ANOMALOUS DIFFUSION IN RANDOM FLOWS
ALBERT FANNJIANG*
1. Introduction. The simplest model of turbulent transport is the
random motion of Brownian particles passively convected by random, in-

compressible velocity fields. The particle path is the solution of the stochas-
tic differential equation

(1.1) de(t) = u(x(t))dt + V2kdw(t)

where w(t) is the standard Brownian motion, £ > 0 is the molecular diffu-
sion and the velocity field w is random stationary, divergence free:

(1.2) V-u(z) =0,
and has zero mean
(1.3) (u) =0.

Here and below (-) stands for the ensemble average. The concentration
p(z,t) of passive scalar particles, whose sample path x(t) defined by (1.1),
satisfies the convection-diffusion equation

op(z, 1)

(1.4) o

+u(x) - Vp(z,t) = kAp(x,t).

The coupling between the molecular diffusion and the randomness velocity
gives rise to many interesting, long time and large scale behaviors of solu-
tions of (1.1) and (1.4). The object of interest is the long time, large space
scaling laws which take many different forms. The simplest one is perhaps

(1.5) (E(|z|2(t))) ~tP, ast— o0

with the root-mean-square displacement expressed as a function of time,
where E denotes the average w.r.t. the Brownian motion. The problem is
to compute the exponent p from (1.1) or (1.15) which is often difficult to
do analytically (cf. [14],[4]).

In general scaling laws can be viewed roughly as the relationship be-
tween the space scale and the time scale, whichever is used as the param-
eter, associated with the solutions of equation (1.1) or (1.4). In this spirit,
(1.5) can be interpreted as

(1.6) space ~ (time)P.
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When p = 1/2, it is called normal diffusion; p > 1/2, superdiffusion;
p < 1/2, subdiffusion. Super- and sub-diffusions are also called anoma-
lous diffusions. It will be clear later that subdiffusion does not occur in
incompressible flows — the diffusivity is always enhanced — namely,

(1.7) p>1/2.

In the present paper, we take a different approach: We shall study the
asymptotics of the boz diffusivity matrix o, of scale n as n tends to infinity.
The box diffusivity o, (e1) of scale n in the direction of e; may be defined
as the energy integral

K
(1.8) on(e1) =one; e = o - Vp1-Vp1 de
for the steady-state problem
(1.9) kAp1(x) +u(x) - Vpi(x) =0, in [0,n]?

with the mean of the periodic concentration gradient maintained at e;

1

1.10 —
(1.10) n Jig

Vp1 =e;.

Because of the periodicity of Vp; and (1.10) we can write p1 () = 21+ p(z)
with a periodic function p. The local linear constitutive law

(1.11) D, =kVp1 +up

relates the concentration p; to the flux D;. The average flux relates again
to the average concentration gradient, which is e, linearly

1

(1.12) -
¢ Jio,n)a

Dl = Oné€i,

where the proportionality is exactly the box diffusivity o,, can be seen by
the energy equality for (1.9).

Our strategy is to study the asymptotic scaling law of the energy inte-
gral (1.8)

(1.13)  {on(e1)) = %/ (Vp1-Vp1) de ~n?, asn— oo
[0,n]¢

using a variational method and its dual. If the scaling exponent ¢ is con-
sistent with the scaling exponent p then, in view of (1.6), we expect that

(1.14) g=2-1/p

following simple dimensional analysis.
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Another quantity, the mean exit time p(x) = Eg(7,), where 7, is the
exit time from the box starting at « at ¢ = 0, can be studied the same way.
The function p(x) satisfies the PDE

(1.15) kAp(z) + u(x) - Vp(z) = -1, in [0,n]?

with zero Dirichlet data on the boundary of the box [0,n]?. Suppose that
the average value satisfies the scaling law
1

(1.16) — {p(x)) de ~n", asn— oo
= Jio,ne

then by the energy estimate for (1.15) we have the same scaling law for the
energy integral

(1.17) id/ (Vp-Vp)dx ~n", asn— oc.
= Jjo,n)

By dimensional analysis, we expect from (1.6) that
(1.18) r=1/p.

