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Abstract. Compressed sensing (CS) schemes are proposed for monostatic as well as syn-
thetic aperture radar (SAR) imaging with chirped signals and Ultra-Narrowband (UNB)
continuous waveforms. In particular, a simple, perturbation method is developed to reduce
the gridding error for off-grid targets. A coherence bound is obtained for the resulting mea-
surement matrix. A greedy pursuit algorithm, Support-Constrained Orthogonal Matching
Pursuit (SCOMP), is proposed to take advantage of the support constraint in the perturba-
tion formulation and proved to have the capacity of determining the off-grid targets to the
grid accuracy under favorable conditions. Alternatively, the Locally Optimized Threshold-
ing (LOT) is proposed to enhance the performance of the CS method, Basis Pursuit (BP).
For the advantages of higher signal-to-noise ratio and signal-to-interference ratio, it is pro-
posed that Spotlight SAR imaging be implemented with CS techniques and multi-frequency
UNB waveforms. Numerical simulations show promising results of the proposed approach
and algorithms.

1. Introduction

Advances in compressed sensing (CS) and radar processing have provided tremendous
impetus to each other. On the one hand, the two CS themes of sparse reconstruction
and low-coherence, pseudo-randomized data acquisition are longstanding concepts in radar
processing. On the other hand, CS contributes provable performance guarantees for sparse
recovery algorithms and informs refinement of these algorithms. These and other important
issues relevant to CS radar are thoroughly reviewed in [8,20] (see also the references therein).

Target sparsity, a main theme in CS, arises naturally in radar processing. According
to the geometrical theory of diffraction [18], the scattering response of a target at radio
frequencies can often be approximated as a sum of responses from individual reflectors.
These scattering centers provide a concise, yet physically relevant, description of the object
[14]. A spiky reconstruction of reflectivity may thus be highly valuable for automatic target
recognition. More generally radar images are compressible by means of either parametric
models of physical scattering behaviors or transform coding [20].

In the present work, we focus on the case of off-grid point targets which do not sit on a
regular grid. A main drawback of the standard CS framework is the reliance on a underlying
well-resolved grid. In reality, the dominant scattering centers can not be assumed to be
positioned exactly at the imaging grid points. Indeed, the standard CS methods break down
if the effects of off-grid targets are not accounted for [8, 20]. The problem is, to reduce
gridding error, the grid has to be refined, giving rise to high coherence of the measurement
matrix which is detrimental to standard CS methods [11–13].

Can CS approach be extended to the case of arbitrarily located targets? Several ap-
proaches have been proposed to address this critical question [3, 7, 11, 12]. In this paper we
propose a simple, alternative approach, based on improved measurement matrices as well
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as improvement in reconstruction algorithms, including a greedy pursuit algorithm, called
Support-Constrained Orthogonal Matching Pursuit (SCOMP), to take advantage the sup-
port constraint arising in the new formulation (Section 2.2). We obtain coherence bounds
for the measurement matrices with the linear chirp (Lemma 1). We prove that the greedy
algorithm can determine the targets to the grid accuracy under favorable conditions and
obtain an error bound for the target amplitude recovery (Theorem 1).

In Section 3 we consider the Spotlight mode of Synthetic Aperture Radar (SAR). We
extend the approach for off-grid targets to Spotlight SAR and propose sparse sampling
schemes based on multi-frequency Ultra-Narrowband (UNB) waveforms (Section 3). We
extend the performance guarantee for SCOMP to Spotlight SAR imaging (Theorem 2).
Finally we present numerical experiments demonstrating the effectiveness of our approach
(Section 4) and draw conclusion (Section 5).

2. Monostatic signal model

Let us begin by reviewing the signal model for a mono-static radar with co-located transmit
and receive antennas. A complex waveform f with the carrier frequency ω0 is transmitted.
Let r and v denote the range and the radial velocity, respectively. We parameterize the
complex scene by the reflectivity function ρ(τ, u) where the delay τ = 2r/c0 is the round-trip
propagation time and u = 2vω0/c0 is the Doppler shift. Under the far-field and narrow-band
approximations [4], the scattered signal is given by

y(t) =
∫∫

x(τ, u)f(t− τ)e−2πiut du dτ + w(t)(1)

where

x(τ, u) = ρ(τ, u)e−πiuτ

and w(t) represents the circular white complex Gaussian baseband noise.
In the present work, we focus on the case of immobile targets, ρ(τ, u) = ρ(τ)δ(u). Eq. (1)

becomes

(2) y(t) =

∫ ∞
−∞

ρ(τ)f(t− τ) dτ + w(t).

For the transmitted signal, let IT be the indicator function of duration [0, T ] of transmis-
sion. By far the most commonly used waveform is the linear frequency-modulated chirp

fLC(t) = exp
[
2πi
(α1

2
t2 + ω0t

)]
IT (t)(3)

owing to the simplicity in implementation. The bandwidth of linear chirp is B = α1T .
With discrete targets located at {τ ∗k : k = 1, · · · , s} and sampling times {tj : j =

1, · · · ,m}, the signal model is given by

y(tj) =
s∑

k=1

ρkfLC(tj − τ ∗k ) + w(tj)(4)

=
s∑

k=1

ρk exp
[
2πi
(α1

2
(tj − τ ∗k )2 + ω0(tj − τ ∗k )

)]
+ w(tj).
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2.1. On-grid targets. Suppose that the targets are located exactly on the grid points of
spacing ∆τ , i.e. each τ ∗k is an integer multiple of ∆τ . Then it is natural to extend {ρk} to
the entire imaging grid, with value zero when a target is absent, and turn (4) into a linear
inversion problem as follows. Let τk = k∆τ , k = 1, . . . , n and

t̄j = tj/T ∈ [0, 1].

be the normalized sampling times.
We have from (4) that

y(tj) = fLC(tj)
n∑
k=1

ρkfLC(−τk) exp [−2πiα1τktj ] + w(tj), j = 1, ...,m(5)

where n is the total number of grid points in the range and m is the number of observed data.
In the absence of a target at a grid point τk, the corresponding target amplitude ρk = 0.

The main point of CS is to recover the targets, {ρk, τk}nk=1, from {y(tj)}mj=1 with m much
smaller than n.

