and every fk is a non-linear part.

Suppose that an arbitrary object g =
∨
k g

k, where gk are defined on Mk, and a mask ν0

defined on M0 produce the same ptychographic data as f and µ0. Suppose that ν0 satisfies
MPC(γ) and hence

p := max
a∈R

Pr{Θ ∈ (a− 2δπ, a+ 2δπ]} < 1(23)

with Θ distributed according to the probability density function pγ ? pγ.

In addition, suppose that for some `0 ∈ {0, 1, . . . , Q− 1} f `0 and g`0 are an anchor or more
generally

ν`0 � g`0 = eiθ`0µ`0 � f `0 .(24)

Then with probability at least 1− 2Qps, we have

νk � gk = eiθkµk � fk, k = 0, . . . , Q− 1,(25)

for some constants θk ∈ R.

The proof of Theorem 3.3 is given in Appendix C.

4. Ambiguities without MPC(γ) or anchoring assumption

The first example shows that (19)-(20) may fail in the absence of MPC(γ) .

Example 4.1. Let M = Zm × Zn. Let m = 2n/3 and t = (m/2, 0). Evenly partition f 0

and f t into two parts as f 0 = [f 0
0 , f

0
1 ] and f t = [f 1

0 , f
1
1 ] with the overlap f 0

1 = f 1
0 where

f ij ∈ Cm×m/2, i, j = 0, 1. Likewise, partition the mask as µ0 = [µ0
0, µ

0
1], µt = [µ1

0, µ
1
1] where µt

is just the t-shift of µ0, i.e. µt(n + t) = µ0(n).

Suppose f 0
0 = f 1

1 and consider the mask estimate ν0 = Twin(µ0) and the following object
estimate: Let

g0 = Twin(f 0) = [g0
0, g

0
1]

gt = Twin(f t) = [g1
0, g

1
1]

where g0
1 = g1

0 due to f 0
0 = f 1

1 , i.e. g = g0 ∨ gt is a well-defined object. The mask estimate
ν0 violates MPC(γ) because

Twin(µ0)(n)

µ0(n)
=
µ̄0(N− n)

µ0(n)
, n ∈M0,

has the maximum phase range (−2γπ, 2γπ].

Clearly we have

ν0 � g0 = Twin(µ0 � f 0)

νt � gt = Twin(µt � f t)
11



so ν0 and g produce the same ptychographic data as do µ0 and f but violate (19)-(20) since
in general

eiθ0µ0 � f 0 6= Twin(µ0 � f 0)

eiθtµt � f t 6= Twin(µt � f t)

for any θ0, θt ∈ R.

The next example illustrates the translational and twin-like ambiguities associated with a
loose object support (non-anchor).

Example 4.2. Assume the same set-up as in Example 4.1 with the additional prior f 0
0 =

f 1
1 = 0.

Let ν0 = µ0, νt = µt and g0 = [g0
0, 0], gt = [0, g1

1] where

g0
0 = f 0

1 � µ0
1/µ

0
0,

g1
1 = f 1

0 � µ1
0/µ

1
1.

Clearly, g = [g0
0, 0, g

1
2] is different from f = [0, f 0

1 , 0].

It is straightforward to check that for m = (m/2, 0)

g0(n)ν0(n) = f 0(n + m)µ0(n + m), n ∈M0

gt(n)νt(n) = f t(n−m)µt(n−m), n ∈Mt

and hence g0 � µ0 and gt � µt produce the same diffraction patterns as f 0 � µ0 and f t � µt

for any ν0. In particular, by setting ν0 = µ0, we satisfy MPC with δ = 0.

On the other hand, for m 6= 0 and any θ0, θt ∈ R,

eiθ0f 0 � µ0 6= f 0(·+ m)� µ0(·+ m)

eiθtf t � µt 6= f t(· −m)� µt(· −m)

in general and hence (19)-(20) are violated.

For the twin-like ambiguity, consider the same set-up with

g0(n) = f̄ 0(N− n)µ̄0(N− n)/µ0(n), ∀n ∈M0(26)

gt(n) = f̄ t(N + 2t− n)µ̄t(N + 2t− n)/µt(n), ∀n ∈Mt.(27)

Clearly, g = [g0
0, 0, g

1
2] is different from f = [0, f 0

1 , 0] but because

g0(n)ν0(n) = f̄ 0(N− n)µ̄0(N− n), n ∈M0

gt(n)νt(n) = f̄ t(N + 2t− n)µ̄t(N + 2t− n), n ∈Mt,

g0 � µ0 and gt � µt, as twin images, produce the same diffraction patterns as f 0 � µ0 and
f t � µt for any ν0. In particular, by setting ν0 = µ0, we satisfy MPC with δ = 0.

On the other hand, (19)-(20) fail to hold since for any θ0, θt ∈ R,

eiθ0f 0 � µ0 6= f̄ 0(N− ·)� µ̄0(N− ·)
eiθtf t � µt 6= f̄ t(N + 2t− ·)� µ̄t(N + 2t− ·)

in general.
12



5. Phase drift equation

In view of Theorem 3.3, we make simple observations and transform (25) into the ambiguity
equation that will be a key to subsequent development.

Lemma 5.1. Let

α(n) exp[iφ(n)] = ν0(n)/µ0(n), α(n) > 0, ∀n ∈M0

and

h(n) ≡ ln g(n)− ln f(n), ∀n ∈M,

where f and g are assumed to be non-vanishing. Suppose that

νk � gk = eiθkµk � fk, ∀k,(28)

where θk are constants. Then

h(n + tk) = iθk − lnα(n)− iφ(n) mod i2π, ∀n ∈M0,(29)

and for all n ∈Mk ∩Ml

α(n− tl) = α(n− tk)(30)

θk − φ(n− tk) = θl − φ(n− tl) mod 2π.(31)

Remark 5.2. The ambiguity equation (29) is a manifestation of local uniqueness (25) and
has the immediate consequence

h(n + tk)− h(n + tl) = iθk − iθl mod i2π, ∀n ∈M0, ∀k, l(32)

or equivalently

h(n + tk − tl)− h(n) = iθk − iθl mod i2π, ∀n ∈Ml(33)

by shifting the argument in h.

We refer to (32)or (33) as the phase drift equation which determines the ambiguity (repre-
sented by h) at different locations connected by ptychographic shifts.

Proof. The ambiguity equation (29) follows immediately from (28) by taking logarithm on
both sides.

By (28), for all n ∈Mk ∩Ml,

g(n) = eiθkfk(n)µ0(n− tk)/ν
0(n− tk) = eiθlf l(n)µ0(n− tl)/ν

0(n− tl).(34)

We obtain by taking logarithm on both sides of (34) that

iθl − iθk − ln fk(n) + ln f l(n) + lnα(n− tk)− lnα(n− tl) + iφ(n− tk)− iφ(n− tl) = 0

modulo i2π. This implies that for n ∈Mk ∩Ml

iθl − iθk + lnα(n− tk)− lnα(n− tl) + iφ(n− tk)− iφ(n− tl) = 0 mod i2π

which is equivalent to (30)-(31).

