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Abstract. Compressed sensing (CS) schemes are proposed for monostatic as well as syn-
thetic aperture radar (SAR) imaging with chirps. In particular, a simple method is developed
to improve performance with off-grid targets. Tomographic formulation of spotlight SAR
is analyzed by CS methods with several bases and under various bandwidth constraints.
Performance guarantees are established via coherence bound and the restricted isometry
property. CS analysis provides a fresh and clear perspective on how to optimize temporal
and angular samplings for spotlight SAR.

1. Introduction

Advances in compressed sensing (CS) and radar processing have provided tremendous
impetus to each other. On the one hand, the two CS themes of sparse reconstruction
and low-coherence, pseudo-randomized data acquisition are longstanding concepts in radar
processing. On the other hand, CS contributes provable performance guarantees for sparse
recovery algorithms and informs refinement of these algorithms. These and other important
issues relevant to CS radar are thoroughly reviewed in [13,24] (see also the references therein).

Target sparsity, a main theme in CS, arises naturally in radar processing. According
to the geometrical theory of diffraction [21], the scattering response of a target at radio
frequencies can often be approximated as a sum of responses from individual reflectors.
These scattering centers provide a concise, yet physically relevant, description of the object
[18]. A spiky reconstruction of reflectivity may thus be highly valuable for automatic target
recognition. More generally radar images are compressible by means of either parametric
models of physical scattering behaviors or transform coding [24].

In the present work, we consider point as well as extended targets. For point targets, a
main drawback, however, of the standard CS framework often neglected by previous works
is the reliance on a underlying grid. In reality, the dominant scattering centers can not be
assumed to be positioned exactly at the computational grid points. Indeed, CS-algorithms
often break down when the targets are located between grid points [13,16]. In order to reduce
gridding error, the grid has to be refined, giving rise to higher coherence of the measurement
matrix which is detrimental to standard CS algorithms.

Can CS approach be extended to the case of arbitrarily located targets? Several approaches
have been proposed to address this critical question [4, 11, 16, 17] and all of them focus on
algorithmic improvements. In this paper we propose a simple, alternative approach, which
focuses on improving the accuracy of the measurement matrix, and establish performance
guarantee for the refined system (Sections 3 and 4).

We then turn to the spotlight mode of synthetic aperture radar (SAR). We consider the
tomographic framework of spotlight SAR as formulated in [22] for different classes of targets,
including point targets, localized extended targets and distributed extended targets. These
different targets require different sparsifying bases which in turn demand different sampling
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schemes. We propose several sampling schemes and establish performance guarantee for
them (Section 5). In particular, we examine the realistic case of high-frequency, narrow-
band signals and derive an error bound. In each case, we show that CS can achieve the
standard resolution limit with sparse sampling. Finally we present numerical experiments
demonstrating our results (Section 6) and draw conclusion (Section 7).

2. Monostatic signal model

Let us first formulate the signal model for the case of a monostatic radar with narrow
fractional bandwidth and colocated transmitter and receiver antennas. A complex waveform
f with the carrier frequency ω0 is transmitted. Let r and v denote the range and the radial
velocity, respectively. We parameterize the complex scene by the reflectivity function ρ(τ, u)
where the delay τ = 2r/c0 is the round-trip propagation time and u = 2vω0/c0 is the Doppler
shift. Under the far-field and narrow-band approximations [7], the scattered signal is given
by

y(t) =
∫∫

x(τ, u)f(t− τ)e−2πiut du dτ + w(t)(1)

where

x(τ, u) = ρ(τ, u)e−πiuτ

and w(t) represents the circular white complex Gaussian baseband noise.

(1) For immobile targets, ρ(τ, u) = ρ(τ)δ(u), eq. (1) becomes

(2) y(t) =

∫ ∞
−∞

ρ(τ)f(t− τ) dτ + w(t).

For immobile point targets located at {τk}, eq. (2) becomes

(3) y(t) =
∑
k

ρkf(t− τk) + w(t).

(2) For moving point targets located at {τk} with Doppler shifts {ul}, we have

ρ(τ, u) =
∑
k,l

ρk,lδ(τ − τk)δ(u− ul),

and

(4) y(t) =
∑
k,l

xk,lf(t− τk)e−2πiult + w(t).

For the transmitted signal, let IT be the indicator function of duration [0, T ] of transmis-
sion. By far the most commonly used waveform is the linear FM chirp

fLC(t) = exp
[
2πi
(α1

2
t2 + ω0t

)]
IT (t)(5)

owing to the simplicity in implementation. The bandwidth of linear chirp can be defined as
B = α1T .

Motivated by the low coherence of the Alltop sequences [1], we will also consider the
quadratic FM chirp:

fQC(t) = exp
[
2πi
(α2

3
t3 +

α1

2
t2 + ω0t

)]
IT (t)(6)
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whose bandwidth is given by B = α2T
2 +α1T . The Alltop sequences have been analyzed in

the stylized CS-radar work in [19].

3. Immobile targets

3.1. On-grid targets. With linear chirp and immobile point targets, the signal model is
given by

y(tj) =
∑
k

ρk exp
[
2πi
(α1

2
(tj − τk)2 + ω0(tj − τk)

)]
= fLC(tj)

∑
k

ρkfLC(−τk) exp [−2πiα1τktj ] .

Suppose first that the targets are located exactly on the grid points. Let τk = k∆τ where
∆τ is the grid size and k = 1, . . . , n, n > m. Let

α1 =
Q

T∆τ
, Q ∈ N(7)

and
t̂j = tj/T ∈ [0, 1].

Then with

Yj =
y(tj)

fLC(tj)
(8)

Xk = ρkfLC(−τk)(9)

Fj,k = exp [−2πiα1τktj ] = exp
[
−2πiBk∆τ t̂j

]
= exp

[
−2πiQkt̂j

]
(10)

we can write the signal model as the linear system Y = FX + E where E = [w(tj)] ∈ Cm

represents the measurement errors. The bandwidth is given by B = α1T = Q/∆τ .
A main thrust of CS is the performance guarantee for the basis pursuit denoising (BPDN):

X̂ = arg min ‖Z‖1, ‖FZ − Y ‖2 ≤ ε

under the assumption of the restricted isometry property (RIP):

a(1− δk)‖Z‖2 ≤ ‖FZ‖2 ≤ a(1 + δk)‖Z‖2

for some constant a > 0 and all k-sparse Z where δk is the k-th order restricted isometry
constant. More precisely, we have the following statement [3, 25].