Both above problems can be put into the form
(1.19) kAp(x) +u(z) - Vp(z) = f()

where f(x) = u(x) - e; for the box diffusivity and f(x) = —1 for the mean
exit time. The boundary condition is the periodic condition for the box
diffusivity and the homogeneous Dirichlet condition for the mean exit time.
In general the forcing term f(x) can be any stationary random functions
which correspond to various ways of probing the system. Suppose that
their corresponding energy integrals have scaling laws, such as (1.13) and
(1.17), then we have the whole collection of scaling exponents associated
with the steady state problem (1.19) with forcing. Except for the case
of normal diffusion p = 1/2 (cf. [8]), we do not know if all the scaling
exponents are consistent and/or can be reduced to the exponent p in (1.5)
in the sense of dimensional analysis as carried out for the box diffusivity
and the mean exit time.

In this paper, we focus on the scaling exponent of the box diffusivity
because the corresponding forcing term can be absorbed by imposing the
mean gradient condition (1.10) which is easiest to deal with by the varia-
tional duality argument. We will continue to write the exponent ¢ in the
form

(1.20) g=2—1/A

for some A > 1/2, and compare A to the exponent p in (1.5) since they
have the same unit and should be the same on physical grounds.
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To facilitate the variational approach, we write the equation (1.9) in
the divergence form
(1.21) V- (kI+¥)Vp =0
using the stream matrix ¥(x) defined by

(1.22) V- =u.

In three dimension, the stream matrix ¥(x) is related to the vector po-

tential 1 (xz) = (Y1(x),Y2(x),¥3(x)), V x ¥(x) = u(zx), in the following
way

0 —v3 1o
(1.23) U(z) = V3 0 —tn
—12 (2 0

In two-dimension, the stream matrix takes the form
0 —¢(z) )
1.24 U(x) = ,
(124 @={ 4oy %

where ¢() is the usual stream function, V¢ = u, in fluid mechanics. To
determine ¥ uniquely we demand that the vector potential @ be divergence-
free

(1.25) Veh=0

and 9(0) = 0. In this paper, we consider the stream matrices that sat-
isfy the full discrete symmetry (such as m/2-rotational symmetry in two
dimension , see Section 4).

Notice that the stream matrix is in general not stationary unless the
velocity field has fast decaying correlation and the dimension is three or
higher (cf. Section 2 for the precise condition). In fact, our analysis shows
that scaling exponent ¢ is directly related to the far-field behavior of non-
stationary stream matrix ¥ and is given by

(1.26) a=p

where p is the growth index of the stream matrix

(1.27) V) = ¥O)P) ~n¥, p<1

as n — 00,V # 0. We note that dimensionally

2

(1.28) 9] = P

which is the same as that of the box diffusivity and hence (1.26) is dimen-
sionally correct. The results (1.26) is independent of the dimension d > 3.
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For d = 2, certain restriction (cf. the consistency condition (4.15)) on the
index p applies (see Section 4). The consistency condition (4.15) is also
required for the exponent g to be well defined in two dimensions.

As a result of (1.26) and (1.20), we have

1

When the stream matrix has the logarithmic anomaly
(1.30) (¥ (nz)[*) ~ logn,

(which is typical in two dimensions), we have

(1.31) (on) ~ /logn.

For isotropic random flows (hence possessing the full discrete symme-
try) with velocity spectrum

1 kik;

the two-point correlation R;;(x) is asymptotically

1
(1.33) Rij(x) ~ W; v <1,

for |z| > 1, and the growth index is given by the formula

_J v, forO0<v<1,d>2
(1.34) "‘_{0, forv <0, d>3

which, for d = 2, is subject to the consistency condition (4.15). For v > 1
in (1.32), (1.33), the velocity field is not L?-stationary without a far field
cut-off because the correlation diverges at large distances. Introducing a
cut-off at scale L > 1, we write

1 kik'
~ L J >
(1.35) Riy(k) ~ | Tre=s Oid =~ ) [k 2 1/L
0, |k| < 1/L.