�
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6. Raster scan

To fix the idea, we set M = Z2
n for the rest of the paper.

Note that no other assumptions than the anchoring assumption and the connectivity condi-
tions, (18) and (22), are imposed on the scan scheme in Theorem 3.3. In particular, Theorem
3.3 applies to the regular raster scan which is more conveniently described in terms of two
indices: For some q ∈ N,

tkl = τ(k, l) = kτe1 + lτe2, k, l = 0, . . . , q − 1,(35)

where e1 = (1, 0), e2 = (0, 1) and τ is the constant step size of the raster scan. For simplicity
of the set-up, we also assume that τ = m/p = n/q for some integers p, q so that tql =
t0l, tkq = t0l and the periodic boundary condition on Z2

n is satisfied.

We first show that the regular raster scan gives rise to an affine profile of block phase.

Proposition 6.1. Under the assumptions of Lemma 5.1, the block phase {θkl} for the raster
scan (35) has an affine profile:

θkl = θ00 + r1k + r2l(36)

for r1, r2 ∈ R.

Remark 6.2. Due to the affine phase ambiguity, r1 and r2 are undetermined constants.

Proof. By (32), for all n ∈M00 ∩ (M00 − (τ, 0)),

h(n + (τ, 0)) = h(n) + iθ10 − iθ00(37)

and hence

h(n + tkl) = h(n) + iθkl − iθ00(38)

= h(n + (τ, 0)) + iθkl − iθ10.

On the other hand, (32) also implies

h(n + (τ, 0) + tkl) = h(n + (τ, 0)) + iθkl − iθ00(39)

and by (38)

h(n + (τ, 0) + tkl) = h(n + tkl)− iθkl + iθ10 + iθkl − iθ00(40)

= h(n + tkl) + iθ10 − iθ00

for all n ∈M00 ∩ (M00 − (τ, 0)).

By induction with (40), we have

h(n + (τ, 0) + tkl) = h(n + t0l) + (k + 1)i(θ10 − θ00).(41)

Likewise, we also have

h(n + (0, τ) + tkl) = h(n + tk0) + (l + 1)i(θ01 − θ00).(42)

Combining (41) and (42) with (32), we arrive at the desired result (36) with

r1 = θ10 − θ00, r2 = θ01 − θ00.

�
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Corollary 6.3. For the raster scan (35) with τ = 1, we have

h(n) = h(0) + in · (r1, r2) mod i2π,(43)

φ(n) = θ00 −=[h(0)]− n · (r1, r2) mod 2π(44)

α = e−<[h(0)](45)

θkl = θ00 + kr1 + lr2, k, l = 0, · · · , n− 1,(46)

for all n ∈ Z2
n and some r1, r2 ∈ R.

Proof. Setting τ = 1 in (41)-(42), we have the identity (43).

By (29),

h(n + t) = iθt − lnα(n)− iφ(n) mod i2π, ∀t ∈ T .(47)

With t = t00, (47) and (43) imply (44) and (45).

The relation (46) follows from (47) and

h(n + t) = h(0) + i(n + t) · (r1, r2)

for any t ∈ T . Note that the argument for (46) is an independent proof from Proposition
6.1.

�

The expressions (43) and (44) correspond to the affine phase ambiguity while (45) is the
scaling factor ambiguity.

Even though the global uniqueness (43)-(46) is our goal but the raster scan with τ = 1 has
too much redundancy and is impractical. On the other hand, when τ > 1, there are many
additional ambiguities associated with the regular raster scan, posing substantial challenge to
blind ptychographic reconstruction [13]. Two of these ambiguities are illustrated below.

The first example shows the ambiguity induced by the affine profile of the block phase
(36).

Example 6.4. For q = 3, τ = m/2, let

f =

f00 f10 f20

f01 f11 f21

f02 f12 f22


g =

 f00 ei2π/3f10 ei4π/3f20

ei2π/3f01 ei4π/3f11 f21

ei4π/3f02 f12 ei2π/3f22


be the object and its reconstruction, respectively, where fij ∈ Cn/3×n/3. Let

µkl =

[
µkl00 µkl10

µkl01 µkl11

]
, νkl =

[
µkl00 e−i2π/3µkl10

e−i2π/3µkl01 e−i4π/3µkl11

]
,

k, l = 0, 1, 2, be the (k, l)-th shift of the probe and estimate, respectively, where µklij ∈ Cn/3×n/3.
15



Let f ij and gij be the part of the object and estimate masked by µij and νij, respectively. For
example, we have

f 00 =

[
f00 f10

f01 f11

]
, f 10 =

[
f10 f20

f11 f21

]
, f 20 =

[
f20 f00

f21 f01

]
and likewise for other f ij and gij. It is easily seen that νij � gij = ei(i+j)2π/3µij � f ij.

The next example illustrates the periodic artifact called the raster grid pathology.

Example 6.5. For q = 3, τ = m/2 and any ψ ∈ C
n
3
×n

3 , let

f =

f00 f10 f20

f01 f11 f21

f02 f12 f22


g =

e−iψ � f00 e−iψ � f10 e−iψ � f20

e−iψ � f01 e−iψ � f11 e−iψ � f21

e−iψ � f02 e−iψ � f12 e−iψ � f22


be the object and its reconstruction, respectively, where fij ∈ Cn/3×n/3. Let

µkl =

[
µkl00 µkl10

µkl01 µkl11

]
, νkl =

[
eiψ � µkl00 eiψ � µkl10

eiψ � µkl01 eiψ � µkl11

]
,

k, l = 0, 1, 2, be the (k, l)-th shift of the probe and estimate, respectively, where µklij ∈ Cn/3×n/3.

Let f ij and gij be the part of the object and estimate illuminated by µij and νij, respectively
(as in Example 6.4). It is verified easily that νij � gij = µij � f ij.

The overlap ratio of above examples is 50% (since τ = m/2). However, the above con-
struction of ambiguities can be easily extended to the raster scan with any overlap ratio.
Moreover, all other ambiguities for blind ptychography with the raster scan can be shown
to be the combinations of the above two types of ambiguity [13].

On the other hand, in the case τ = 1 (q = n), the ambiguity in Example 6.4 is identical to
the affine phase ambiguity (1)-(2) while the ambiguity in Example 6.5 becomes the constant
phase factor inherent to any phase retrieval.

For the rest of the paper, we develop an approach to characterizing a more general class of
scan schemes that enjoy the global uniqueness property (43)-(46) by leveraging the phase
drift equation (32)-(33) more effectively. We refer to such schemes as ptychographically
complete schemes.

7. Motivating example: perturbed raster scan

Consider small perturbations to the raster scan:

tkl = τ(k, l) + (δ1
kl, δ

2
kl), k, l = 0, . . . , q − 1(48)

16



Figure 5. Shortest paths (in the Manhattan distance) from the lower-right
corner (1,−1) to the upper-left corner (0, 0) in the diagrams spanned by tkl−
tk−1,l and tk+1,l− tkl. The left diagram corresponds to σ1 in (52) and the right
diagram to σ2 in (53).

where τ = n/q, tql = t0l, tkq = t0l (the periodic boundary condition) and δ1
kl, δ

2
kl are small

integers. Without loss of generality, we set δ1
00 = δ2

00 = 0 and hence t00 = (0, 0) (see Fig.
6(b)).