Proposition 1. Let t̂j ∈ [0, 1], j = 1, 2, . . . ,m be independent uniform random variables. If

m

lnm
≥ Cs ln2 s lnn ln

1

β
, β ∈ (0, 1)(11)

for some universal constant C and sparsity level s, then the random Fourier measurements

[ 1√
m

e2πikt̂j ], k = 1, . . . , n, satisfy the RIP with δ2s <
√

2 − 1 and the BPDN solution X̂

satisfies∥∥∥X̂ −X∥∥∥
2
≤ C0

1√
s

∥∥X(s) −X
∥∥

1
+ C1 ‖E‖2 ,

∥∥∥X̂ −X∥∥∥
1
≤ C0

∥∥X(s) −X
∥∥

1
+ C1 ‖E‖2

for some constants , C1, with probability at least 1 − β. Here X(s) is the best s-sparse ap-
proximation of X.
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According to the above result, the (normalized) sampling times should be chosen randomly
and uniformly in [0, 1] and the number of time samples m needs to be sufficiently large (11).
This result is valid as long as the point targets are located exactly on the grid points which
is a stringent and often unrealistic assumption.

3.2. Off-grid targets. In practice, the time delays {τk} may not sit exactly on the grid
points {k∆τ}. The mismatch between the actual signal and the signal model creates the
gridding error which leads to poor performance in CS reconstruction [8, 16, 17].

To deal with this problem we can make the model more accurate to compensate for the
gridding error. Let τk = k∆τ + ξk with |ξk | < ∆τ

2
. Then

y(tj) =
∑
k

ρkfLC(tj − τk)

= fLC(tj)
∑
k

ρkfLC(−τk)e−2πiα1tjτk(12)

= fLC(tj)
∑
k

ρkfLC(−k∆τ − ξk)e−2πiα1tjk∆τe−2πiα1ξktj .

Suppose that Bmax |ξk| is small. Then we can write

e−2πiα1ξktj = e−2πiBξk t̂j = e−πiBξk
(

1− 2πiBξk(t̂j − 1/2) +O
(
B2 max

k
|ξk |2

))
.

Let Q = B∆τ ∈ N be the resolution-time-bandwidth product (RTBP). With

Yj =
y(tj)

fLC(tj)
(13)

Xk = ρkfLC(−k∆τ − ξk)e−πiBξk , X ′k = −2πiQξ̂kXk, ξ̂k =
ξk
∆τ

(14)

Fj,k = exp
[
−2πiQkt̂j

]
, Gj,k = (t̂j − 1/2)Fjk(15)

the linear system takes the form

Yj =
∑
k

(
Fj,kXk +Gj,kX

′
k

)
+ Ej

or equivalently

Y =
[
F G

] [X
X ′

]
+ E.(16)

After X and X ′ are solved from the system, we can estimate {ξk} and {ρk}, respectively, by

ξk =
i∆τX ′k
2πQXk

and

ρk =
Xke

πiBξk

fLC(−k∆τ − ξk)
.

It is generally difficult to establish RIP for matrices other than random partial Fourier
matrices and random matrices of independently and identically distributed (i.i.d.) entries
such as [F G]. An alternative approach is via the notion of mutual coherence µ. The mutual
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coherence of a matrix A is defined by the maximum normalized inner product between
columns of A:

µ(A) = max
i 6=j

|A∗iAj|
‖Ai‖2‖Aj‖2

.(17)

The lower the level of mutual coherence the better performance is with the system.
The following lemma states a coherence bound for the system (16).

Lemma 1. Suppose 2n < δ exp [K2/2]. Then the mutual coherence µ of the combined sensing
matrix A = [F G] satisfies

µ ≤ C

[√
2K√
m

+
1

2πQ

]
(18)

for some universal constant C, with probability greater than (1− δ)2 − 4e−m/18.

This lemma says that to reduce the mutual coherence of the sensing matrix one should
increase the number of data and the RTBP. The proof of the lemma is given in appendix A.

We then obtain an error bound from Lemma 1 in conjunction with the following result
(Theorem 3.1 of [12]).

Proposition 2. Suppose the data is noisy and the `2-norm of the noise is less than ε. If the
sparsity of X satisfies

s <
1

4
(1 +

1

µ
)(19)

then the BPDN solution X̂ satisfies the error bound

(20)
∥∥∥X̂ −X∥∥∥2

2
≤ 4ε2

1− (4s− 1)µ
.

Observe that suppX = suppX ′. This property can be utilized in the greedy pursuit (such
as orthogonal matching pursuit) as follows. A common stage for any greedy pursuit is to
choose the index corresponding to the columns of the maximum coherence with the residual
vector. Since X,X ′ have the same sparse structure, one may utilize a priori information:
choose both k-th columns from F and G, and test the size of the projected vector from Y
on the span of the two columns.

The sparsity constraint (19) can be relaxed if the targets are randomly distributed in
distance (time delay) as stated in the following proposition [5].

Proposition 3. Suppose the data noises are additive Gaussian noise of variance σ2. Assume
that the targets are uniformly randomly distributed and s-sparse such that

s ≤ c1nm

‖A‖2
2 log n

.(21)

Assume also

µ ≤ c2

log n
.(22)
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If

min
k∈S
|Xk | > 8σ

√
2 log n(23)

then the solution X̂ of the LASSO

min
Z

λσ ‖Z‖1 +
1

2
‖Y −AZ‖2

2 , λ = 2
√

2 log n(24)

obeys supp(X̂) = supp(X) with probability at least 1−O(n−1).

Once the target support is exactly recovered the target strengths can be calculated by a
simple least-squares step to obtain a nearly optimal reconstruction.

On the one hand, (21) demands little on the mutual coherence. On the other hand, in
order for (21) to improve over (19) we need a sufficiently strong spectral norm bound. We
prove the following spectral norm bound in appendix B.

Lemma 2. The sensing matrix in (15) satisfies the spectral norm bound

‖A‖2
2 ≤ 2n

with probability greater than (
1− C(m− 1)

n

)m(m−1)

where C is an absolute constant.

Lemmas 1, 2 and Proposition 3 imply that LASSO can achieve nearly optimal reconstruc-
tion of randomly distributed targets whose number is on the order of the data number m,
modulo a logarithmic factor. This is stated in the following theorem.

Theorem 1. Suppose the data noises are additive Gaussian noise of variance σ2. Assume
that the targets are uniformly randomly distributed and s-sparse such that

s ≤ c1m

2 log n
.

Suppose that
√

2K√
m

+
1

2πQ
≤ c2

C log n
.

If (23) holds, then the LASSO (24) recovers the target support exactly with probability at
least 1−O(n−1).

4. Moving targets

Next we discuss the case of moving targets and include Doppler shift in the signal model.
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4.1. On-grid targets. With f = fLC(t) we obtain the signal model from (4)

y(tj) =
∑
k,l

xk,l exp
[
2πi
(α1

2
(tj − τk)2 + ω0(tj − τk)

)]
e−2πiultj

= fLC(tj)
∑
k,l

xk,lfLC(−τk) exp [−2πi (α1τk + ul) tj ] .