Suppose that the bandwidth B satisfies

Q = B∆τ = α1T∆τ ∈ N(6)

where Q is the resolution-time-bandwidth product. Then with

Yj = y(tj)/fLC(tj)(7)

Ej = w(tj)/fLC(tj)(8)

Xk = ρkfLC(−τk)(9)

Fjk = exp [−2πiα1τktj ] = exp [−2πiQkt̄j ](10)

we can write the signal model (5) as the linear system

Y = FX + E.(11)

A main thrust of CS is the performance guarantee for the Basis Pursuit (BP):

X̂ = arg min ‖Z‖1, ‖FZ − Y ‖2 ≤ ε

under the assumption of the restricted isometry property (RIP):

a(1− δk)‖Z‖2 ≤ ‖FZ‖2 ≤ a(1 + δk)‖Z‖2

for some constant a > 0 and all k-sparse Z where δk is the k-th order restricted isometry
constant. More precisely, we have the following statement for Q = 1 [2,21].

Proposition 1. Let t̄j ∈ [0, 1], j = 1, 2, . . . ,m be independent uniform random variables. If

m

lnm
≥ Cs ln2 s lnn ln

1

β
, β ∈ (0, 1)(12)

for some universal constant C and sparsity level s, then the random partial Fourier mea-
surement matrix [exp (−2πikt̄j)], k = 1, . . . , n, satisfy the RIP with δ2s <

√
2 − 1 and the

BP solution X̂ satisfies∥∥∥X̂ −X∥∥∥
2
≤ C0

1√
s

∥∥X(s) −X
∥∥

1
+ C1 ‖E‖2 ,

∥∥∥X̂ −X∥∥∥
1
≤ C0

∥∥X(s) −X
∥∥

1
+ C1 ‖E‖2
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for some constants, C1, with probability at least 1−β. Here X(s) is the best s-sparse approx-
imation of X.

The assumption of independent uniform random variables underlies the important role of
random sampling in CS. Random sampling also induces incoherence (see Lemma 1 below).
Depending on the nature of measurement matrix certain random measurements tend to yield
the best performance in reconstruction with sparse sampling.

According to the above result, the (normalized) sampling times should be chosen randomly
and uniformly in [0, 1] and the number of time samples m on the order of the target sparsity
s, up to a logarithmic factor. Proposition 1 is useful as long as the point targets are located
exactly on the grid points which is an unrealistic assumption.

2.2. Off-grid targets. In practice, the time delays {τ ∗k} do not sit exactly on the grid. The
mismatch between the actual signal and the signal model creates the gridding error leading
to poor performance of the standard CS methods [5, 11, 12].

To remedy this problem and reduce the gridding error, we modify the signal model as
follows.

Let τk = (k + ξk)∆τ , with |ξk | < 1/2, which is meant to capture the actual target time
delays. We modify (5) to obtain

y(tj) = fLC(tj)
∑
k

ρkfLC(−k∆τ −∆τξk) exp (−2πiQt̄jk) exp (−2πiQξk t̄j) + w(tj).(13)

For small Bmax |ξk| we can write

e−2πiQξk t̄j = e−πiQξk
(

1− 2πiQξk(t̄j − 1/2) +O
(
Q2 |ξk |2

))
.(14)

Let

σ =
(
m−1

∑
l

|t̄l − 1/2|2
)1/2

(15)

be the time sample variation. With

Yj = y(tj)/fLC(tj)(16)

Xk = ρkfLC(−k∆τ − ξk∆τ)e−πiQξk(17)

X ′k = −2πiσQξkXk,(18)

Fjk = exp [−2πiQkt̄j ] , Gjk = Fjk(t̄j − 1/2)σ−1(19)

the linear system takes the form

Yj =
∑
k

(
FjkXk +GjkX

′
k

)
+ Ej

or equivalently

Y =
[
F G

] [X
X ′

]
+ E(20)

where the error term

Ej = w(tj)/fLC(tj) +
∑
k

FjkXkO
(
Q2|ξk|2

)
(21)
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contains not only the measurement noise but also the gridding error due to neglect of the
second order term in (14).

From (18) we see that the magnitude of X ′ is directly proportional to Q. Moreover,
increasing Q also increases the error in the approximation (14) and hence the gridding error
for the system (20).

After X and X ′ are solved from the system, we can estimate {ξk} and {ρk}, respectively,
by

ξ̂k =
i∆τX ′k

2πσQXk

and

ρ̂k =
Xke

πiQξ̂k

fLC(−k∆τ −∆τ ξ̂k)
.

It is generally difficult to establish RIP for matrices other than random partial Fourier
matrices and random matrices of independently and identically distributed (i.i.d.) entries.
An alternative notion is the mutual coherence. The mutual coherence µ of a matrix A is
defined by the maximum normalized inner product between columns of A:

µ(A) = max
i 6=j

|A∗iAj|
‖Ai‖2‖Aj‖2

.(22)

In CS one seeks low level of mutual coherence in the measurement matrix.
The following lemma states a coherence bound for the system (20).

Lemma 1. Let t̄j ∈ [0, 1], j = 1, 2, . . . ,m be independent uniform random variables. Suppose
2n < δ exp [K2/2] where δ and K are two arbitrary numbers. Then the mutual coherence µ
of the combined sensing matrix A = [F G] satisfies

µ ≤ C

[√
2K√
m

+
1

2πQ

]
(23)

for some universal constant C, with probability greater than (1− δ)2 − 4e−m/18.

The proof of the lemma is given in appendix A. This lemma says that to reduce the
mutual coherence of the sensing matrix one should increase the number of data and Q.
The Q-dependent second term on the right hand side of (23) is due to the presence of the
perturbation matrix G in the signal model (20) while the mutual coherence of the primary
matrix F is the first O(m−1/2) term.

2.3. Support-constrained OMP. Let supp(X) denote the support set of X which is the
set of index j with Xj 6= 0. Note that the support constraint

supp(X ′) ⊆ supp(X)(24)

can be utilized in the greedy pursuit such as Orthogonal Matching Pursuit (OMP) as follows.
A common stage for any greedy pursuit is to choose the index corresponding to the column(s)
of the maximum coherence with the residual vector. Since X,X ′ have the same sparse
structure, one may utilize the a priori information: choose the k-th columns of F and G,
and test the size of the projected vector from Y on the span of the two columns.
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Algorithm 1. Support-Constrained OMP (SCOMP)
Input: F,G, Y, ‖E‖2

Initialization: X0 = 0, R0 = Y and S0 = ∅
Iteration:

1) imax = arg maxi

(
|F ∗i Rk−1|+ |G∗iRk−1|

)
2) Sk = Sk−1 ∪ {imax}
3) (Xk, X

′k) = arg min ‖FZ + GZ ′ − Y ‖2 s.t. supp(Z ′) ⊆ supp(Z) ⊆ Sk

4) Rk = Y − FXk −GX
′k

5) Stop if ‖Rk‖2 ≤ ‖E‖2.