We assume the non-overstepping condition that the perturbations do not change the ordering
of {tkl}, i.e.

τ + δ1
k+1,l − δ1

kl > 0, τ + δ2
k,l+1 − δ2

kl > 0, k, l = 0, · · · , q − 1.(49)

Consider the triplet (tk−1,l, tkl, tk+1,l) for any k, l and let

a1
kl := (tkl − tk−1,l)− (tk+1,l − tkl) = 2δ1

kl − δ1
k−1,l − δ1

k+1,l,(50)

implying

h(n + 2tkl − tk+1,l − tk−1,l) = h(n + a1
kl)(51)

We want to reduce the lefthand side of (51) to h(n) by using (33) repeatedly.

There are at least two paths for reduction:

σ1 : (tkl − tk−1,l)− (tk+1,l − tkl) −→ tkl − tk−1,l −→ 0(52)

σ2 : (tkl − tk−1,l)− (tk+1,l − tkl) −→ −(tk+1,l − tk,l) −→ 0(53)

corresponding to the two paths depicted in Fig. 5.

Following σ1, we have the identities

h(n + a1
kl) = h(n + tkl − tk−1,l) + iθkl − iθk+1,l, ∀n ∈Mkl − a1

kl

= h(n) + i(2θkl − θk−1,l − θk+1,l) ∀n ∈Mkl − tkl + tk−1,l

implying

h(n + a1
kl) = h(n) + i(2θkl − θk−1,l − θk+1,l)(54)

for all n in the set [
Mkl − a1

kl

]
∩
[
Mkl − tkl + tk−1,l

]
.(55)

On the other hand, following σ2 we have the identities

h(n + a1
kl) = h(n + t10 − t00) + iθ10 − iθ20, ∀n ∈Mkl − a1

kl

= h(n) + i(2θkl − θk−1,l − θk+1,l) ∀n ∈Mkl − tkl + tk+1,l

17



implying (54) for all n in the set[
Mkl − a1

kl

]
∩
[
Mkl − tkl + tk+1,l

]
.(56)

Combining the two routes of reduction, we have

h(n + a1
kl) = h(n) + i(2θkl − θk+1,l − θk−1,l)(57)

(modulo i2π) for all n in the set (Mkl − a1
kl) ∩D1

kl where

D1
kl := (Mkl − tkl + tk−1,l) ∪ (Mkl − tkl + tk+1,l)(58)

= Mk−1,l ∪Mk+1,l.

Likewise, with

a2
kl := (tkl − tk,l−1)− (tk,l+1 − tkl) = 2δ2

kl − δ2
k,l−1 − δ2

k,l+1(59)

we have

h(n + a2
kl) = h(n) + i(2θkl − θk,l+1 − θk,l−1)(60)

(modulo i2π) for all n in the set D2
k,l ∩ (Mk,l−1 − a2

kl) where

D2
kl := (Mkl − tkl + tk,l−1) ∪ (Mkl − tkl + tk,l+1)(61)

= Mk,l−1 ∪Mk,l+1.

Repeatedly using (33), we can prove that the relation (57) and (60) hold respectively in the
sets ⋃

t∈T

[
t− tkl + (Mk−1,l ∪Mk+1,l) ∩ (Mkl − a1

kl) ∩Mkl
]

(62)

and ⋃
t∈T

[
t− tkl + (Mk,l−1 ∪Mk,l+1) ∩ (Mkl − a2

kl) ∩Mkl
]

(63)

where the additional restriction due to the presence of Mkl is to ensure the validity of
applying (33) (See Lemma 8.2 for a proof in a more general setting).

For a special class of perturbed raster scans, precise conditions for the sets in (62)-(63) to
cover Z2

n can be simply stated as follows.

Lemma 7.1. For the perturbed raster scan (48) with the non-overstepping condition (49),
suppose

δ1
kl = δ1

k, δ2
kl = δ2

l , ∀k, l = 0, · · · , q − 1,(64)

(Consequently, a1
kl = a1

k, a
2
kl = a2

l ), see Fig. 6(a).

If for some fixed k, l,

2τ ≤ m+ max{δ1
k−1 − δ1

k+1, δ
2
l−1 − δ2

l+1}(65)

and

max
i=1,2

[|aik|+ max
k′
{δik′+1 − δik′}] ≤ m− τ,(66)

18



(a) Perturbed grid given by (64) (b) Perturbed grid given by (48)

Figure 6. Two perturbed raster scans

where

a1
k = 2δ1

k − δ1
k−1 − δ1

k+1, a2
l = 2δ2

l − δ2
l−1 − δ2

l+1,

then each set in (62) and (63) contains Z2
n.

Remark 7.2. For the raster scan (35), a1
k = a2

l = 0 for all k, l.

For small perturbations δ1
k, δ

2
l � 1, (66) is satisfied and (65) means an overlap ratio slightly

greater than 50%. This is an improved and simplified version of the one given in [13].

Proof. First (65) implies that the right edge ofMk−1,l is no less than the left edge ofMk+1,l

by more than one pixel and that the upper edge of Mk−1,l is no less than the lower edge
of Mk,l+1 by more than one pixel. Hence both Mk−1,l ∪Mk+1,l and Mk,l−1 ∪Mk,l+1 are
rectangles and by the non-overstepping condition (49)

Mk−1,l ∪Mk+1,l ⊇Mkl, Mk,l−1 ∪Mk,l+1 ⊇Mkl.

For the remaining argument, it suffices to show that

Z2
n ⊆

⋃
t∈T

[
t− tkl + (Mkl − a1

k) ∩Mkl
]
, Z2

n ⊆
⋃
t∈T

[
t− tkl + (Mkl − a2

l ) ∩Mkl
]
.(67)

To this end, since the intersection of two adjacent sets in (67){
tij − tkl +Mkl ∩ (Mkl − a1

k)
}
∩
{
ti+1,j − tkl +Mkl ∩ (Mkl − a1

k)
}

(68) {
tij − tkl +Mkl ∩ (Mkl − a2

l )
}
∩
{
ti,j+1 − tkl +Mkl ∩ (Mkl − a2

l )
}

(69)

are congruent to{
M00 ∩ (M00 − (a1

k, 0))
}
∩
{

(τ + δ1
i+1 − δ1

i , 0) +M00 ∩ (M00 − (a1
k, 0))

}{
M00 ∩ (M00 − (0, a2

l ))
}
∩
{

(0, τ + δ2
j+1 − δ2

j ) +M00 ∩ (M00 − (0, a2
l ))
}
,

(66) implies that neither set in (68)-(69) is empty for any i, j. Therefore (67) holds true.
�

The following is an immediate consequence of (57), (60) and Lemma 7.1.
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Corollary 7.3. Suppose that f does not vanish in Z2
n. Under the assumptions of Lemma

7.1, if

a1
k = 1, a2

l = 1, for some k, l,(70)

then the scheme is ptychographically complete, i.e.

h(n) = h(0) + in · (r1, r2) mod i2π(71)

φ(n) = θ00 −=[h(0)]− n · (r1, r2) mod 2π(72)

α = e−<[h(0)](73)

θt = θ00 + t · (r1, r2) mod 2π, t ∈ T ,(74)

for all n ∈ Z2
n where r1, r2 ∈ R are undetermined constants (due to the affine phase ambigu-

ity).