Let τk = k∆τ , ul = (l − n/2)∆u with k, l = 1, . . . , n. With

α1 =
∆u

n∆τ
.

we set up the following grid {γp}

γp = τk + ul/α1 = (k + n(l − n/2))∆τ = (p+ n− n2/2)∆τ

where p = k + n(l − 1) ∈ {1, . . . , n2}. By choosing

T =
nQ

∆u
, Q ∈ N

we can write the linear system Y = FX + E in terms of

Yj =
y(tj)

fLC(tj)
eπi(2n−n

2)Qt̂j(25)

Xp = xk,lfLC(−τk)(26)

Fj,p = exp
[
−2πiQpt̂j

]
∈ Cm×n2

(27)

where, with the uniform random variables tj over [0, T ], j = 1, 2, . . . ,m, the sensing matrix F
becomes the random partial Fourier matrix of size m×n2 with which BPDN is guaranteed to
perform according to Proposition 1. Note with the above choice of parameters the bandwidth
B = Q/∆τ is the same as in (7).

4.2. Off-grid targets. Suppose the actual time delays {τk} and Doppler shifts {ul} are not
exactly on the grid: τk = k∆τ + ξk, ul = (l − n/2)∆u + ηl. Eq. (4) with linear chirp now
becomes

y(tj) =
∑
k,l

xk,lfLC(tj − τk)e−2πiultj

= fLC(tj)
∑
k,l

xk,lfLC(−τk)e−2πi(α1τk+ul)tj ,

= fLC(tj)
∑
k,l

xk,lfLC(−k∆τ − ξk)e−2πi(α1k∆τ+(l−n/2)∆u)tje−2πi(α1ξk+ηl )tj .

With ∆τ , ∆u, and γp as above, the approximation

e−2πi(α1ξk+ηl )tj = e−2πiBζp t̂j ≈ e−πiBζp
(
1− 2πiBζp(t̂j − 1/2)

)
, ζp = ξk + ηl/α1
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for small B|ζp| now leads to (16) with

Yj =
y(tj)

fLC(tj)
eπi(2n−n

2)Qt̂j(28)

Xp = xk,lfLC(−k∆τ − ξk)e−πiBζp , X ′p = −2πiBζpXp(29)

Fj,p = exp
[
−2πiQpt̂j

]
, Gj,p = (t̂j − 1/2)Fjp.(30)

The sensing matrix A = [F G] obeys the same coherence bound in Lemma 1 and thus has
the performance guarantee given in Proposition 2. Once X and X ′ are reconstructed, we
can compute {ζp} by

ζp =
iX ′p

2πBXp

.

Even though we are unable to determine {ξk} and {ηl} separately, the sparsity patterns
of X and X determine the time delays and Doppler shifts up to the precision of ∆τ and
∆u, respectively. Moreover, the magnitude of the reflectivity can be recovered since |ρk,l| =
|xk,l | = |Xp |.

4.3. Quadratic chirp. For purpose of comparison, let us the signal model (4) with f = fQC.
The received signal takes the form

y(tj) =
n∑

k,l=1

xk,l exp
[
2πi
(α2

3
(tj − τk)3 +

α1

2
(tj − τk)2 + ω0(tj − τk)

)]
e−2πiultj

= fQC(tj)
n∑

k,l=1

xk,lfQC(−τk) exp
[
2πi
(
α2tj(τ

2
k − tjτk)− tj(α1τk − ul)

)]
.(31)

Instead of randomly time sampling, we use uniform sampling tj = j∆t, j = 1, 2, . . . ,m with
∆t = T/m. With the combined index p = k + n(l − 1) as before the linear system becomes

Yj =
y(tj)

fQC(tj)
(32)

Xp = xk,lfQC(−τk)(33)

Fjp = exp
[
2πi
(
α2tj(−tjτk + τ 2

k )− tj(α1τk − ul)
)]

(34)

Lemma 3. With the on-grid targets τk = k∆τ, ul = l∆u, the uniform sampling tj = j∆t, j =
1, 2, . . . ,m, as well as the parameters

α2 =
m

T 2∆τ
(or its integer multiple)(35)

α1 =
1

T∆τ
(or its integer multiple)(36)

∆u =
1

T
(or its integer multiple)(37)

T = m∆τ(38)

m = n
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the mutual coherence of F ∈ Cn×n2
in (34) becomes

(39) Fj,p = exp

[
−2πi

(
k
j2

n
+ (−k2 + k + l)

j

n

)]
, p = k + n(l − 1)

and satisfies the bound

µ(F) ≤ 1√
n

(40)

for any prime number n > 2.

The proof of Lemma 3 is given in appendix C. Lemma 3 in conjunction with Proposition 2
then implies that up to O(

√
n) targets can be recovered stably by BPDN with QC. As we will

see in the numerical examples below, QC with random sampling and uniform sampling have
essentially the same numerical performance even though we do not have the performance
guarantee for QC with random sampling (Fig. 4 and 5).

Note that with the choice of parameters in Lemma 3 the bandwidth becomes B = (n +
1)/∆τ . The coherence bounds for LC (Lemma 1) and QC (Lemma 3) are then comparable
with Q = n+ 1. And indeed, their numerical performances are similar to each other when
their bandwidth are same (Fig. 4 and 5) .

For off-grid targets we apply the same linearization technique with the parameters (35)-
(38) and obtain the following linear system:

Yj =
y(tj)

fQC(tj)
(41)

Xp = xk,lfQC(−k∆τ)eπi(2kξ̂k+ξ̂2k)eπimξ̂k/2e−2πimξ̂k t̂je−πiξ̂ke−πiη̂l(42)

X ′p = −2πiξ̂kXp, X ′′p = −2πiη̂lXp, ξ̂k =
ξk
∆τ

, η̂l =
ηl

∆u
(43)

Fjp = exp
[
2πi
(
t̂j(k

2 −mt̂jk) + t̂j(l − k)
)]

(44)

Gjp = (t̂j − 1/2)(−2k +m(t̂j − 1/2) + 1)Fjp(45)

Hjp = (t̂j − 1/2)Fjp(46)

Because of the complexity of the system we are unable to prove the incoherence property for
(44)-(46).

5. Compressive spotlight SAR

In this section, we consider the spotlight synthetic aperture radar (SAR) for a stationary
scene, represented by the reflectivity ρ(r) of spatial variables r only. For simplicity of the
presentation, we focus on the case of two dimensions r = (r1, r2). The adaption to three
dimensions is straightforward.