In this case, the growth index p for n < L in (1.27) is one
(1.36) =1, v>1

and the asymptotics (1.27) carries a large coefficient of order L”~!, namely

(1.37) Vi) — TO)P) ~ nL*"

following a calculation similar to (3.6)-(3.9) (see Section 3).
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Thus from (1.29), (1.34) and (1.36) we have

1, for v > 1, d>?2
(1.38) A={ 5, forO<wv<1, d>2
1/2, forv <O, d>3

which, for d = 2, is subject to the consistency condition (4.15). The large
coefficient in (1.37) results in a similar large coefficient for o,

(1.39) (o) ~nL"™t v>1.

For isotropic flows in the borderline case of either

(1.40) v=0, d>3,
or
(1.41) v<0, d=2,

the logarithmic anomaly (1.31) holds.

Our results (1.38) and (1.31) are consistent with existing results on
scaling exponents in incompressible flows in the regime v < 1 by totally
different approaches (e.g. [3], [4], [9], [14],[16]). In particular, (1.31) is
consistent with the result (cf. [9], [14])

(1.42) (B(x?(t)) ~ t/logt

in the case of (1.40) or (1.41). In the regime v > 1, however, our analysis
suggests that no super-ballistic scaling, i.e., ¢ > 1, can be produced in
the class of steady, square integrable, stationary velocity fields given by the
truncated spectrum (1.35). In particular, Richardson’s law, corresponding
to ¢ = 4/3, can not be explained by the model given by the spectrum (1.35)
for any v, contrary to what was proposed in some literature (e.g. [4]). For
more discussion on this point, see Section 5.

The full discrete symmetry is more general than isotropy. As examples
of anisotropic flows with the discrete symmetry, we consider in Section 5
three dimensional flow formed by superposition of random channel flows;
the two dimensional analog, the well known Manhattan model has a growth
index g = 1/2 and the corresponding scaling exponent

(1.43) A=2/3.

Because the size of k does not affect our analysis, so long as k > 0, we
set k = 1 for simplicity.

The present report is a summary of the more detailed paper [6] to
appear elsewhere.
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2. Stationary, square integrable stream matrix implies nor-
mal diffusion. Sometimes it is more convenient to work with the rescaled
objects

(2.1) pu(@) =n""p(nx), Tn(z) = Tn(na)

s0 as to put the equation for the box diffusivity o, (e) in the direction e in
the form

(22) V- (I + ‘I"n(m)) vpn(w) ==V ‘I"n(w) e, in [07 1]d'

We note that the scaling (2.1) preserves the energy integral
1
(2.3) Vo Vpp=— Vp-Vp.
[0,1]¢ " Jio,n)d

An energy estimate for (2.2) yields a simple upper bound on the integral
(24) dz (Vpn - Vpn) < clll@allZaqoe) = el al)Z2(0,14)-
[0,1]¢

The upper bound in (2.4) implies that normal diffusion occurs when
the stream matrix is stationary, square integrable

where the constant C' is independent of scale n. In this case,the right side
of (2.4) is independent of scale n.

Below we give a sufficient condition on the velocity field for which a
stationary, square integrable stream matrix can be constructed.

First, if ¥ is stationary, square integrable then it admits the spectral
representation

(2.6) U(z) = # /k . K g (k)

with square integrable Fourier spectrum d¥ (k)

2.7) ( / i, (k) / a5, (k) < oo, Vi, j
given by
(2.8) 48 (0k) = s iy (k) — i R))

where di; is the Fourier spectrum of the velocity component u;. The
converse is also true (cf. [5]), namely, if (2.7) holds, then (2.6) is stationary
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and square integrable. By the Cauchy-Schwartz inequality and the Parseval
identity, we have

TsP) = (f  dbglew) [ dB,w)
keRd . k'cra
< - |(dii; (k, w)di; (k' w))
//k,k’eRd k| - |kl | ! |
1 - 1 -
2.9 < / Ry (K)|dke / IR (K)|dE.
( ) \/keRd |k|2| J( )| \/kERd |k|2| 77 |

Thus a sufficient condition for normal diffusion is
1 -
(2.10) / —|Ri; (k) |dk < o0, Vi
kers [k[?T
where Rij (k) is Fourier transform of the two-point correlation functions
Rij(x)
(2.11) Rij(x) = (ui(- + 2)u; (), Vi, J.