Proof. The assumption (70), (57), (60) and Lemma 7.1 imply that

h(n + e1) = h(n) + i(2θkl − θk+1,l − θk−1,l), h(n + e2) = h(n) + i(2θkl − θk,l+1 − θk,l−1)

for all n in Z2
n and hence (71).

The rest of the proof is exactly the same as that of Corollary 6.3. In particular, (74) follows
from (71) and the phase drift equation (32)-(33). �

More generally, we have the following global uniqueness theorem for the perturbed raster
scan (64).

Theorem 7.4. Suppose that f does not vanish in Z2
n. For the perturbed raster scan (64)

satisfying the non-overstepping condition (49) let {(δ1
ki
, δ2
lj

) : i, j} be any nonempty subset of

perturbations satisfying (65) and (66) in Lemma 7.1.

Let

a1
i = 2δ1

ki
− δ1

ki−1 − δ1
ki+1, a2

j = 2δ2
lj
− δ2

lj−1 − δ2
lj+1, ∀i, j,

and suppose

gcd
i

(
|a1
i |
)

= gcd
j

(
|a2
j |
)

= 1(75)

where gcd denotes the greatest common divisor. Then the global uniqueness (71)-(74) holds
true and the scheme is ptychographically complete.

Proof. The coprime condition (75) implies the existence of c1
i , c

2
j ∈ Z such that∑

i

c1
i a

1
i =

∑
j

c2
ja

2
j = 1.(76)
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By repeatedly using (57) and (60) we have

h(n + e1) = h

(
n + (

∑
i

c1
i a

1
i , 0)

)
= h(n) + ir1 mod i2π

h(n + e2) = h

(
n + (0,

∑
j

c2
ja

2
j)

)
= h(n) + ir2 mod i2π

where

r1 =
∑
i

c1
i (2θki,i − θki+1,i − θki−1,i), r2 =

∑
j

c2
j(2θi,lj − θi,lj+1 − θi,lj−1)

and hence (71).

�

Instead of linear shifts with uneven step sizes in (64), the general case (48) produces curvi-
linear shifts which is more difficult to analyze. To state the analogous theorem for the
general case (48), let ui := (ui1, ui2), i = 1, 2, be a Z2-lattice basis, i.e. the four integers
u11, u12, u21, u22 satisfy

u11u22 − u12u21 = 1.(77)

Since u11u22 − u12u21 = 1, there exist integers bij, i, j = 1, 2, such that

b11u1 + b12u2 = e1 = (1, 0), b21u1 + b22u2 = e2 = (0, 1).

Theorem 7.5. Suppose that f does not vanish in Z2
n. For the perturbed raster scan (48)

satisfying the non-overstepping condition (49), let {(δ1
kili
, δ2
kj lj

) : i, j} be any nonempty subset
of perturbations such that

Z2
n ⊆

⋃
t∈T

[
t− tkili + (Mki−1,l ∪Mki+1,l) ∩ (Mkili − a1

ki
) ∩Mkili

]
, ∀i(78)

and

Z2
n ⊆

⋃
t∈T

[
t− tkj lj + (Mkj ,lj−1 ∪Mkj ,lj+1) ∩ (Mkj lj − a2

lj
) ∩Mkj lj

]
, ∀j.(79)

Let

a1
i := (tkili − tki−1,li)− (tki+1,li − tkili), ∀i(80)

a2
j := (tkj lj − tkj ,lj−1)− (tkj ,lj+1 − tkj lj), ∀j(81)

and suppose that ∑
i

c1
ia

1
i = u1,

∑
j

c2
ja

2
j = u2(82)

for some c1
i , c

2
j ∈ Z where {u1,u2} is a Z2-lattice basis. Then the global uniqueness (71)-(74)

holds true and the scheme is ptychographically complete.

Remark 7.6. The conditions (78)-(79) are tedious to state in terms of the perturbations
δ1
kl, δ

2
kl and do not provide much insight beyond what is given in Remark 7.2.
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Figure 7. A perturbed scan with q = 2. The arcs indicate the extend of
the two blocks M00 and M10. The dotted lines mark the midlines of the two
blocks. The grey area represents the object with the light grey areas being
R00 and R10 and the dark grey areas being the overlap of the two blocks. The
white area inside M10 folds into the other end inside M00 by the periodic
boundary condition.

Proof. As before, we begin with

h(n + a1
i ) = h(n) + i(2tkili − tki−1,li − tki+1,li)

h(n + a2
j) = h(n) + i(2tkj lj − tkj ,lj−1 − tkj ,lj+1)

( mod i2π) for all n ∈ Z2
n and repeatedly use (82) to obtain

h(n + u1) = h(n) + i∆1, h(n + u2) = h(n) + i∆2

where

∆1 =
∑
i

c1
i (2θkili − θki+1,li − θki−1,li)

∆2 =
∑
j

c2
j(2θkj lj − θkj ,lj+1 − θkj ,lj−1).

Since u11u22 − u12u21 = 1, there exist integers bij, i, j = 1, 2, such that

b11u1 + b12u2 = e1, b21u1 + b22u2 = e2.

Therefore, for j = 1, 2,

h(n + e1) = h(n) + ib11∆1 + ib12∆2

h(n + e2) = h(n) + ib21∆1 + ib22∆2,

and (71)-(74) hold true. �

8. Mixing schemes with three-part coupling

Let us begin with a simple example showing that a perturbed scan with overlap ratios less
than 50% may result in excessive ambiguities.

22



Example 8.1. Let us consider the perturbed scheme (64) with q = 2 and

tkl = (τk, τl), k, l = 0, 1, 2(83)

where τ0 = 0, τ2 = n and

3m/2 < n < m+ τ1.(84)

The condition (84) is to ensure that the overlap ratio (2−n/m) between two adjacent blocks
is less than (but can be made arbitrarily close to) 50%. To avoid the raster scan (which has
many undesirable ambiguities [13]), we assume that τ1 6= n/2 and hence τ2 6= 2τ1. Note that
the periodic boundary condition implies thatM00 =M20 =M02 =M22. Figure 7 illustrates
the relative positions of M00 and M10.

First let us focus on the horizontal shifts {tk0 : k = 0, 1, 2}. As shown in Figure 7, two
subsets of M = Z2

n

R00 = Jm+ τ1 − n, τ1 − 1K× Zm, R10 = Jm,n− 1K× Zm

are covered only once by M00 and M10 respectively due to the (84). It is straightforward to
check that the conclusion of Lemma 7.1 fails in this case.

Now consider the intersections

R̃10 := R10 ∩ (t10 +R00) = R10 ∩ Jm+ 2τ1 − n, 2τ1 − 1K× Zm

R̃00 := (R10 − t10) ∩R00 = Jm− τ1, n− τ1 − 1K× Zm ∩R00

which respectively correspond to the same region of the mask in M10 and M00 and let h1 be
any function defined onM such that h1(n) = 0 for any n 6= R̃10∪R̃00 and h1(n+t10) = h1(n)
for any n ∈ R̃00.