Output: X̂ = Xk, X̂ ′ = X
′k.

We have the following performance guarantee for SCOMP.

Theorem 1. Suppose that the columns of A have same 2-norm. Let supp(X) = {J1, . . . , Js}
and

Xmax = ‖XJ1‖1 + ‖X ′J1‖1 ≥ ‖XJ2‖1 + ‖X ′J2‖1 ≥ · · · ≥ ‖XJs‖1 + ‖X ′Js‖1 = Xmin

. Suppose

(4s− 1)µ+
4‖E‖2

Xmin

< 1(25)

and let X̂ and X̂ ′ be the SCOMP estimates. Then

supp(X̂) = supp(X)(26)

and

‖X̂ −X‖2
2 + ‖X̂ ′ −X ′‖2

2 ≤
2‖E‖2

2

1− µ(2s− 1)
.(27)

The proof is given in Appendix B.

Remark 1. Since E contains the griding error, the error bound (27) may be too crude to be

useful. To improve the accuracy of X̂ and X̂ ′ we can perform nonlinear least squares (NLS)
on (13) subject to the exact recovery of the target support (26). In other words, we solve for

arg min
∑
j

∣∣∣f(tj)− fLC(tj)
∑

k∈supp(X̂)

ρkfLC(−k∆τ −∆τξk)e
−2πiQt̄jke−2πiQξk t̄j

∣∣∣2(28)

in the set of all {ρk : k ∈ supp(X̂)} ⊂ Cs and {ξk : k ∈ supp(X̂)} ⊂ (−0.5, 0.5)s. It is

natural to use the SCOMP output X̂, X̂ ′ as the initial guess for iterative methods (e.g. the
Gauss-Newton method or gradient methods) for (28).

Remark 2. Lemma 1 and Theorem 1 together suggest that to enhance the performance of
SCOMP one should increase Q. On the other hand, larger Q also tends to correspond to a
larger gridding error for the system (20). As we shall see in Section 4, Q = 1 yields the best
result. As the Q-dependence of the coherence estimate (23) is due to the perturbation matrix
G, we speculate that the actual performance of SCOMP has more to do with the mutual
coherence of the primary matrix F which is Q independent and decays like m−1/2.
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Before ending this section, we note that the gridding error term in (21) has the appearance
of the matrix perturbation problems studied in [16,24]. The analogy, however, is superficial
as ξk in (21) are part of the unknown and hence the gridding error is cubic, not linear, in
the unknown.

3. Spotlight SAR

In this section, we consider the Spotlight SAR for a stationary scene, represented by the
reflectivity ρ(r). For simplicity of the presentation, we focus on the case of two dimensions
r = (r1, r2). The adaption to three dimensions is straightforward.

In standard radar processing, the received signal, upon receive, is typically deramped by
mixing the echo with the reference transmitted chirp [17]. Under the start-stop approxi-
mation and a far-field assumption the deramp processing produces samples of the Fourier
transform of the Radon projection, orthogonal to the radar look direction, of the scene re-
flectivity multiplied by a quadratic phase term. Furthermore, if the time-bandwidth product
TB = α1T

2 is significantly larger than the total number n of resolution cells, the quadratic
phase term can be neglected and the deramped signal can be written simply as [19]

y(ν, θ) = F [ρ](ν cos θ, ν sin θ) + w(ν, θ)(29)

where F is the 2-d Fourier transform, θ the look angle, τ0 the round-trip travel time to the
scene center, w the measurement noise and

ν(t) =
2

c0

(ω0 + α1(t− τ0))(30)

the spatial frequency. For a sufficiently small scene, t is effectively limited to [τ0, τ0 +T ] and
hence ν(t) is restricted to

ν ∈ [ν0, ν∗], ν0 = 2ω0/c0, ν∗ = ν0 + 2α1T/c0.(31)

Alternatively, the SAR tomography (29) can be implemented by multi-frequency, Ultra-
Narrowband (UNB) continuous waveforms [10]. A multi-frequency UNB SAR has many
practical advantages such as 1) relatively simple, low cost transmitters are deployed, 2) SNR
is increased as reduced bandwidth results in less unwanted thermal noise, 3) UNB signals
provide relief when the available electromagnetic spectrum is eroded by other civilian and
military radar applications. For UNB SAR, the spatial frequency ν in (29) is related to
the carrier frequency ω of continuous waveform by ν = 2ω/c0. UNB multi-frequency SAR
is particularly appealing from the point of view of compressed sensing as the associated
multiple spatial frequencies can be viewed as sparse sampling of the continuous range [ν0, ν∗]
of spatial frequencies.

Let the imaging domain be the finite square lattice

L =
{
`(p1, p2) : p1, p2 = 1, ...,

√
n
}
.(32)

The total number of cells n is a perfect square. For the off-grid targets represented by

ρ(r) =
∑
p∈Z2

ρpδ(r− `p− `hp), hp = (h1p, h2p), |h1p|, |h2p| < 1/2
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the signal model (29) becomes

y(ν, θ) =
∑
p∈Z2

ρp exp [−2πi`νd̂ · (p + hp)] + w(ν, θ)

where d̂ = (cos θ, sin θ) denotes the direction of look. Following the same perturbation
technique

e−2πi`νd̂·(p+hp) = e−2πi`νd̂·p
(

1− 2πi`νd̂ · hp +O(|`νd̂ · hp|2)
)

we consider the signal model

y(ν, θ) =
∑
p∈Z2

ρpe−2πi`νd̂·p(1− 2πi`νd̂ · hp) + e(ν, θ)(33)

where the error term

e(ν, θ) = w(ν, θ) +
∑
p

ρpe−2πi`νd̂·pO(|`νd̂ · hp|2)(34)

includes the measurement noise w and the gridding error.
We shall distinguish two regimes: the Fully Diversified Multi-Frequency (FDMF) SAR

with ν0 = 0 and the Partially Diversified Multi-Frequency (PDMF) SAR with ν0 > 0.
First we describe a general sampling scheme applicable to both regimes.