In standard radar processing, the received signal, upon receive, is typically deramped by
mixing the echo with the reference transmitted chirp [20]. Under the start-stop approxi-
mation and a far-field assumption the deramp processing produces samples of the Fourier
transform of the Radon projection, orthogonal to the radar look direction, of the scene re-
flectivity multiplied by a quadratic phase term. Furthermore, if the time-bandwidth product
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TB = α1T
2 is significantly larger than the total number n of resolution cells, the quadratic

phase term can be neglected and the deramped signal can be written simply as [22]

y(ν(t), θ) = F [ρ](ν(t) cos θ, ν(t) sin θ), ν(t) =
2

c0

(ω0 + α1(t− τ0))(47)

where F stands for the 2-d Fourier transform, θ is the look angle and τ0 the round-trip travel
time to the scene center. For a sufficiently small scene, ν(t) is effectively restricted to

ν ∈ 2

c0

[ω0, ω0 + α1T ].(48)

We will first discuss the ideal case of full spatial frequency band

ν ∈ [0, ν∗](49)

and consider the partial bandwidth case in Section 5.3. We will return to the narrow band
case (48) with

ν0 = 2ω0/c0 � 2α1T/c0

in Section 5.4.

5.1. Off-grid point targets. Let the computation domain be the finite square lattice

L =
{
`(p1, p2) : p1, p2 = 1, ...,

√
n
}
.(50)

The total number of cells n is a perfect square. For the off-grid targets represented by

ρ(r) =
∑
p∈Z2

ρpδ(r− `p− `hp), hp = (h1p, h2p), |h1p|, |h2p| < 1/2

the signal model (47) becomes

y(ν, θ) =
∑
p∈Z2

ρpe
−2πi`νd̂·(p+hp)

where d̂ = (cos θ, sin θ) denotes the direction of look. Following the same perturbation
technique

e−2πi`νd̂·(p+hp) = e−2πi`νd̂·p(1− 2πi`νd̂ · hp) +O(|`νd̂ · hp|2)

we consider the signal model

y(ν, θ) =
∑
p∈Z2

ρpe
−2πi`νd̂·p(1− 2πi`νd̂ · hp) + w(ν, θ)(51)

where w is the error.
Let (ak, bk), k = 1, . . . ,m, be i.i.d. uniform random variables on [−1/2, 1/2]2. Set νk, θk

such that

`νk cos θk = ak, `νk sin θk = bk(52)

and let Yk = y(νk, θk). For (52) to have a solution in (49) it is necessary that `ν∗ ≥ 1/2 or
equivalently ` ≥ 1/(2ν∗). In the small scene limit ν∗ = ω0 + α1T , the resolution limit

` ≥ c0

4(ω0 + α1T )
(53)

is half of the standard resolution limit for passive radars owing to the two-way travel of the
active radar signal.
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Define the primary and secondary target vectors by

Xl = ρp, X ′l = −2πi`hpXl, l = (p2 − 1)
√
n+ p1

where (Xl) ∈ Cn, (X ′l) ∈ C2n. The approximate signal model takes the form (16) with

Fk = e−2πi`νkd̂k·p, Gk = e−2πi`νkd̂k·pνkd̂k

which is the two-dimensional version of (30).
The coherence bound given in Lemma 1 holds true with a slight adjustment of the con-

stants. Thus this system has the performance guarantee stated in Proposition 2.

5.2. Localized target. Instead of point targets, we now consider extended targets that are
sparse in the pixel basis. We pixelate the scene with n pixels of size `. The centers of the
pixels are identified as the finite square lattice L. Let �p denote the p-th pixel, ∀p ∈ N2.

Suppose the scene is represented in the pixel basis as

ρ =
∑
p∈N2

Ip ρp

where Ip is the indicator function of �p. Then (47) becomes

y(ν, θ) = `2
∑
p

ρpe
2πi`νd̂·p sin (π`ν cos θ)

π`ν cos θ

sin (π`ν sin θ)

π`ν sin θ
, p ∈ N2.(54)

We shall reconstruct {ρj} from eq. (54) with the measurement data y(νk, θk), k = 1, . . . ,m
where νk is the spatial frequency corresponding to the look angle θk.

Let νk, θk be determined as in (52) with i.i.d. uniform random variables (ak, bk), k =
1, . . . ,m, on [−1/2, 1/2]2 and

Yk =
y(νk, θk)

`2 sinc ak · sinc bk
.

Then we can rewrite (54) as the standard CS problem with a random partial Fourier matrix
of two dimensions

Yk =
∑
j

ρje
2πi(akp1+bkp2), j = (p2 − 1)

√
n+ p1

which has the same form as the one for on-grid targets and thus the CS performance guar-
antee given in Proposition 1 if the target is sufficiently sparse in the pixel basis.

The performance guarantee can be extended to the case of piecewise constant targets if the
`1 minimization in BPDN is replaced by the total-variation (TV) minimization. A version
of the performance guarantee for TV-minimization is given in [15].

5.3. Distributed target. Finally we consider the case of distributed targets which do not
have a sparse representation in the pixel basis. Although the Fourier basis may seem at
first a natural choice for representing such targets it is not suitable for our purpose since the
scene of a sparse Fourier representation will yield a sparse set of data which will be missed
with high probability by any sparse sampling scheme.

Instead, we represent the reflectivity function in the Littlewood-Paley basis with the
mother wavelet

ψ(r) = (π2r1r2)−1(sin (2πr1)− sin (πr1)) · (sin (2πr2)− sin (πr2))(55)
11



which has the following Fourier transform

ψ̂(ξ, η) =

{
1, 1

2
≤ |ξ|, |η| ≤ 1

0, otherwise.
(56)

The following set of functions

ψp,q(r) = 2−(p1+p2)/2ψ(2−pr− q), p,q ∈ Z2(57)

with the notation
2−pr = (2−p1r1, 2

−p2r2)

forms an orthonormal basis in L2(R2) [10]. In the Littlewood-Paley basis we have the
expansion

ρ(r1, r2) =
∑

p,q∈Z2

ρp,qψp,q(r1, r2)(58)

for any square integrable function.

Let d̂k = (cos θk, sin θk), k = 1, . . . ,m be the direction of look and let νk be the spatial
frequency corresponding to the look angle θk. Taking the Fourier transform we obtain from
(58) that

y(νk, θk) = 2π
∑

p,q∈Z2

2(p1+p2)/2ρp,qe
−2πiνk2pd̂k·qψ̂(νk2

pd̂k), k = 1, ..., n.(59)

Now we describe how to select (θk, νk), k = 1, . . . ,m. First we define some notation. Let

l =

p−(1,1)∑
j=(−p∗,−p∗)

(2nj + 1)2 + (q1 + np)(2np + 1) + (q2 + np + 1), |q|∞ ≤ np, |p|∞ ≤ p∗,

k =

p′−(1,1)∑
j=(−p∗,−p∗)

(2mj + 1)2 + (q′1 +mp′)(2mp′ + 1) + (q′2 +mp′ + 1), |q′|∞ ≤ mp′ , |p′|∞ ≤ p∗

be the column and row indexes, respectively, of the sensing matrix (see below) for some
mp, np which are the numbers of row and columns, respectively of, the block p (see below)
and p∗ ∈ N which determines the maximum number, 2p∗+1, of dyadic scales. It is important
to keep in mind the relationship between k, l and (p′,q′), (p,q) in order to follow the scheme
described below.