Consider the object estimate g(n) = eh1(n)f(n) and the mask estimate νk0(n) := e−h1(n)µk0(n),
which is well defined because R̃10 = t10 + R̃00 and both correspond to the same region of the
mask.

By the same token, we can construct a similar ambiguity function h2 for the vertical shifts.
With both horizontal and vertical shifts, we define the ambiguity function h = h1h2 and the
associated pair of mask-object estimate νkl(n) := e−h(n)µkl(n) and g(n) = eh(n)f(n).

Clearly, the mask-object pair (ν, g) produces the identical set of diffraction patterns as (µ, f).
Therefore this ptychographic scheme has at least (2τ1 −m)2 or (2n − 2τ1 −m)2 degrees of
ambiguity dimension depending on whether 2τ1 < n or 2τ1 > n.

The above construction of the ambiguity function h extends to a perturbed scan (64) with
any q ≥ 2 and overlap ratios less than 50%. More importantly, R̃00 and R̃10 illustrate the
notion of singly covered invariant regions which may be present in more general schemes of
low overlap ratio.

A singly covered invariant region R is the union of congruent subsets Rj ⊂Mj each of which
is covered once only by the same subset S ⊂ M0 of the mask, i.e. Rj = tj + S for all j.
As in Example 8.1, the existence of such an invariant region entails an ambiguity function h
that is any function defined on M such that h(n) = 0 for any n 6∈ R and h(n + tj) = h(n)
for all n. In other words, every component region Rj is infected with the same ambiguity
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Figure 8. Three shortest paths connecting a to the origin (the upper-left
corner) for p1 = 2, p2 = 1. The left diagram corresponds to σ1 in (86), the
middle diagram to σ2 in (87) and the right diagram to σ3 in (88).

which is transported by the mask region S from component to component. The ambiguity
dimension equals the size of each component region Rj.

In what follows, we further develop the ideas in Section 7 and Example 8.1 and formulate
uniqueness conditions for more general shifts than the perturbed raster scan (48). For
simplicity of presentation, we focus on 3-part coupling which is most relevant in the case of
perturbed raster scans.

To this end, we resort to the single-indexed notation in Section 3.

For two neighbors of fk, say fk−1 and fk+1, suppose

p1(tk − tk−1)− p2(tk+1 − tk) = a(85)

for some p1, p2 ∈ N and a ∈ Z2. For ease of notation, set

s1 = tk − tk−1, s2 = tk+1 − tk.

The same analysis is applicable to the other case p1s1 + p2s2 = a.

There are several paths for reducing h(n + p1s1 − p2s2) to h(n). Motivated by the example
of perturbed raster scan, we can represent a path of reduction from p1s1 − p2s2 to 0 by a
directed path on the Z2-lattice spanned by s1 and s2 as in Figure 8 (for p1 = 2, p2 = 1).
Figure 8 depicts three shortest (in the Manhattan metric) paths

σ1 : 2s2 − s2 −→ 2s1 −→ s1 −→ 0(86)

σ2 : 2s2 − s2 −→ s1 − s2 −→ s1 −→ 0(87)

σ3 : 2s2 − s2 −→ s1 − s2 −→ −s2 −→ 0.(88)

Let Π(p1,−p2, s1, s2) denote the set of shortest paths (in the Manhattan metric) from
(p1,−p2) to 0 in the lattice spanned by s1 and s2.

Each path σ ∈ Π(p1,−p2, s1, s2) gives rise to an identity

h(n + a) = h(n + p1s1 − p2s2) = h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1)(89)

(modulo i2π) for all n in the set

(Mk − a) ∩Dk(σ, s1, s2), Dk(σ, s1, s2) :=
⋂

(u,v)∈σ

(Mk − us1 − vs2)(90)

where (u, v) ∈ σ means all the grid points in the path σ, excluding the two end points.
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By repeatedly applying (33) we can extend (89) to a larger region as follows.

Lemma 8.2. The relation (89) holds

h(n + a) = h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1), a = p1s1 − p2s2(91)

(modulo i2π) holds true in the set⋃
t∈T

⋃
σ∈Π(p1,−p2,s1,s2)

[
t− tk +Dk(σ, s1, s2) ∩ (Mk − a) ∩Mk

]
.(92)

Proof. For any fixed σ, we know from the above analysis that (91) holds true for all n in the
set (90).

By (33),

h(n + tl − tk) = h(n) + iθl − iθk, ∀n ∈Mk,

and by (89)

h(n + a + tl − tk) = h(n + a) + iθl − iθk

= h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1) + iθl − iθk.

Hence we have

h(n + a + tl − tk) = h(n + tl − tk)− ip2(θk+1 − θk) + ip1(θk − θk−1).

In other words, (91) is valid in the set tl − tk +Mk ∩ (Mk − a) ∩Dk(σ, s1, s2). Taking the
union over all shifts and paths, we obtain (92). �

We now define the mixing schemes that connect different parts of the object by the ptycho-
graphic shifts in a non-degenerate manner.

The Mixing Property. Let {(jsi , ksi , lsi )}, s = 1, 2, be a non-empty subset of triplets of
index such that for some psi , q

s
i ∈ Z

Z2
n ⊆

⋃
t∈T

⋃
σ

[
t− tksi +Di(σ, tksi − tjsi , tlsi − tksi ) ∩ (Mksi − asi ) ∩Mksi

]
(93)

where σ ∈ Π(psi ,−qsi , tksi − tjsi , tlsi − tksi ) and asi := psi (tksi − tjsi )− qsi (tlsi − tksi ).

Moreover, for some csi ∈ Z ∑
i

c1
ia

1
i = u1,

∑
i

c2
ia

2
i = u2(94)

where {u1,u2} is a Z2-lattice basis.

As seen in Theorems 7.4 and 7.5, the most tedious part of the above definition is (93) when
the set Di(σ, tksi − tjsi , tlsi − tksi ) ∩ (Mksi − asi ) ∩Mksi is not rectangular.

The mixing schemes are so named because the propagation of ambiguity by the ptychographic
shifts, according to the phase drift equation (32)-(33), is so complete that a distinct ambiguity
profile (affine phase + scaling factor) emerges as a result.

We can state the global uniqueness theorem for the mixing schemes whose proof is entirely
analogous to that of Theorem 7.5.
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(a) Random independent mask (b) Correlation length = 0.7 ×
mask size

Figure 9. The phase profile of (a) the random independent mask and (b) the
correlated mask of correlation length equal to 0.7 mask size.

Theorem 8.3. Suppose supp(f) = Z2
n. If T satisfies the mixing property, then

h(n) = h(0) + in · (r1, r2) mod i2π,(95)

φ(n) = θ0 −=[h(0)]− n · (r1, r2) mod 2π(96)

α = e−<[h(0)](97)

θt = θ0 + t · (r1, r2) mod 2π, ∀t ∈ T ,(98)

for some r1, r2 ∈ R and all n ∈ Z2
n.