SAR scheme A: We independently select θk, k = 1, . . . ,m1 according to a probability
density function φ on [0, 2π] and then, for each θk, independently select νkl, l = 1, . . . ,m2,
according to a probability density function g on [ν0, ν∗]. The simplest case is with φ =
1/(2π), g = 1/(ν∗ − ν0).

Let

σ1 =
( 1

m

∑
j

∑
k

ν2
kj cos2 θk

)1/2

, σ2 =
( 1

m

∑
j

∑
k

ν2
kj sin2 θk

)1/2

, m = m1m2(35)

be the sample variations of spatial frequency. Define the primary and secondary target
vectors by

Xl = ρp, X ′l = −2πi`h1pσ1Xl, X ′′l = −2πi`h2pσ2Xl, l = (p2 − 1)
√
n+ p1.

The signal model takes the form

Y = FX + GX ′ + HX ′′ + E(36)

subject to the support constraint

supp(X ′) ⊆ supp(X), supp(X ′′) ⊆ supp(X)(37)

where the measurement matrix is given by

Fil = e−2πi`νkj d̂k·p, Gil = e−2πi`νkj d̂k·pνkj cos θkσ
−1
1 , Hil = e−2πi`νkj d̂k·pνkj sin θkσ

−1
2(38)

with i = j + (k − 1)m2.
In the extreme case, we select the spatial frequencies νl, l = 1, ...,m2 independently of

θk, k = 1, ...,m1. The number of degrees of diversity is m1 + m2 now instead of m = m1m2

as for SAR scheme A.
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3.1. FDMF SAR. For PDMF SAR, we can also use the specialized scheme:

SAR scheme B: For k = 1, ...,m we select νk to θk together by solving

`νk cos θk = Qak, `νk sin θk = Qbk,(39)

for a fixed Q ∈ N where (ak, bk), k = 1, . . . ,m, are i.i.d. uniform random variables on
[−1/2, 1/2]2.

Eq. (39) always has a solution in (31) under the condition

ν0 = 0, `ν∗ ≥ Q/
√

2.(40)

On the other hand, for PDMF SAR, ν0 6= 0 and eq. (39) may not always have a solution.
With (39), the measurement matrix is given by

Fkl = e−2πiQ(ak,bk)·p, Gkl = e−2πiQ(ak,bk)·pakσ
−1
1 , Hkl = e−2πiQ(ak,bk)·pbkσ

−1
2(41)

with l = (p2 − 1)
√
n+ p1 and

σ1 =
( 1

m

m∑
k=1

a2
k

)1/2

, σ2 =
( 1

m

m∑
k=1

b2
k

)1/2

.(42)

The measurement matrix A = [F G H] with (41) is a two-dimensional version of (19) and
hence satisfies the coherence bound analogous to Lemma 1.

3.2. 2D SCOMP. SCOMP with the two-dimensional support constraint is given as follows.

Algorithm 2. 2D SCOMP
Input: F,G,H, Y, ‖E‖2

Initialization: X0 = 0, R0 = Y and S0 = ∅
Iteration:

1) imax = arg maxl

(
|F ∗l Rk−1|+ |G∗lRk−1|+ |H∗l Rk−1|

)
2) Sk = Sk−1 ∪ {imax}
3) (Xk, X

′k, X
′′k) = arg min ‖FZ + GZ ′ + HZ ′′ − Y ‖2,

s.t. supp(Z ′), supp(Z ′′) ⊆ supp(Z) ⊆ Sk

4) Rk = Y − FXk −GX
′k −HX

′′k

5) Stop if ‖Rk‖2 ≤ ‖E‖2.

Output: X̂ = Xk, X̂ ′ = X
′k, X̂ ′′ = X

′′k.

From X̂, X̂ ′, X̂ ′′, we can recover the off-grid perturbation by

ĥp =
i

2π`Xl

(X ′l
σ1

,
X ′′l
σ2

)
, l = (p2 − 1)

√
n+ p1.

Performance guarantee similar to Theorem 1 follows the same line of argument given in
Appendix B.
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Theorem 2. Suppose that the columns of A = [F G H] have same 2-norm. Let supp(X) =
{J1, . . . , Js} and

Xmax = ‖XJ1‖1 + ‖X ′J1‖1 + ‖X ′′J1‖1 ≥ ‖XJ2‖1 + ‖X ′J2‖1 + ‖X ′′J2‖1 ≥ · · ·
· · · ≥ ‖XJs‖1 + ‖X ′Js‖1 + ‖X ′′Js‖1 = Xmin.

Suppose

(6s− 1)µ+
6‖E‖2

Xmin

< 1(43)

and let X̂ and X̂ ′ be the output of Algorithm 2. Then

supp(X̂) = supp(X)

and

‖X̂ −X‖2
2 + ‖X̂ ′ −X ′‖2

2 + ‖X̂ ′′ −X ′′‖2
2 ≤

3‖E‖2
2

1− µ(3s− 1)
.(44)

Remark 3. Analogous to Remark 1, we can improve the accuracy of recovery by performing
the nonlinear least squares

arg min
∑
k,j

∣∣∣y(νkj, θk)−
∑

p∈supp(X̂)

ρpe−2πi`νkj d̂k·(p+hp)
∣∣∣2(45)

in the set of all {ρp : p ∈ supp(X̂)} ⊂ Cs and {hp : p ∈ supp(X̂)} ⊂ (−0.5, 0.5)2s with the
SCOMP estimates as initial guess.

The greedy algorithm for the 3-dimensional setting and its performance guarantee can be
analogously formulated. For the sake of brevity, we will not pursue them here.

4. Numerical experiments

In the following simulations, we use s = 10 complex-valued targets with random ampli-
tudes

1 + (c1 + ic2)/
√

8

where c1, c2 are standard normal random variables. We set the grid spacing ∆τ, ` = 1 and
let off-grid perturbations {ξk} be i.i.d. uniform random variables in [−0.4, 0.4]. In all our
simulations, we add 1% external noise to the data and so the signal-to-noise ratio (SNR) is
100.