Condition (2.10) turns out to be sharp. For the precise statements, see [8].

3. Nonstationarity and far-field behavior of stream matrix.
The large-scale motion is related to small k behavior of R;;(k). For d > 3,
1/|k|%t®, a < 0 is locally integrable near k = 0, therefore (2.10) holds if

- 1
or, equivalently,
(3.2) Rij(x) ~ T as |&¢| =+ 00, a<0.

In other words, the diffusion is normal if the velocity correlation decays
like a power greater than two for d > 3. Hence anomalous scaling laws
for d > 3 are restricted to the case @ > 0 in (3.2) which, in terms of
v=a/2,0<v <1, can be written as

1

v2>0.

For a > 2, a cut-off at large scale L > 1 is needed to construct a L>2-
stationary velocity field

1
R -1 |k|>1/L, a>2
3.4 Rii(k) ~{ |kjatd=2
(34) i (k) { 0, |k| < 1/L.
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The velocity spectrum (3.4) corresponds to the velocity field with the cor-
relation

3 - PV x| <L, 1<v=a/2<2
(3.5) Ry () = Ry (0) ~ { LXv=2|g?, |z <L, 2<v=a/2

Note that in the case v > 2, the asymptotics (3.5) carries a large coefficient
of order L2(*—2) as can be seen from the following simple calculation.
The Fourier integral

(36)  Riy(x)— Ry(0) = @ /k|>1/L(ei’“--"3 — )Ry () dk

can be split into two parts, the integral over 1/L < s < 1/|z| and the other
one over s > 1/|x|. Here the variable s = k - x/|z| is the projection of k
in the direction of . The first part can be estimated by expanding the
exponential function e into power series in s|z|. The first order term
disappears because of isotropy of R;;. Thus the leading order contribution
from the first part is given by

(37) | 1/|a:|/ - dk ds
- 1/L ga-1 (82 + |k |?)(etd)/2-1 L1

) vzl 4 p 1 K
~ |z /1/L sa—3 S‘/Rd_1 (1+ [K']2)(e+d)/2-1

~ (L + o).

Here the variable k is the orthogonal projection of k unto the hyperplane

perpendicular to  and k' = k, /s. Note that the integral /, Ra-1 dk’

(1+|k’ 2)(a+d)/2—1
converges for a > 2.
The second part is of order

= 1
3.8 e
o /l/lm/Rd—1 (82 + |k |?)(etd)/2-1 1 as
- sa—T dk'
/l/lw st /Rd—l (1 + |E'|2)(a+d)/2-1
~ |m|a72‘

Thus R;;(x) — R;;(0) is of order
(3.9) |2[?L** + |z|*7%,  |z| < L.

The first term dominates in the range || < L when o > 4.

In two dimensions, v > 0 is only part of the anomalous regime.

The growth index u is a measure of the growth of nonstationary stream
matrix in far fields

(3.10) (| (nx)|?) ~n*, asn— o0, VY|z|#O.
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The index p for isotropic velocity satisfying (3.3) with 0 < v < 1 can be
calculated exactly:

(3.11) p=v, forv>0

in dimension d > 2. For v = 0, the nonstationary stream matrix grows
logarithmically in far fields

(3.12) (| (nx)|?) ~logn, asn — oo.

The logarithmic growth (3.12) turns out to be generic in two dimensions
even if the velocity has fast decaying correlation R;;(x), that is, (3.12) holds
in two dimensions for » < 0. This can be seen as follows.