9. Conclusion and discussion

Under the Mask Phase Constraint (MPC) and the anchoring assumption, we have proved, for
a strongly connected object, the local uniqueness (Theorem 3.1 and Theorem 3.3) manifested
as the phase drift equation (32)-(33). We have shown by examples (Examples 4.1 and 4.2)
that both MPC and the anchoring assumption are necessary. For the global uniqueness
with the exception of inherent ambiguities (scaling factor and affine phase factor), we have
showed that the mixing schemes are ptychographically complete (Theorem 8.3), including
the perturbed raster scans (Theorems 7.4 and 7.5).

In addition, for both the mixing schemes and the regular raster scan (Proposition 6.1), we
have proved that their block phases must have an affine profile, θt = θ0 + t · r for some
r ∈ R2. It is unclear if this holds true for any other schemes without the global uniqueness
property.

Our approach to global uniqueness is based on 3-part coupling designed particularly for ana-
lyzing the perturbed raster scans. Our theory and Example 8.1 prove that the overlap ratio
50% is more or less the minimum requirement for blind ptychography with the irregularly
perturbed raster scan (see (75), (82)).

Our theory has several practical implications. First, the connectivity condition (4) suggests
that in the case of a sparse object a higher overlap ratio may be required. Second, MPC
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(a) concentric circles (b) Fermat spiral

Figure 10. Special scans that have good empirical performances [9, 21, 24].

is re-interpretable in terms of other measurement uncertainties such as scan position errors
[20]. The level of scan position off-sets that can be corrected depends on the type of mask
used in measurement. For a random independent mask (Figure 9(a)), MPC corresponds to
correctable position error of about half a pixel; For a correlated mask, MPC corresponds to
correctable position error on the order of the correlation length.

In other words, there is a trade-off between the mask correlation length and the correctable
level of scan position error. Numerical evidence suggests that with the same MPC a highly
correlated mask (Figure 9(b)) performs only slightly worse than the random independent
mask [17]. As mechanical and thermal vibrations are inevitable, it makes sense to use a
mask of a comparable correlation length to compensate for scan position offset. On the
other hand, a simple regular mask (e.g. Fresnel illumination spot) is often a sub-optimal
choice as twin-like ambiguities may be present even with perfect knowledge of the mask [7].
In addition, a random mask has the benefit of producing more diffuse illumination and thus
data of lower dynamic-range.

Another implication of MPC is in numerical reconstruction. MPC is independent of the
knowledge about the mask amplitude, meaning that the knowledge about the mask phase
is much more important for blind ptychography. Indeed, MPC turns out to be an effective
method for mask initialization, yielding geometrically convergent iterations, even when the
initialization error (measured in L2 norm) is large [17].

One is naturally led to the important question of optimal scan schemes which use the min-
imum number of diffraction patterns for a given object (i.e. the minimum redundancy in
measurement) to be ptychographically complete. The measurement redundancy is more or
less proportional to the product of the number of adjacent blocks and the overlap ratio. Our
results show that the irregularly perturbed raster scans with overlap ratio slightly over 50%
is optimal among the class of perturbed raster scans. For more general scans, the minimum
overlap requirement may be lowered and 5-part or higher order coupling must be directly
accounted for. For example, the Fermat spiral scan scheme (Figure 10(b)) is claimed to
provide a more uniform coverage than the perturbed raster scans and the concentric circle
pattern (Figure 10(a)), thus lowering the overlap ratio [24]. A rigorous theory for general
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optimal scans, however, is beyond the scope of the present work and has to be left for future
research.

Appendix A. Object support constraint (OSC)

Instead of a tight support, an object part may possess various degrees of loose support
depending on the scan position and size of the block (see Figure 3). The looseness of support
can be characterized by a set of admissible shifts T0 as follows.

Object Support Constraint (OSC): An object estimate g0 satisfies the Object Support
Constraint (OSC) with respect to a given set of shifts T0 if m ∈ T0 whenever

supp(g0) or supp(Twin(g0)) ⊆ Box[supp(f 0)]−m.(99)

We can use OSC to describe the precision of our prior knowledge about Box[supp(f 0)] when
f 0 has a loose support inM0. The smaller the set T0 is, the more precise the OSC is. When
Box[supp(f 0)] =M0, we can set T0 = {(0, 0)} since the condition (99) becomes

supp(g0) or supp(Twin(g0)) ⊆M0(100)

which is null and gives no new information.

Under OSC, the quantity s in (18) is defined instead as

s = min
m,m′∈T0

|S0(m)| ∧ |S ′0(m′)| ≥ 2(101)

where T0 is the set of shifts in OSC and

S0(m) = M0 ∩Mt ∩ (supp(f 0)−m)

S ′0(m) = M0 ∩Mt ∩ (supp(Twin(f 0)) + m).

The construction in Example 4.2 satisfies the OSC (99) with

T0 =
{

(a, 0) : a = 0, . . . ,m/2
}
.

On the other hand, if f 0
1 , f

1
0 are non-vanishing, then it can be verified that s = 0, consistent

with the fact that the probability for ambiguity is one as shown in the above construc-
tion.

However, if we enhance the precision of the support knowledge by tightening T0 by any
amount l ≥ 1 as

T0 =
{

(a, 0) : a = 0, . . . ,m/2− l
}
,(102)

then the constructions would violate the OSC (99), and be rejected. Moreover, for (102),
s = ml with nonvanishing f 0

1 , f
1
0 so the probability of uniqueness is closed to one for m� 1

as predicted by Theorem 3.1.

Although OSC is more general than the anchoring assumption, it is also more complicated
and less practical so we do not pursue the full proof here. For the interested reader, we
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refer to the preliminary version [14] for the proof of Theorem 3.1 under the assumption of
OSC.

Appendix B. Proof of Theorem 3.1

Let N = (m,m). Applying Corollary 2.4 to both M0 and Mt we have the following alter-
natives: For some m1,m2 ∈ Z2, θ0, θt ∈ R.

g0(n) = eiθ0f 0(n + m1)µ0(n + m1)/ν0(n)(103)

or Twin(g0)(n) = e−iθ0f 0(n + m1)µ0(n + m1)/Twin(ν0)(n), ∀n ∈M0

and

gt(n) = eiθtf t(n + m2)µt(n + m2)/νt(n)(104)

or Twin(gt)(n) = e−iθtf t(n + m2)µt(n + m2)/Twin(νt)(n), ∀n ∈Mt.

Note that Twin(gt)(n) = ḡt(N + 2t− n) so we can rewrite (103) and (104) as

g0(n) = eiθ0f 0(n + m1)µ0(n + m1)/ν0(n)(105)

or eiθ0 f̄ 0(N− n + m1)µ̄0(N− n + m1)/ν0(n), ∀n ∈M0

and

gt(n) = eiθtf t(n + m2)µ0(n + m2 − t)/ν0(n− t)(106)

or eiθt f̄ t(N + 2t− n + m2)µ̄0(N + t− n + m2)/ν0(n− t), ∀n ∈Mt

for some m1,m2 ∈ Z, θ0, θt ∈ R where we have used the relation µt(·) = µ0(· − t), νt(·) =
ν0(· − t). Note that N and N + t = (m+ t1,m+ t2) are the upper-right corners ofM0 and
Mt, respectively.