The BP estimates (solved with YALL1 [23]) tend to be “bushy” and require “pruning.” To
take advantage of the prior knowledge of sparsity and the support constraint (24) we apply

the technique of Locally Optimized Thresholding (LOT) to the BP estimates X̂, X̂ ′ as follows.
In addition to pruning (i.e. thresholding), LOT also locally adjusts the reconstruction to
minimize the residual subject to the support constraint.
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Algorithm 3. Locally Optimized Thresholding (LOT)

Input: X̂, X̂ ′, A = [F G], Y, s = target sparsity.
Iteration: Set S0 = ∅. For n = 1, 2, ..., s

1) in = arg maxj
(
|X̂j|+ |X̂ ′j|(2πσQ)−1

)
, s.t. j 6∈ Sn−1.

2) Sn = Sn−1 ∪ {in}.
Output: (X̃, X̃ ′) = arg minz ‖FZ + GZ ′ − Y ‖2, s.t. supp(Z ′) ⊆ Ss, supp(Z) ⊆ Ss.

Remark 4. As in (28) we can improve the accuracy of the LOT estimates by performing
the nonlinear least squares

min
∑
j

∣∣∣f(tj)− fLC(tj)
∑
k∈Ss

ρkfLC(−k∆τ −∆τξk)e
−2πiQt̄jke−2πiQξk t̄j

∣∣∣2(46)

in the set of all {ρk : k ∈ Ss} ⊂ Cs and {ξk : k ∈ Ss} ⊂ (−0.5, 0.5)s with the LOT estimates
as the initial guess for iterative methods (e.g. the Gauss-Newton method or gradient methods)
for (28).

The idea of LOT is similar to that of the Band-excluded Locally Optimized Thresholding
(BLOT) proposed in [12, 13] except without the band-exclusion step which is not needed
here since the grid is well resolved. For brevity, we shall denote the combined algorithm of
BP followed by LOT as BPLOT.

Successful recovery for OMP, SCOMP, BPLOT is defined as the recovery of target support

to the grid accuracy, i.e. supp(X̂) = supp(X). For BP, a recovery is counted as successful if

supp(X̂s) = supp(X) where X̂s is the best s-sparse approximation of the BP recovery X̂ (i.e.
thresholded BP). We distinguish two versions of thresholded BP: the grid-corrected version
and the uncorrected version (“fixON BP” and “fixOff BP”, respectively, in the legend of Fig.
4, 8, 9(b) and 11(b)).

When recovery is successful, we measure the degree of success by the (relative) recovery

error ‖X − X̂‖2/‖X‖2 in the case of OMP, SCOMP, BPLOT and by ‖X − X̂s‖2/‖X‖2 in
the case of BP. Note that for the system (20)

‖X − X̂‖2/‖X‖2 =
∑
k

∣∣∣fLC(−k∆τ − ξk∆τ)

fLC(−k∆τ − ξ̂k∆τ)
eπiQ(ξ̂k−ξk)ρk − ρ̂k

∣∣∣2/‖ρ‖2

while for the system (36) ‖X − X̂‖2/‖X‖2 = ‖ρ̂− ρ‖2/‖ρ‖2.
For radar ranging (13), we set the parameters m = 64, n = 128 and Q = 1, 2 (Fig.1-4).

The gridding error for the formulation (11) is a whopping 38.1% for Q = 1 and 103% for
Q = 2 while that for (20) is 14.5% for Q = 1 and 64.5% for Q = 2 which still seem large.
But surprisingly BPLOT (Fig.1(c)) and SCOMP (Fig.1(d) & 2(d)) can locate the targets to
the grid accuracy, producing error of 8.8% for Fig.1(c) & (d) and 43% 2(d). Note that the
second target from the right is missed by BPLOT in Fig.2(c). By contrast BP (Fig.1 (a) &
2 (a)) and OMP (Fig.1(b) & 2 (b)) poorly locate the targets for both Q = 1&2.

Fig.3 shows how the NLS technique can further improve the performance of SCOMP. The
error for SCOMP-NLS is 2.2% and 31.2%, respectively, for Q = 1 (Fig.3(a)) and Q = 2
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(b) OMP
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(c) BPLOT
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(d) SCOMP

Figure 1. Radar ranging (blue crosses) with Q = 1 of off-grid targets (red
circles) by (a) BP, (b) OMP with eq. (11) and (c) BPLOT, (d) SCOMP with
eq. (20).

(Fig.3(b)). The worsening performance as Q increases from 1 to 2 is probably due to the
increasing gridding error.

Fig.4 shows the success rate computed out of 100 independent trials as a function of the
target sparsity with the support recovery to the grid accuracy as the criterion for success. For
each trial, the target support, amplitudes, time samples and external noise are independently
chosen with the same sparsity.

For Q = 1 (Fig.4(a)) BPLOT has the best performance while for Q = 2 (Fig.4(b)) SCOMP
is the best performer. Both BPLOT and SCOMP outperform both BP and OMP without
grid correction.
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(b) OMP
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(c) BPLOT
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(d) SCOMP

Figure 2. Radar ranging with Q = 2 by (a) BP, (b) OMP without grid
correction and (c) BPLOT, (d) SCOMP with grid correction.

For 2D Spotlight SAR in the FDMF regime, we use SAR schemes A & B (Sections 3) with
n = 625,m = 100, ν0 = 0, c0 = 1 (Fig.5-8). For Q = 1, we set ν∗ = 1/

√
2. For Q = 2, we set

ν∗ =
√

2. For SAR scheme A, we set φ = 1/(2π), g = 1/(ν∗ − ν0) here and below.
First we consider the sampling scheme described in Section 3.1. Fig.5 shows that only

SCOMP locates the targets to the grid accuracy. Note that OMP and BPLOT miss the
target located at around (15, 17) in (b) & (c), respectively. In Fig.6 with Q = 2, BPLOT
and SCOMP have the same results, locating the targets to the grid accuracy. The relative
error is 45.7% for Fig.5(d) and 24.9% for Fig.6(d). After applying NLS to the SCOMP
estimates, the error is reduced to 0.7% for Q = 1 and 0.3% for Q = 2 (Fig.7). This is a rate
instance where the gridding and recovery errors are smaller with Q = 2 than Q = 1 and
reminds us the subtle dependence of the gridding error on target configuration.