First, we note that condition (2.10) requires

(3.13) R;;(0) :/ Rij(z)dx =0, Vi,j = 1,2
TeRd

which is the case for periodic flows but, in general, not for random flows in
two dimensions. X

Let us consider the case where R;;(k) is continuous at k = 0 (This is
the case when R;;(x) is absolutely integrable). The variance of the stream
function ¢ on scale n > 1 is of the same order as

1 1 -
(3.14) / LI / LB () |dk
1ciki<1 |K[? k|>1 |’<’|2| il

n

which is of order
(3.15) logn.

Thus the logarithmic growth (3.12) holds in the borderline case of (1.40)
or (1.41).

4. Scaling exponent by the variational duality argument. It
is known that the box diffusivity can be expressed as a pair of minimum
principles ([7]). For concreteness, we present the two and three dimensional
versions here. First, we have the minimum principle for the upper bound:

(4.1) ope-€e = inf/ de (Vf-Vf+Vf - -VF)
f Joe
(4.2) with Af' +V-¥,Vf=0.

Second, we have the minimum principle for the lower bound in two and
three dimensions, respectively:

1
~“le.e = 1nf/ VL _vL +VL I_VL '
Tn . 1+¢%( 9-V'yg 9'-V—g)
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1 7
: i L L. n ol
(4.3) with V [sz%v g] Ve ey g]
ole-e= inf I+, 7)) (VXxG-VxG+VxG VxG)

G Jop3
(44) with Vx [[+ T, ) 'Vx G =V x[IT+7,9:)7'¥,V xG]

Here the trial functions f and g are subject to the boundary conditions
whose essential part can be posed as the mean field property

(4.5) Vf = e
[0,1]¢
(4.6) Vig = e
[0,1]2
(4.7 VxG = e
[0,1]3

A good choice of trial functions for the direct and dual principle (4.1) and
(4.3) can provide useful upper or lower bounds on o,

4.1. Three dimensions. To derive the anomaly exponent we assume
that the velocity statistics has the discrete symmetry of being invariant
under the permutations and reflections of the z;-axes, i = 1,2,3...,d and
u; is independent of u; for ¢ # j (Plus, of course, the well-definedness of
the exponent). For such flows the velocity correlation can be sumed up in
a single function R(z')

(48) Rij (w) = 5,',]'R($I)

where ' is the 1 < z; permutation of . With this, it is easy to see
that the box diffusivity is a scalar asymptotically and hence the exponent
is independent of the direction. The discrete symmetry is clearly weaker
than the isotropy condition.

From the hypothesis of the existence of the scaling exponent ¢ and
(1.20) we know that the direct principle (4.1) satisfies

(4.9) (4.1) ~n? %,

What about the dual principle (4.3)7 Note that the similarity between
the direct and dual principles in the functional forms (except the factor
(I +¥,¥:)"! ), the equations defining the nonlocal terms and in the
mean field constraints. The mean fields (4.5) and (4.6) have conjugate
meanings (most clearly seen in two dimension where V- rotates the mean
field direction by 7/2) but the difference would not matter in flows with
the full discrete symmetry. Thus the growth index (3.10) (to account for
the extra factor (I + ¥,,¥%)~!, for d = 3, in (4.3)) and (4.9) now suggest
that

(4.10) (4.3) ~ en?~ 32,



92 ALBERT FANNJIANG

It is important to note that (4.3) is a minimum principle thus we expect
that the term (I + ¥, ¥%)~! contributes a factor of order

1

e W ()

~n"2 butnot [((I+T,T%) ")

to the minimum of the functional. The latter of (4.11) is often much larger
than n=2¢. It is more subtle to estimate the “effective” magnitude of
the factor ﬁg in two dimensions. We leave the two dimensions to next
section.

We finish the derivation by equating (4.9) with the reciprocal of (4.10),
since (4.1) and (4.3) are reciprocal to each other,

(4.12) n?~% = (n?~ %)L,

We have

1
4.1 A= —.
(113) —
For isotropic flows satisfying (3.3) or (3.4), we obtain the result (1.38) from
(3.11).
For the borderline case of (1.40) or (1.41), the logarithmic growth (3.12)
holds. Following the same duality argument we have

(4.14) (on) ~ Vlog (n).