The main idea is to select (θk, νk), k = 1, . . . ,m such that the sensing matrix becomes
block-diagonal with each block being a random partial Fourier matrix in two dimensions

which has the CS performance guarantee given in Proposition 1. To this end, νkd̂k should
be randomly and uniformly distributed on [−1/2, 1/2]2. This can be realized by the following
scheme which is a modification of the sampling scheme presented in [14].

For fixed p′ = (p′1, p
′
2) ∈ Z2, let (ak, bk) be independent, uniform random variables on

[−1/2, 1/2]2 and define

ãk =

{
1/2 + ak, ak ∈ [0, 1/2]
−1/2 + ak, ak ∈ [−1/2, 0]

b̃k =

{
1/2 + bk, bk ∈ [0, 1/2]
−1/2 + bk, bk ∈ [−1/2, 0]

.

12



Clearly,

ãk, b̃k ∈ [−1,−1/2] ∪ [1/2, 1].(60)

Let νk, θk such that

νk2
p′1 cos θk = ãk(61)

νk2
p′2 sin θk = b̃k.(62)

The constraint (60) then implies

νk ≥ max (2−p
′
1−1, 2−p

′
2−1)(63)

meaning that the spatial frequency must be greater than half of the inverse of the resolved
scale. Altogether, (60)-(62) implies that for the Littlewood-Paley scheme to work for any
specific scale, we need about 50% bandwidth instead of the full bandwidth such as given in
(49).

Define the sensing matrix A = [Ak,l] with

Ak,l =
1

2np + 1
e−sgn(ak)πiq1e−sgn(bk)πiq2ψ̂(νk2

pd̂k)e
−2πiνk2pd̂k·q.(64)

By (56), (61) and (62) it is clear that Ak,l are zero if p 6= p′. Indeed, we have

ψ̂(νk2
pd̂k)e

−2πiνk2pd̂k·q = ψ̂(2p−p′(ak, bk))e
2πi2p−p′ (ak,bk)·q

which vanishes if p′ 6= p thanks to the support constraint of ψ̂. Consequently the sensing
matrix is the block-diagonal matrix with each block (indexed by p) in the form of random
Fourier matrix

Ak,l =
1

2mp + 1
e2πi(q1ak+q2bk)(65)

where sgn(ak) and sgn(bk) are, respectively, the signs of ak and bk. The random phase term
esgn(ξk)πiq1esgn(ηk)πiq2 can be further absorbed in the definition of data and plays no role in
the performance analysis. The rest of the sensing elements form a random partial Fourier
matrix.

Let X = (Xl) ∈ Cn be the target vector with

Xl = 2π(2mp + 1)2(p1+p2)/2ρp,qe
sgn(ak)πiq1esgn(bk)πiq2

and

n =

p∗∑
j1=−p∗

p∗∑
j2=−p∗

(2nj + 1)2.

The block-diagonal structure of A implies that the target structures of different dyadic scales
are decoupled and can be determined separately by CS techniques.

Under the assumptions of Proposition 1 we obtain the following theorem.

Theorem 2. Suppose that for a given p, |p| ≤ p∗, (11) is satisfied for np,mp and the target
sparsity sp on the scale 2p. Suppose

νk ≥ 2max (−p1−1,−p2−1)(66)

and that the data are contaminated by noise of `2-norm εp.
13



Let al, bl be independently and uniformly distributed on [−1/2, 1/2]. Let the look directions

and the spatial frequencies be determined by (61)-(62). Then the BPDN solution X̂p satisfies

‖X̂p −Xp‖2 ≤ C1s
−1/2
p ‖Xp −X(sp)

p ‖1 + C2εp(67)

with probability at least 1− β where C1 and C2 are absolute constants.

Remark 1. In the small scene limit, the spatial frequency range (48) and (66) imply the
resolution limit

2p ≥ c0

4(ω0 + α1T )

which is the same as (53).

5.4. High frequency/narrow band limit. The preceding sampling scheme for SAR may
be a bit cumbersome and unpractical. A far more practical sampling scheme is to indepen-
dently select θk, k = 1, . . . ,m1 independently from [0, 2π] and νl, l = 1, . . . ,m2 from (48).
We also want to obey the spatial frequency constraint (48) with α1T � ω0. In particular
we assume that look angles θk are i.i.d. with the probability density function f(θ). In what
follows we shall consider the high frequency limit and let

ν0`� 1, ν0 = 2ω0/c0(68)

and α1T be fixed. We will consider on-grid targets only. We prove in Appendix C the
following coherence bound.

Lemma 4. Suppose

n ≤ δ

8
eK

2/2, δ,K > 0.(69)

Then the sensing matrix satisfies the coherence bound

µ < µ̄+

√
2K
√
m1

(70)

with probability greater than (1− δ)2 where in general χi (resp. χs) satisfies the bound

µ̄ ≤ cγ(1 + ν0`)
−1/2‖f‖γ,∞(71)

where ‖ · ‖γ,∞ is the Hölder norm of order γ > 1/2 and the constant cγ depends only on γ.

Note that the above coherence bound does not require full, circular view of the scene,
but the smoothness of the sampling density function f which depends indirectly on the size
of the support of f . Lemma 4 in conjunction with Proposition 2 yield an error bound for
BPDN which depends entirely on the sampling angles and high base frequency and thus is
a very crude estimate.

To see how spatial frequency sampling can improve the coherence bound, consider the
case of circular SAR with randomly and uniformly distributed looks on [0, 2π]. Then the
argument in Appendix C shows that

µ̄ = max
p6=p′

1

m1m2

m2∑
j=1

E

[
m1∑
k=1

e−2πi`νj d̂k·(p−p′)

]
= max

p6=p′

1

m2

m2∑
j=1

J0(2π`νj|p− p′|)(72)
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where the zeroth order Bessel function J0 has the large-argument asymptotic

J0(z) =

√
2

πz
{cos (z − π/4) +O(1/|z|)} , z � 1.(73)

On the one hand, the worst case bound is

J0(2π`νj|p− p′|) < c√
`ν0

, ∀p 6= p′, ∀j(74)

for some c > 0. On the other hand, if the standard resolution criterion

`α1T/c0 ≥ 1/2(75)

is satisfied, then the argument 2π`νj|p− p′| ranges over at least one period, with νj in (48)
and p,p′ ∈ L, and one can deliberately select a sequence of spatial frequencies to minimize
the right hand side of (72) in view of the sinusoidal nature of the leading asymptotic in
(73). In principle, the leading order term in (73) can be made to cancel out which yields the
improved bound

µ̄ = O((`ν0)−1).

Likewise, the fluctuation part of µ, which is bounded by the second term of the right hand
side of (70), can also be reduced by an irregular sampling of spatial frequencies.