Fig.8 shows the success rate versus sparsity computed out of 100 independent trials. For
both Q = 1 and Q = 2, SCOMP has the best performance. It is also clear from Fig.8, the
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(a) SCOMP-NLS with Q = 1
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(b) SCOMP-NLS with Q = 2

Figure 3. SCOMP-NLS produces ranging error of (a) 2.2% with Q = 1 and
(b) 31.2% with Q = 2.
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(a) Q = 1
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(b) Q = 2

Figure 4. Success rate of ranging versus sparsity with (a) Q = 1 and (b)
Q = 2. In the legend, “fixOff” means recovery without grid correction and
“fixOn” means recovery with grid correction.

results with Q = 1 are better than those with Q = 2 for all tested methods, despite the fact
that the former’s bandwidth 1/

√
2 is smaller than the latter’s

√
2.

Fig.9 shows the results of FDMF SAR (m1 = m2 = 10, ν0 = 0, ν∗ = 1) with the SAR
scheme A which is easier to implement than the SAR scheme B (Section 3). The purpose is
to compare the performance of the two sampling schemes. From Fig.8(a) and 9(b) we find
that with the SAR scheme A, the performance of SCOMP worsens while the performances
of grid-corrected thresholded BP and BPLOT improve. Note, however, that the bandwidth
(= 1) for Fig. 9(b) is larger than that (= 1/

√
2) for Fig. 8(a).
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(d) SCOMP

Figure 5. FDMF SAR imaging (white spots) of off-grid targets (red circles)
with SAR scheme B and Q = 1 by (a) BP, (b) OMP, both without grid
correction, and (c) BPLOT, (d) SCOMP, both with grid correction.

For PDMF Spotlight SAR in Fig.10-11, we use the SAR scheme A with n = 625,m1 =
m2 = 14, ν0 = 1/2, ν∗ = 1, c0 = 1, resulting in the fractional bandwidth 2/3. Note that the
total number of data m = 196 almost doubles that for the FDMF case.

In Fig.10, only SCOMP manages to locate the targets to the grid accuracy (BPLOT misses
the target located around (19, 22)), yielding an error of 49.9%. The error is reduced to 25.4%
by NLS (Fig.11(a)). The success rate plot in Fig.11(b) shows that BPLOT and SCOMP
have a similar, best performance, with the grid-corrected thresholded BP trailing closely
behind.

From Fig.9(b) and 11(b), we find that grid-corrected thresholded BP, BPLOT and SCOMP
have comparable performances with the SAR scheme A. Also, the similarity of the success
rates (for grid-corrected thresholded BP, BPLOT and SCOMP) between Fig.9(b) and 11(b)
indicates that increasing the spatial diversity and the number of data can compensate the
deficiency in frequency diversity, up to a point.
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(d) SCOMP

Figure 6. FDMF SAR imaging with SAR scheme B and Q = 2 by (a) BP,
(b) OMP, without grid correction, and (c) BPLOT, (d) SCOMP, with grid
correction.

For the purpose of comparison, Fig. 12 shows the results of PDMF SAR with (a) m1 =
28,m2 = 7 and (b) m1 = 7,m2 = 28, and other parameters the same as in Fig. 11. The
number of degrees of diversity (=196) is the same for both Fig. 11 and 12. Clearly, the
performances of grid-corrected thresholded BP, BPLOT and SCOMP improve (slightly) in
Fig. 12(a) but degrade in Fig. 12(b) relative to Fig. 11(b). This means that, for a fixed
bandwidth and number of degrees of diversity, there is an optimal distribution between
the frequency diversity and the angular diversity. For example, for a smaller bandwidth, the
frequency diversity should be decreased (and the angular diversity be increased) accordingly.
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(b) SCOMP-NLS with Q = 2

Figure 7. SCOMP-NLS for FDMF SAR scheme B produces error of (a) 0.7%
with Q = 1 and (b) 0.3% with Q = 2.
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(b) Q = 2

Figure 8. Success rate versus sparsity for FDMF SAR scheme B with (a)
Q = 1 and (b) Q = 2. The legend is same as in Fig. 4.

In the case of extreme deficiency in frequency diversity (ν∗ − ν0)/ν0 � 1, the gridding
error dominates the data and our methods eventually break down.

5. Conclusion

We explored compressed sensing approach to monostatic radar with chirped signals or
multi-frequency UNB waveforms. Particular attention is on the off-grid targets and the
resulting intrinsically nonlinear gridding error.
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(b) Success rate vs. sparsity

Figure 9. FDMF SAR imaging with SAR scheme A. (a) SCOMP-NLS pro-
duces error of 0.3%. (b) Success rate versus sparsity. The legend is same as in
Fig. 4.

We used the Taylor expansion of phase factor to approximate the signals from the off-grid
targets and reduce the gridding error. We proposed a new algorithm, SCOMP, to solve the
resulting grid-corrected system and gave a performance guarantee (Theorem 1). Our theory,
however, does not fully account for the numerical performance of the proposed schemes,
especially in the regime of low Q which remains to be further analyzed (Remark 2).

In addition, we proposed technique (LOT) to enhance BP for the off-grid setting. The
resulting method BPLOT can sometimes outperform SCOMP (Fig.4(a) and 9(b)). We ex-
tended SCOMP and the performance guarantee (Theorem 2) to Spotlight SAR and proposed
the UNB multi-frequency version of implementation. Our numerical experiments show sig-
nificant improvement over the standard CS methods, especially in locating sparse targets to
the grid accuracy. The recovery of target amplitudes can be further improved by applying
the nonlinear least squares with the SCOMP/BPLOT estimates as the initial guess.

Our numerical study indicates that in both radar ranging and SAR imaging, our methods
perform best with Q = 1. The latter corresponds to the setting where the grid spacing is
around the resolution threshold of the probe, no more no less. Excessive bandwidth for the
same grid spacing hinders the radar performance due to overall enhanced level of gridding
error.

When full frequency diversity is not available, a good performance can be maintained up
to about 2/3 fractional bandwidth. Further reduction in the probe bandwidth significantly
degrades performance. Therefore the signals much be of ultra-wideband (UWB), defined
as at least 1/4 fractional bandwidth [22], if Spotlight SAR (29) is to be implemented with
chirped signals and sparse measurements.