In view of the anchoring assumption, (103) implies m1 = 0.

We now focus on the intersectionM0 ∩Mt where (105) and (106) both hold. We have then
four possible ambiguities from the crossover of the alternatives in (105) and (106).

Case (i). The combination of the first alternatives in (105) and (106) imply that for all
n ∈M0 ∩Mt

eiθ0f 0(n)µ0(n)/ν0(n) = eiθtf t(n + m2)µ0(n− t + m2)/ν0(n− t)(107)

provided that f 0(n) and f t(n + m2) are both zero or nonzero.

We now show that with high probability (107) fails to hold for some n ∈M0 ∩Mt.

Consider any n ∈ S0 (hence f 0(n) 6= 0) and assume that f t(n + m2) 6= 0. Otherwise, (107)
holds with probability zero.

We obtain by taking logarithm on both sides of (107) that

lnµ0(n) + lnµ0(n− t)− lnµ0(n− t + m2)− lnµ0(n)(108)

= iθt − iθ0 − ln f 0(n) + ln f t(n + m2) + lnα(n)− lnα(n− t)

+iφ(n)− iφ(n− t)
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modulo i2π. We want to show that if |S0| is sufficiently large then (108) holds with at most
exponentially small probability.

Since n ∈M0∩Mt and n+m2 ∈Mt, the points associated with the lefthand side of (108),
n− t,n + m2 − t, belong in M0. Hence the random variables on the lefthand side of (108)
are well-defined and have a finite value.

The two points n − t,n + m2 − t can not be identical unless m2 = 0. In other words, if
m2 6= 0, then the imaginary part Θ1 of the lefthand side of (108)

Θ1 := θ(n− t)− θ(n− t + m2)(109)

is the sum of two independent random variables and hence the support set of its probability
density contains (−2γπ, 2γπ].

On the righthand side of (108), however, as f 0(n) and f t(n+m2) are given (hence determin-
istic), the phase fluctuation is determined by φ(n)− φ(n− t) which ranges over the interval
(−2δπ, 2δπ] due to the constraint (14). Consequently (108) holds true with probability at
most

p1 := max
a∈R

Pr{Θ1 ∈ (a− 2δπ, a+ 2δπ]} < 1,

for each n, since δ < min(γ, 1
2
).

For all n ∈ S0, there are at least |S0|/2! statistically independent instances, corresponding
to the number of non-intersecting {n − t,n + m2 − t}. Therefore (108) holds true with

probability at most p
|S0|/2!
1 unless m2 = 0.

On the other hand, for m2 = 0, the desired result (19)-(20) follows directly from the first
alternatives in (105) and (106).

Case (ii). Consider the combination of the first alternative in (105) and the second alter-
native in (106) that for n ∈M0

⋂
Mt

g(n) = eiθ0f 0(n)µ0(n)/ν0(n)(110)

= eiθt f̄ t(N + 2t− n + m2)µ̄0(N + t− n + m2)/ν0(n− t),

provided that f 0(n) and f̄ t(N + 2t− n + m2) are both zero or nonzero.

Consider any n ∈ S0 (hence f 0(n) 6= 0) and assume f̄ t(N + 2t − n + m2) 6= 0. Otherwise
(110) is false and can be ruled out.

Taking logarithm and rearranging terms in (110) we have

lnµ0(n) + lnµ0(n− t)− ln µ̄0(N + t− n + m2)− lnµ0(n)(111)

= iθt − iθ0 − ln f 0(n) + ln f̄ t(N + 2t− n + m2) + lnα(n)− lnα(n− t)

+iφ(n)− iφ(n− t).

The imaginary parts of the lefthand side of (111)

Θ2 := θ(n− t) + θ(N + t− n + m2)(112)
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is the sum of two independent random variables unless

n = t +
1

2
(N + m2),

in which case Θ2 = 2θ(n − t). Since |S0| ≥ 2, there exists some n ∈ S0 such that Θ2

is the sum of two independent random variables and hence the support of its probability
density function contains (−2γπ, 2γπ]. By the same argument as above, (111) holds true

with probability at most p
|S0(m1)|/2!
2 where

p2 := max
a∈R

Pr{Θ2 ∈ (a− 2δπ, a+ 2δπ]} < 1

since δ < min(γ, 1
2
).

Case (iii). Consider the combination of the second alternative in (105) and the first alter-
native in (106) that for n ∈M0

⋂
Mt

g(n) = eiθ0 f̄ 0(N− n)µ̄0(N− n)/ν0(n)(113)

= eiθtf t(n + m2)µ0(n− t + m2)/ν0(n− t)

provided that f 0(n) and f t(N+2t−n+m2) are both zero or nonzero. Consider any n ∈ S ′0
(hence f̄ 0(N−n) 6= 0) and assume f t(n+m2) 6= 0. Otherwise (114) can be ruled out.

Taking logarithm and rearranging terms in (113) we have

ln µ̄0(N− n) + lnµ0(n− t)− lnµ0(n− t + m2)− lnµ0(n)(114)

= iθt − iθ0 − ln f̄ 0(N− n) + ln f t(n + m2) + lnα(n)− lnα(n− t)

+iφ(n)− iφ(n− t).

As before, we want to show that if |S ′0| is sufficiently large, then (114) holds with at most
exponentially small probability.

Since n ∈M0 ∩Mt and n + m2 ∈Mt, the four points associated with the lefthand side of
(114), N − n,n − t,n − t + m2,n, belong in M0. Hence the four random variables on the
lefthand side of (114) are well-defined.

The imaginary parts of the lefthand side of (114) given by

Θ3 := −θ(N− n) + θ(n− t)− θ(n− t + m2)− θ(n)(115)

is the sum of two, three or four independent random variables unless

m2 = 0, n =
1

2
N,(116)

in which case Θ3 = 2θ(N/2).

Since S ′0 ≥ 2, there exists some n ∈ S ′0 such that Θ2 is the sum of at least two indepen-
dent random variables and hence the support of its probability density function contains
(−2γπ, 2γπ].

On the righthand side of (114), the phase fluctuation is determined by φ(n) − φ(n − t)
which ranges over the interval (−2δπ, 2δπ] due to the MPC(γ) (14). So (114) holds true
with probability at most

p3 := max
a∈R

Pr{Θ3 ∈ (a− 2δπ, a+ 2δπ]} < 1
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for each n, since δ < min(γ, 1
2
).

For all n ∈ S ′0 such that n 6= N/2, there are at least (|S ′0| − 1)/4! statistically independent
instances, corresponding to the number of non-intersecting {N − n,n − t,n − t + m2,n}
Therefore, (114) holds true with probability at most p

(|S′
0|−1)/4!

3 .

Case (iv). Now consider the combination of the second alternatives in (105) and (106) that
for n ∈M0

⋂
Mt

g(n) = eiθ0 f̄ 0(N− n)µ̄0(N− n)/ν0(n)(117)

= eiθt f̄ t(N + 2t− n + m2)µ̄0(N + t− n + m2)/ν0(n− t)

provided that f̄ 0(N− n) and f̄ t(N + 2t− n + m2) are both zero or nonzero.