More generally, let f be represented by the Fourier series

f(θ) =
∑
l

ale
ilθ.

Then

µ̄ = max
p6=p′

2π
∑
l

ale
il(θp′−p+π/2)Jl(2π`νj)

where Jl is the Bessel function of order l and θp′−p the angle of p′ − p (cf. (91)). The large
argument asymptotic for Jl

Jl(z) =

√
2

πz

{
cos (z − lπ/2− π/4) +O(|z|−1)

}
, z � 1(76)

suggests a similar reduction of µ̄ under (75) by judicious choice of spatial frequencies. The
|z|−1/2 decay of the asymptotic (76) indicates the spatial frequencies should weigh (slightly)
more heavily on large spatial frequencies.

6. Numerical examples

In the following simulations, we use YALL1 [27] to solve BPDN. BPDN, however, does
not take advantage of the common support of X and X ′. The off-grid perturbations {ξk}
are i.i.d. uniform random variables in [−0.4∆τ, 0.4∆τ ].

In the first set of simulations, we test the case of immobile targets which produce noiseless
signals according to (12) with the parameters m = 64, n = 128, SNR = 100, and Q = 2.

Fig. 1 shows the results of BPDN reconstruction of 10 well separated targets. Reconstruc-
tion based on eq. (8)-(10) is clearly superior to that based on eq. (13)-(15). Fig. 2 shows
an even greater improvement when the targets are closely spaced.
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Figure 1. BPDN reconstruction (in blue) of off-grid targets with (left) eq.
(8)-(10) and (right) eq. (13)-(15). Red circles represent the exact values.
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Figure 2. BPDN reconstruction (in blue) of closely spaced targets separated
by 0.2∆τ with (left) eq. (8)-(10) and (right) eq. (13)-(15). Red circles repre-
sent the exact values.

For the second set of simulations, we test the case of moving targets. The parameters are
chosen as m = 150, n = 625, s = 10, SNR = 100, and Q = 2.

Fig. 3 shows significant improvement of reconstruction based on eq. (28)-(30) over that
based on eq. (25)-(27).

In FIgure 4 and 5 we present numerical comparisons between LC and QC with the following
parameters

• For LC, ∆τ = 1, ∆u = 1/m, m = n = 47, T = 1/∆u = m, and the corresponding
bandwidth is B = 47.
• For QC, ∆τ = 1, ∆u = 1/m, m = n = 47, ∆t = ∆τ , T = n∆t. By setting α1 = 0,

the corresponding bandwidth is B = 47.

In both cases we set the carrier frequency ω0 = 1000. In addition to equally-spaced sampling
in (34) we also consider random sampling with QC as in the case of LC.
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Figure 3. BPDN reconstruction of |xk,l | with (left) eq. (25)-(27) and (right)
eq. (28)-(30). The top plots are the combined vector view and the bottom are
the range-Doppler view.

In addition to BPDN, the greedy algorithm, Subspace Pursuit (SP) [9], is also used for
reconstruction as the greedy algorithm tends to be much faster than solving BPDN. More-
over, one can easily modify the SP algorithm to take advantage of the prior information
suppX = suppX ′ in the case of off-grid targets (see (14) & (29)). Two definitions of “suc-
cess” in recovery are used: the first one is defined by the relative mean square error (MSE)
less than 0.1 and the second one is defined by exact recovery of the target support.

Fig. 4 and 5 show essentially no difference in performance between LC and QC as long
as their bandwidth is the same. There is also no difference in performance between equally-
spaced sampling and random sampling (labelled as “randt” in Fig. 4, 5) with QC. Fig. 4
shows that SP slightly outperforms BPDN (as implemented by YALL1).

For the case of localized extended targets, we use the 250 × 200 aerial image of Boston’s
Logan airport (Fig 6 left). The image with 19757 nonzero pixels is not strictly sparse but may
be considered compressible. For the sake of speed we use SP with sparsity parameters much
smaller than the actual sparsity, 19757, of the scene. The reconstruction with m = 10000
and sparsity parameter 2000 captures main features of the scene (Fig 6 middle). When the
number of data increases to m = 15000 the reconstruction with sparsity parameter 4000
shows more fine-scale details (Fig 6 right).
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Figure 4. Success probabilities of (left) BPDN and (right) SP reconstructions
with 1% noise.
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Figure 5. Success probabilities of SP reconstruction with (left) 5% and the
full data m = 47 noise and (right) 1% noise (right) and an half data m = 23.
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Figure 6. The 250×200 scene (left) and the SP reconstruction with (middle)
m = 10000 and (right) m = 15000.

For the case of distributed targets, we simulate the data with the reflectivity function
which depends only on one variable ρ(r1) and has a sparse representation in the Littlewood-
Paley basis. Figure 7 shows the result of reconstruction with the following parameters:
p∗ = 2, np = 100,∀p; for p = −2,−1, 0, 1, 2, sp = 12, 24, 13, 24, 23,mp = 36, 64, 36, 64, 64, ε =
0.5134, 1.4849, 0.6520, 1.0274, 1.3681 equivalent to the relative noise level = 0.0500, 0.0649,
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Figure 7. Imaging of a continuous scene in the presence of roughly 6% noise:
The red-solid curve (top) is the exact profile and the blue ∗ shows the recon-
structed profile.

0.0494,0.0640, 0.0698. The resulting relative errors of reconstruction are 0.1941, 0.1240,
0.2498, 0.2361, 0.1502.

7. Conclusion

We have explored compressed sensing approach to monostatic radar as well as spotlight
SAR with chirped signal. In particular, we have proposed a simple method for dealing with
off-grid targets and established a performance guarantee for the method.

We have extended our approach to the spotlight SAR in the tomographic formulation. We
have proposed sampling schemes to deal with several classes of sparse targets under various
bandwidth constraints and showed that the CS schemes can achieve standard resolution
limits with sparse sampling. Our numerical experiments are consistent with the theoretical
results.

Appendix A. Proof of Lemma 1

Proof. We prove the coherence bound for the matrix A = [F G].
The k-th column vector Ak of A is given by

Ajk =

{
e−2πiQkt̂j , k ≤ n

(t̂j − 1/2)e−2πiQ(k−n)t̂j , k > n.

Note that ‖Ak‖2 = m, k ≤ n and E[‖Ak‖2] = m
12
, k > n. Consequently, the scalar product of

two distinct columns of A has three possible forms:

bkk′ =
m∑
j=1

a(t̂j) exp
[
2πiQ(k − k′)t̂j

]
, a(tj) = 1, (t̂j − 1/2), or (t̂j − 1/2)2 ,
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for k, k′ = 1, . . . , n. When a(tj) = 1 or (t̂j − 1/2)2 both columns are drawn from F or G and

thus k 6= k′. When a(tj) = t̂j − 1/2, one column is drawn from F and the other from G. In
the last case, k and k′ are arbitrary.