Implementing the proposed CS Spotlight SAR with multi-frequency UNB waveforms, in-
stead of UWB pulses, has the added benefits of simpler transmitters, increased signal-to-noise
ratio due to less unwanted thermal noise and increased signal-to-interference ratio due to
avoiding the electromagnetic spectrum occupied by other civilian and military applications.
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(d) SCOMP

Figure 10. PDMF SAR imaging with SAR scheme A by (a) BP, (b) OMP,
without grid correction, and (c) BPLOT, (d) SCOMP, with grid correction.

The last of these benefits is a natural fit for the CS paradigm which opens the door for fully
diversified, but sparse measurements in the frequency domains.

In the case of extreme deficiency in frequency diversity (ν∗ − ν0)/ν0 � 1, the gridding
error dominates the data and our methods eventually break down. In this case SAR imaging
of off-grid targets with sparse measurement requires a different approach than the proposed
methods.

We plan to extend our methodology to the case of range-Doppler radar and SAR imaging
of moving targets in the future.

Appendix A. Proof of Lemma 1

Proof. We prove the coherence bound for the matrix A = [F G].
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(b) Success rate versus sparsity

Figure 11. PDMF SAR imaging with scheme A (m1 = m2 = 14). (a)
SCOMP-NLS produces error of 25.4%. (b) Success rate versus sparsity. The
legend is same as in Fig. 4.
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(a) m1 = 28,m2 = 7
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(b) m1 = 7,m2 = 28

Figure 12. Success rate of PDMF SAR scheme A with (a) m1 = 28,m2 = 7
(b) m1 = 7,m2 = 28. The legend is same as in Fig. 4.

The k-th column vector Ak of A is given by

Ajk =

{
e−2πiQkt̄j , k ≤ n

(t̄j − 1/2)e−2πiQ(k−n)t̄j , k > n.

Note that ‖Ak‖2 = m, k ≤ n and E[‖Ak‖2] = m/12, k > n. Consequently, the scalar product
of two distinct columns of A has three possible forms:

bkk′ =
m∑
j=1

a(t̄j) exp [2πiQ(k − k′)t̄j ] , a(tj) = 1, (t̄j − 1/2), or (t̄j − 1/2)2 ,
20



for k, k′ = 1, . . . , n. When a(tj) = 1 or (t̄j − 1/2)2 both columns are drawn from F or G and
thus k 6= k′. When a(tj) = t̄j − 1/2, one column is drawn from F and the other from G. In
the last case, k and k′ are arbitrary.

Let Sm =
∑m

j=1 Uj, Tm =
∑m

j=1 Vj where

Uj = a(t̄j) cos [2πQ(k − k′)t̄j ] , Vj = a(t̄j) sin [2πQ(k − k′)t̄j ]
are independent (for different j) random variables in [−1, 1]. We have

|bkk′ | ≤ |bkk′ − E(bkk′)|+ |E(bkk′)|
= |Sm + iTm − ESm − iETm |+ |E(Sm + iTm)| .

Recall the Hoeffding inequality.

Proposition 2. Let U1, . . . , Um be independent random variables, and Sm =
∑m

j=1 Uj. As-

sume that Uj ∈ [u, v], j = 1, 2, . . . ,m almost surely, then we have

(47) P(|Sm − ESm | ≥ mt) ≤ 2 exp

[
− 2m2t2∑

j(v − u)2

]
for all positive t.

Choosing t = K/
√
m for some constant K, we have

P(|Sm − ESm| ≥
√
mK) ≤ 2 exp

[
−K2/2

]
.

Note that the quantities Sm depend on k− k′ but there are at most n− 1 different values.
The union bound yields

P(max
k 6=k′
|Sm − ESm | ≥

√
mK) ≤ 2(n− 1) exp

[
−K2/2

]
,

and similarly
P(max

k 6=k′
|Tm − ETm | ≥

√
mK) ≤ 2(n− 1) exp

[
−K2/2

]
.

We have

P(max
k 6=k′
|bkk′ − Ebkk′ | <

√
2mK)

= P(max
k 6=k′
|Sm + iTm − ESm − iETm | <

√
2mK)

>
(

1− 2(n− 1) exp
[
−K2/2

] )2

> (1− δ)2

if δ > 2n exp [−K2/2].
Now let us estimate the mean E(bkk′) or E(Sm+iTm) for k 6= k′. Note that t̄j, j = 1, . . . ,m,

are independently and uniformly distributed in [0, 1]. We have three different cases:

(1) For a(t̄j) = 1,

E(bkk′) = m

∫ 1

0

e2πiQ(k−k′)t dt = 0.

(2) For a(t̄j) = t̄j − 1/2,

E(bkk′) = m

∫ 1

0

(t− 1/2)e2πiQ(k−k′)t dt = meπiQ(k−k′) (−1)(k−k′)Q

2πi(k − k′)Q
, k 6= k′,
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and thus

|E(bkk′)| ≤
m

2πQ
, k 6= k′.

On the other hand,

E(bkk) = m

∫ 1

0

(t− 1/2) · 1 dt = 0.

(3) For a(t̄j) = (t̄j − 1/2)2,

E(bkk′) = m

∫ 1

0

(t− 1/2)2e2πiQ(k−k′)t dt = meπiQ(k−k′) (−1)(k−k′)Q

(2π(k − k′)Q)2
, k 6= k′

and thus

|E(bkk′)| ≤
m

(2πQ)2
.

For k, k′ ≤ n, since ‖Ak‖2 = m,

bkk′ ≤
C

m

√
2mK = C

√
2K√
m
, k, k′ ≤ n(48)

for some universal constant C, with probability greater than (1− δ)2.
On the other hand, for k > n,

‖Ak‖2
2 =

∑
j

(tj − 1/2)2

which is a sum of m i.i.d. random variables of mean 1/12 on [0, 1/4]. Applying Hoeffding
inequality with t = 1/24, we have

P
(
|‖Ak‖2

2 −
m

12
| ≥ m

24

)
≤ 2e−m/18

and thus

P
(
‖Ak‖2

2 ≤
m

24

)
≤ 2e−m/18.