Consider any n ∈ S ′0 (hence f̄ 0(N−n) 6= 0) and assume f̄ t(N+2t−n+m2) 6= 0. Otherwise
(117) is ruled out.

After taking logarithm and rearranging terms for n ∈ S ′0 (117) becomes

ln µ̄0(N− n) + lnµ0(n− t)− ln µ̄0(N + t− n + m2)− lnµ0(n)(118)

= iθt − iθ0 − ln f̄ 0(N− n) + ln f̄ t(N + 2t− n + m2)

+ lnα(n)− lnα(n− t) + iφ(n)− iφ(n− t).

The imaginary part of the lefthand side of (118)

Θ4 := −θ(N− n) + θ(n− t) + θ(N + t− n + m2)− θ(n)(119)

is the sum of two, three or four independent random variables unless

N + t− n + m2 = n

N− n = n− t

or equivalently

m2 = 0, n =
1

2
(N + t).

Since |S ′0| ≥ 2, the support of the probability density of Θ4 contains (−2γπ, 2γπ].

The same analysis then implies that (118) holds true with probability at most p
(|S′

0|−1)/4!
4

where

p4 := max
a∈R

Pr{Θ4 ∈ (a− 2δπ, a+ 2δπ]} < 1

since δ < min(γ, 1
2
).

In summary, ambiguities (i)-(iv) are present with probability at most cs and hence the desired
result (19)-(20) holds true with probability greater than 1 − cs where the positive constant
c < 1 depends only on δ and the probability density function of the mask phase.
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Appendix C. Proof of Theorem 3.3

Without loss of generality, we may assume `0 = 0.

Let M`(k) denote an adjacent block of Mk such that f `(k) and fk are s−connected. When
the s-connected neighbor ofMk is not unique, we make an arbitrary selection `(k) such that
`(`(k)) = k. Let Lj = {fk, f `(k) : k = 0, . . . , j}.

We prove (25) by induction. Suppose that (25) holds for k = 0, . . . , j. We wish to show
that there is another part, say f j+1 6∈ Lj, such that (25) holds for k = 0, . . . , j, j + 1, unless
j = Q − 1. Since {fk : k = 0, · · · , Q − 1} is s-connected, at least some f j+1 is s-connected
to, say f l ∈ Lj if j < Q− 1.

Denote S0 :=Ml ∩Mj+1 ∩ supp(f). Applying Corollary 2.4 toMj+1 we have the following
alternatives: For some m ∈ Z, θ ∈ R,

gj+1(n) = eiθf j+1(n + m)µj+1(n + m)/νj+1(n)(120)

or Twin(gj+1)(n) = e−iθf j+1(n + m)µj+1(n + m)/Twin(νj+1)(n), ∀n ∈Mj+1.

Let Mj+1 =Ml + t for some shift t.

Consider the first alternative for n ∈Ml ∩Mj+1:

eiθlf l(n)µl(n)/νl(n) = eiθf j+1(n + m)µj+1(n + m)/νj+1(n)(121)

= eiθf j+1(n + m)µl(n− t + m)/νl(n− t)

provided that f l(n) and f j+1(n + m) are both zero or nonzero.

Suppose f l(n) · f j+1(n + m) 6= 0. We obtain by taking logarithm on both sides of (121)
that

lnµl(n− t)− lnµl(n− t + m)(122)

= iθ − iθl − ln f l(n) + ln f j+1(n + m) + lnα(n)− lnα(n− t) + iφ(n)− iφ(n− t)

modulo i2π. We want to show that if s is sufficiently large then (122) holds with at most
exponentially small probability unless m = 0.

Since n ∈ Ml ∩Mj+1 and n + m ∈ Mj+1, n− t and n + m− t belong in Ml. Hence the
lefthand side of (122) is well-defined and has a finite value.

Unless m = 0, the imaginary part Θ1 of the lefthand side of (122)

Θ1 := θ(n− t)− θ(n− t + m)

is the sum of two independent random variables and hence the support set of its probability
density contains (−2γπ, 2γπ].

On the righthand side of (122), however, as f l(n) and f j+1(n + m) are deterministic, the
phase fluctuation is determined by φ(n)−φ(n−t) which is limited to the interval (−2δπ, 2δπ]
due to MPC(γ) . Consequently (122) holds true with probability at most

p1 := max
a∈R

Pr{Θ1 ∈ (a− 2δπ, a+ 2δπ]} < 1,

for each n, since δ < min{γ, 1/2}.
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For all n ∈ S0, there are at least |S0|/2 statistically independent instances, corresponding
to the number of non-intersecting {n − t,n + m − t}. Therefore (122) holds true with

probability at most p
|S0|/2
1 unless m = 0. On the other hand, for m = 0, the desired result

(25) for k = j + 1 follows directly from (120).

Consider the second alternative in (120) and note that

Twin(gj+1)(n) = ḡj+1(N + 2tj+1 − n), Twin(νj+1)(n) = ν̄j+1(N + 2tj+1 − n).

Rewriting the second alternative we obtain for n ∈Ml
⋂
Mj+1

eiθlf l(n)µl(n)/νl(n)(123)

= eiθf̄ j+1(N + 2tj+1 − n + m)µ̄j+1(N + 2tj+1 − n + m)/νj+1(n),

= eiθf̄ j+1(N + 2tj+1 − n + m)µ̄l(N + 2tl − t− n + m)/νl(n− t),

provided that f l(n) and f̄ j+1(N + 2tj+1 − n + m) are both zero or nonzero.

Consider any n ∈ S0 (hence f l(n) 6= 0) and assume f̄ j+1(N+ 2tj+1−n+m) 6= 0. Otherwise
(123) is false and can be ruled out.

Taking logarithm and rearranging terms in (123) we have

lnµl(n− t)− ln µ̄l(N + 2tl − t− n + m)(124)

= iθ − iθl − ln f l(n) + ln f̄ j+1(N + 2tj+1 − n + m) + lnα(n)− lnα(n− t)

+iφ(n)− iφ(n− t).

The imaginary parts of the lefthand side of (124)

Θ2 := θ(n− t) + θ(N + 2tl − t− n + m)

is the sum of two independent random variables unless

n = tl +
1

2
(N + m)

in which case Θ2 = 2θ(n − t) is not a sum of two independent random variables. Hence
the support of the probability density function of Θ2 contains (−2γπ, 2γπ]. By the same

argument as above, (124) holds true with probability at most p
|S0|/2
2 where

p2 := max
a∈R

Pr{Θ2 ∈ (a− 2δπ, a+ 2δπ]} < 1

since δ < min(γ, 1
2
).

Combining the analysis of the two alternatives, (25) fails for k = j + 1 with probability at

most p
|S0|/2
1 + p

|S0|/2
2 ≤ 2p|S0|/2 conditioned on the event that (25) holds true for k = 0, . . . , j

where p is as given in (23). Therefore, the desired result (25) holds with probability at least
1− 2Qp|S0|/2 after subtracting the failure probability for each additional block.
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