Let Sm =
∑m

j=1 Uj, Tm =
∑m

j=1 Vj where

Uj = a(t̂j) cos
[
2πQ(k − k′)t̂j

]
, Vj = a(t̂j) sin

[
2πQ(k − k′)t̂j

]
are independent (for different j) random variables in [−1, 1]. We have

|bkk′ | ≤ |bkk′ − E(bkk′)|+ |E(bkk′)|
= |Sm + iTm − ESm − iETm |+ |E(Sm + iTm)| .

Recall the Hoeffding inequality.

Proposition 4. Let U1, . . . , Um be independent random variables, and Sm =
∑m

j=1 Uj. As-

sume that Uj ∈ [u, v], j = 1, 2, . . . ,m almost surely, then we have

(77) P(|Sm − ESm | ≥ mt) ≤ 2 exp

[
− 2m2t2∑

j(v − u)2

]
for all positive t.

Choosing t = K/
√
m for some constant K, we have

P(|Sm − ESm| ≥
√
mK) ≤ 2 exp

[
−K2/2

]
.

Note that the quantities Sm depend on k− k′ but there are at most n− 1 different values.
The union bound yields

P(max
k 6=k′
|Sm − ESm | ≥

√
mK) ≤ 2(n− 1) exp

[
−K2/2

]
,

and similarly

P(max
k 6=k′
|Tm − ETm | ≥

√
mK) ≤ 2(n− 1) exp

[
−K2/2

]
.

We have

P(max
k 6=k′
|bkk′ − Ebkk′ | <

√
2mK)

= P(max
k 6=k′
|Sm + iTm − ESm − iETm | <

√
2mK)

>
(

1− 2(n− 1) exp
[
−K2/2

] )2

> (1− δ)2

if δ > 2n exp [−K2/2].
Now let us estimate the mean E(bkk′) or E(Sm+iTm) for k 6= k′. Note that t̂j, j = 1, . . . ,m,

are independently and uniformly distributed in [0, 1]. We have three different cases:

(1) For a(t̂j) = 1,

E(bkk′) = m

∫ 1

0

e2πiQ(k−k′)t dt = 0.
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(2) For a(t̂j) = t̂j − 1/2,

E(bkk′) = m

∫ 1

0

(t− 1/2)e2πiQ(k−k′)t dt = meπiQ(k−k′) (−1)(k−k′)Q

2πi(k − k′)Q
, k 6= k′,

and thus

|E(bkk′)| ≤
m

2πQ
, k 6= k′.

On the other hand,

E(bkk) = m

∫ 1

0

(t− 1/2) · 1 dt = 0.

(3) For a(t̂j) = (t̂j − 1/2)2,

E(bkk′) = m

∫ 1

0

(t− 1/2)2e2πiQ(k−k′)t dt = meπiQ(k−k′) (−1)(k−k′)Q

(2π(k − k′)Q)2
, k 6= k′

and thus

|E(bkk′)| ≤
m

(2πQ)2
.

For k, k′ ≤ n, since ‖Ak‖2 = m,

bkk′ ≤
C

m

√
2mK = C

√
2K√
m
, k, k′ ≤ n(78)

for some universal constant C, with probability greater than (1− δ)2.
On the other hand, for k > n,

‖Ak‖2
2 =

∑
j

(tj − 1/2)2

which is a sum of m i.i.d. random variables of mean 1/12 on [0, 1/4]. Applying Hoeffding
inequality with t = 1/24, we have

P
(
|‖Ak‖2

2 −
m

12
| ≥ m

24

)
≤ 2e−m/18

and thus

P
(
‖Ak‖2

2 ≤
m

24

)
≤ 2e−m/18.

We conclude from these observations that

bkk′ ≤
C

m

[√
2mK +

m

2πQ

]
= C ·

[√
2K√
m

+
1

2πQ

]
, k ≤ n < k′(79)

bkk′ ≤
C

m

[√
2mK +

m

(2πQ)2

]
= C ·

[√
2K√
m

+
1

(2πQ)2

]
, k, k′ > n(80)

with probability at least (1− δ)2 − 4e−m/18. (78)-(80) are what we set out to prove.
�
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Appendix B. Proof of Lemma 2

Proof. Observe that AA∗ = FF∗ + GG∗ with

(FF∗)i,j =
n∑
k=1

e2πiQ(t̂j−t̂i)k = e2πiQ(t̂j−t̂i) · 1− e2πiQ(t̂j−t̂i)n

1− e2πiQ(t̂j−t̂i)

(GG∗)i,j =
n∑
k=1

(t̂i − 1/2)(t̂j − 1/2)e2πiQ(t̂j−t̂i)k = (t̂i − 1/2)(t̂j − 1/2)e2πiQ(t̂j−t̂i) 1− e2πiQ(t̂j−t̂i)n

1− e2πiQ(t̂j−t̂i)
.

Thus

|(AA∗)i,j| =
(
1 + (t̂i − 1/2)(t̂j − 1/2)

) ∣∣∣∣∣sin [πQ(t̂j − t̂i)n]

sin [πQ(t̂j − t̂i)]

∣∣∣∣∣(81)

which can be controlled if the random variables Zij = Q(t̂j − t̂i) are bounded away from
integers. Zij has the density

fZ = I[0,Q] ∗ I[0,Q]

since t̂i, t̂j are independently and uniformly distributed in [0, 1]. Clearly fZ is a triangular
function on [0, 2Q] and satisfies |fZ | ≤ 1/Q. Let

ζ = min
i 6=j

min
k∈Z
{|Zij − k|} .

Hence, for small b > 0,

P(ζ > b) > (1− C1b)
m·(m−1)

where the power counts for all possible pairs (t̂i, t̂j), 1 ≤ i 6= j ≤ m. Thus, with probability
greater than (1− C1b)

m·(m−1) we have

|(AA∗)i,j | <
2

πb
, i 6= j.

By choosing b = 2(m−1)
nπ

and applying Gershgorin circle theorem, we have ‖AA∗ − nIm‖2 < n,

or equivalently ‖A‖2
2 ≤ 2n. �

Appendix C. Proof of Lemma 3

Proof. Recall Weyl’s theorem (a generalized version of Gauss sum) [6], [23].

Proposition 5. Let r ∈ N, r ≥ 2, and the prime number q > r. Then∣∣∣∣∣
q∑

k=1

exp
(

2πi(ark
r + ar−1k

r−1 + · · ·+ a2k
2 + a1k)/q

)∣∣∣∣∣ ≤ (r − 1)
√
q

provided aj ∈ N for all j = 1, 2, . . . , r and (a1, a2, . . . , ar) 6= (0, 0, . . . , 0) mod q.