We conclude from these observations that

bkk′ ≤
C

m

[√
2mK +

m

2πQ

]
= C ·

[√
2K√
m

+
1

2πQ

]
, k ≤ n < k′(49)

bkk′ ≤
C

m

[√
2mK +

m

(2πQ)2

]
= C ·

[√
2K√
m

+
1

(2πQ)2

]
, k, k′ > n(50)

with probability at least (1− δ)2 − 4e−m/18. (48)-(50) are what we set out to prove.
�
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Appendix B. Proof of Theorem 1

Proof. We prove the theorem by induction. Without loss of generality, we assume that the
columns of A have unit 2-norm.

In the first step,

|F ∗J1Y |+ |G
∗
J1
Y | = |XJ1F

∗
J1
FJ1 +XJ2F

∗
J1
FJ2 + ...+XJsF

∗
J1
FJs +(51)

X ′J1F
∗
J1
GJ1 +X ′J2F

∗
J1
GJ2 + ...+X ′JsF

∗
J1
GJs + F ∗J1E|

+|X ′J1G
∗
J1
GJ1 +X ′J2G

∗
J1
GJ2 + ...+X ′JsG

∗
J1
GJs +

XJ1G
∗
J1
FJ1 +XJ2G

∗
J1
FJ2 + ...+XJsG

∗
J1
FJs +G∗J1E|

≥ Xmax −Xmax(2s− 1)µ− 2‖E‖2.

On the other hand, ∀l /∈ supp(X),

|F ∗l Y |+ |G∗l Y | = |XJ1F
∗
l FJ1 +XJ2F

∗
l FJ2 + ...+XJsF

∗
l FJs +(52)

X ′J1F
∗
l GJ1 +X ′J2F

∗
l GJ2 + ...+X ′JsF

∗
l GJs + F ∗l E|

+|X ′J1G
∗
lGJ1 +X ′J2G

∗
lGJ2 + ...+X ′JsG

∗
lGJs +

XJ1G
∗
lFJ1 +XJ2G

∗
lFJ2 + ...+XJsG

∗
lFJs +G∗lE|

≤ 2Xmaxsµ+ 2‖E‖2.

Hence, if

(4s− 1)µ+
4‖E‖2

Xmax

< 1,

then the right hand side of (51) is greater than the right hand side of (52) which implies that
the first index selected by OMP must belong to supp(X).

To continue the induction process, we need the following result.

Proposition 3. Let Y = FX + GX ′ + E where supp(X ′) ⊆ supp(X) = S. Let Sk be a set

of k indices containing both supp(X̂) and supp(X̂ ′). Define

Y ′ = Y − FX̂ −GX̂ ′.(53)

Clearly, Y ′ = F(X − X̂) + G(X ′ − X̂ ′) + E. If Sk ⊆ S and the sparsity s of X satisfies

4s < 1 + 1/µ, then F(X − X̂) + G(X ′− X̂ ′) has a unique sparsest representation FZ + GZ ′

with Z = X − X̂ and Z ′ = X ′ − X̂ ′.

Proof. Clearly supp(Z), supp(Z ′) ⊆ supp(X). Since

‖Z‖0 + ‖Z ′‖0 ≤ 2s <
1

2
(1 +

1

µ
)

we conclude that Z and Z ′ are the unique sparsest representation of F(X − X̂) + G(X ′ −
X̂ ′). �

Proposition 3 says that selection of a column, followed by the formation of the residual sig-
nal, leads to a situation like before, where the ideal noiseless signal has no more representing
columns than before, and the noise level is the same.
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Suppose that the set Sk ⊆ supp(X) of k distinct indices has been selected and that X̂ in
Proposition 3 solves the following least squares problem(

X̂

X̂ ′

)
= arg min ‖Y − [F G]Z‖2, s.t. supp(Z) ⊆ Sk.(54)

Let FSk and GSk be, respectively, the column submatrices of F and G indexed by the set
Sk. By (53) and (54), F∗SkY

′ = G∗SkY
′ = 0, which implies that no element of Sk gets selected

at the (k + 1)-st step.
In order to ensure that some element in supp(X) \ Sk gets selected at the (k + 1)-st step

we only need to repeat the calculation (51)-(52) to obtain the condition

(4s− 1)µ+
4‖E‖2

|XJk+1
|+ |X ′Jk+1

|
< 1

which follows from

(4s− 1)µ+
4ε

Xmin

< 1.(55)

By the s-th step, all elements of the support set are selected and by the nature of the least
squares solution the 2-norm of the residual is at most ε. Thus the stopping criterion is met
and the iteration stops after s steps.

On the other hand, it follows from the calculation

2‖Y ′‖2 ≥
∣∣F ∗Jk+1

Y ′
∣∣+
∣∣G∗Jk+1

Y ′
∣∣

= |XJk+1
+

s∑
i=k+2

XJiF
∗
Jk+1

FJi +
s∑

i=k+1

X ′JiF
∗
Jk+1

GJi + F ∗Jk+1
E|

+ |X ′Jk+1
+

s∑
i=k+1

XJiG
∗
Jk+1

FJi +
s∑

i=k+2

X ′JiG
∗
Jk+1

GJi +G∗Jk+1
E|

≥ |XJk+1
|+ |X ′Jk+1

| − (|XJk+1
|+ |X ′Jk+1

|)µ
−2(s− k − 1)µ(|XJk+2

|+ |XJk+2
|)− 2‖E‖2

≥ (1− µ(2s− 2k − 1))(|XJk+1
|+ |X ′Jk+1

|)− 2‖E‖2

and (55) that ‖Y ′‖2 > ε for k = 0, 1, · · · , s− 1. Thus the iteration does not stop until k = s.
By (54), we have

‖Y − FX̂ −GX̂ ′‖2 ≤ ‖Y − FX −GX ′‖2 ≤ ε

and

‖F(X − X̂) + G(X ′ − X̂ ′)‖2
2 ≤ 2‖Y − FX −GX ′‖2

2 + 2‖Y − FX̂ −GX̂ ′‖2
2 ≤ 2ε2

implying that

‖X̂ −X‖2
2 + ‖X̂ ′ −X ′‖2

2 ≤ 2ε2/λ2
min

where

λmin = the 2s-th largest singular value of A.

.
The desired error bound can now be obtained from the following result (Lemma 2.2, [6]).
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Proposition 4. Suppose 2s < 1+µ−1. Every m× (2s) column submatrix of A has the 2s-th

singular value bounded below by
√

1− µ(2s− 1).

By Proposition 4, λmin ≥
√

1− µ(2s− 1) and thus the desired estimate (27) follows. �
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