Assume also τk = k∆τ and ul = (l−n/2)∆u. The inner-product of the p-th and the p′-th
columns of F is then

(82) 〈Fj,p, Fj,p′〉 =
m∑
j=1

exp
[
−2πi

(a2

m
j2 +

a1

m
j
)]

, p 6= p′
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where

a2 = α2m∆t2∆τ(k − k′)
a1 = −α2m∆t∆τ 2(k2 − k′2) + α1m∆t∆τ(k − k′) +m∆t∆u(l − l′).

To ensure that a2 ∈ N, we set

α2 =
1

m∆τ∆t2
(or its integer multiple)

and, similarly, for a1 ∈ N we set

α1 =
1

m∆t∆τ
(or its integer multiple)

∆u =
1

m∆t
(or its integer multiple).

Furthermore setting

m = n, ∆t = ∆τ =
1

n∆u

we obtain

a2 = k − k′, a1 = −(k2 − k′2) + (k − k′) + (l − l′)

which do not have m as a common factor since |k − k′| ≤ n − 1. The sensing matrix F in
(34) becomes

(83) Fj,p = exp

[
−2πi

(
k
j2

n
+ (−k2 + k + l)

j

n

)]
.

If we set α1 = 0, the resulting sequence is called Alltop sequence [19] of bandwidth B = n/∆τ
and the resulting sensing matrix becomes

(84) Fj,p = exp

[
−2πi

(
k
j2

n
+ (−k2 + l)

j

n

)]
.

To apply Weyl’s theorem, we need only to check that (a1, a2) 6= (0, 0) mod n. Since
|k − k′| , |l − l′| ≤ n − 1, a2 = 0 mod n if and only if k = k′, which implies a1 = 0 if and
only if l = l′. This can not happen if p 6= p′. By Weyl’s theorem,

〈Fj,p, Fj,p′〉 ≤
√
n.

implying

µ(F) = max
p 6=p′
| 〈Fp, Fp′〉 |
‖Fp‖‖Fp′‖

≤ 1√
n
.

�
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Appendix D. Proof of Lemma 4

Proof. The mutual coherence has the form

max
p6=p′

1

m1m2

∣∣∣∣∣
m2∑
j=1

m1∑
k=1

e−2πi`νj d̂k·(p−p′)

∣∣∣∣∣ .(85)

Consider the first summation over k = 1, ..., p. Let

Pk = cos (2π`νjd̂k · (p− p′)), Qk = sin (2π`νjd̂k · (p− p′))

and

Sm1 =

m1∑
k=1

Pk, Tm1 =

m1∑
k=1

Qk.

Then the summation can be bounded by∣∣∣∣∣
m1∑
k=1

e−2πi`νj d̂k·(p−p′)

∣∣∣∣∣ ≤√|Sm1 − ESm1|2 + |Tm1 − ETm1|2 +
√
|ESm1|2 + |ETm1 |2(86)

We apply the Hoeffding inequality to both Sm1 and Tm1 . With

t = K/
√
m1, K > 0

we obtain

P
[
m−1

1 |Sm1 − ESm1| ≥ K/
√
m1

]
≤ 2e−K

2/2(87)

P
[
m−1

1 |Tm1 − ETm1| ≥ K/
√
m1

]
≤ 2e−K

2/2.(88)

Note that the quantities Sm1 , Tm1 depend on p − p′ but they possess the symmetry:
Sm1(p−p′) = Sm1(p

′−p), Tm1(p−p′) = −Tm1(p
′−p). Furthermore, a moment of reflection

reveals that thanks to the square symmetry of the lattice there are at most n − 1 different
values |Sm1| and |Tm1| among the n(n− 1)/2 pairs of (p,p′).

We use (87)-(88) and the union bound to obtain

P
[
max
p 6=p′

m−1
1 |Sm1 − ESm1| ≥ K/

√
m1

]
≤ 2(n− 1) · e−K2/2

P
[
max
p6=p′

m−1
1 |Tm1 − ETm1| ≥ K/

√
m1

]
≤ 2(n− 1) · e−K2/2

where the factor 4n is due to the structure of square lattice. Hence, by (86)

P

[
max
p6=p′

m−1
1

∣∣∣∣∣
m1∑
k=1

e−2πi`νj d̂k·(p−p′) − E

[
m1∑
k=1

e−2πi`νj d̂k·(p−p′)

]∣∣∣∣∣ <
√

2

m1

K

]
> (1− 2(n− 1)e−K

2/2)2.(89)

By (69) the right hand side of (89) is greater than (1− δ)2.
Consider the identity

1

m1

E

[
m1∑
k=1

e−2πi`νj d̂k·(p−p′)

]
=

∫ 2π

0

e−2πi`νj d̂·(p−p′)f(θ)dθ, d̂ = (cos θ, sin θ).(90)
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Expanding f in the Fourier series

f(θ) =
∑
l

ale
ilθ

and denoting the angle of p′ − p by θp′−p we can write (90) as∑
l

ale
ilθp′−p

∫ 2π

0

eilθe2πi`νj |p−p′| cos θdθ

= 2π
∑
l

ale
il(θp′−p+π/2)Jl(2π`νj)(91)

where Jl is the Bessel function of order l. The large argument asymptotic for Jl

Jl(z) =

√
2

πz

{
cos (z − lπ/2− π/4) +O(|z|−1)

}
, z � 1

suggests the decay estimate (71).
Alternatively and more directly, the asymptotic of (90) can be derived by the method of

stationary phase (Theorem XI. 14 and XI. 15 of [26]).

Proposition 6. Let gp,p′(θ) = d̂ · (p− p′)/|p− p′| which is in C∞([−π, π]), ∀p,p′ ∈ L.
(i) Suppose d

dθ
gp,p′(θ) 6= 0,∀θ ∈ [a, b],∀p,p′ ∈ L. Then for all f ∈ Ch

0 ([a, b])∣∣∣∣∫ e−2πi`νj |p−p′|gp,p′ (θ)f(θ)dθ

∣∣∣∣ ≤ ch(1 + ω|p− p′|)−h‖f‖h,∞(92)

for some constant ch independent of f . Moreover, since {gp,p′ : p,p′ ∈ L} is a compact
subset of Ch+1([a, b]), the constant ch can be chosen uniformly for all p,p′ ∈ L.

(ii) Suppose d
dθ
gp,p′(θ) vanishes at θ∗ ∈ (a, b). Since d2

dθ2
gp,p′(θ∗) 6= 0, there exists a constant

ct, t > 1/2 such that∣∣∣∣∫ e−2πi`νj |p−p′|gp,p′ (θ)f(θ)dθ

∣∣∣∣ ≤ ct(1 + ω|p− p′|)−1/2‖f‖t,∞(93)

where the constant ct is independent of p,p′ ∈ L.

Combining the estimates for (90) using (89) and the identity

UV = (U − Ū)(V − V̄ ) + Ū(V − V̄ ) + V̄ (U − Ū) + Ū V̄

we obtain (70) with probability greater than 1− 2δm2.
�
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