This concludes the derivation of our results (1.29), (1.31) and (1.38)
for three dimensions.

4.2. Two dimensions. Here we discuss the consistency condition
which is required for the existence of the exponent ¢ and the validity of
formula (1.26) in two dimensions.

Because the stream function v, is an invariant of the flow, the solution
for each realization of velocity may be strongly influenced by certain level
lines of v,,, which may vary greatly from sample to sample, unless the effect
of molecular diffusion is sufficient to sample the “typical” or “average” level
lines. To put it differently, the streamline configuration, due to rigidity
of two dimensional geometry (box-percolating streamlines in orthogonal
directions can not coexist), often fluctuate from sample to sample and
create artificially anisotropy in a finite box [0,n]?. This is schematically
depicted in Fig 1 in which the crossing streamlines from top to bottom
edge (solid lines) form channels. The convection-diffusion process would
rely on the molecular diffusion to contain the artificial anisotropy. One
may compare the effects of convection and diffusion in the following way:
The anisotropy is caused by box-percolating streamlines and, for the growth
index p > 0, the total width of box-percolating streamlines on a box [0, n]?
is roughly n*. Let dy > 1 be the fractal dimension of the streamlines.
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F1G. 1. Schematic representation of streamlines: crossing streamlines in solid curves

This mean the typical box-percolating streamlines have the length n¢s. To
contain the anisotropy, it requires that the time for particles to transverse
the box-percolating streamlines, n2#, is less than the time to complete the
box-percolating streamlines, n?/, namely,

(4.15) ds > 2.

The consistency condition (4.15) can be derived more precisely from the
variational method as follows.

Let us assume that the probability of a randomly chosen streamline
exceeds a diameter n scales like a power law

(4.16) P(n) ~n"% n>1,

and the streamlines with diameter greater than n have a length L(n) scaling
superlinearly i.e.

(4.17) L(n) ~n%, n>1.

dy is the fractal dimension of the streamlines and P(n) is the crossing prob-
ability of streamlines. The exponent § is related to the fractal dimension
d; and the index p:

_s _ nhnds

(4.18) .

n

and hence

(4.19) §=2—p—dy.
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To have a better sense of the scales we consider the unscaled problem
in the large box [0,n]? and we shall estimate the box diffusivity

(4.20) On = 1 Vp-Vp

from above and below using the unscaled version of the direct and dual
variational principles (4.21) and (4.23) respectively:

(4.21) ope-e = ir}fn—12 de (Vf-Vf+Vf-V§)
[0,n]?
(4.22) with Af' +V-¥Vf=0, in[0,n]%

1 1
e = inf— ——(V'g-Vig+Vig - Viy
(423)e - e Y /[o,n]21+¢2( 9NV V)

1
1442

(4.24) with V*- Vig =vt. Vtg, in[0,n)>.

1442

where the trial functions f and g are subject to the boundary conditions
which are essentially the mean field property

1
4.25 — Vf = e
(4.25) 7 Jio,n2

1
4.26 — Vig = e
(4.26) n* Jio,n2

Due to the symmetry of the velocity field the box diffusivity oy, (e)
should have the same exponent g regardless of the direction e provided
the exponent q is well defined. Here we see that the problem of artificial
anisotropy due to fluctuation in a finite box is closely related to the exis-
tence of the exponent ¢. It turns out that the existence of ¢ implies the
consistency condition (4.15). We shall use e = e; and e = e in the direct
and the dual principles respectively. Since the velocity field is symmetric in
z and y the vertical crossing can not occur for all n > 0 and, for the picture
(Fig 1) to hold, we need to extract a sequence ny — oo, still denoted by n
for simplicity.

For the direct principle (4.21) we consider the trial function

|0, forz=0
(421 fan={ v iy
so that the mean field constraint (4.25) is satisfied, and it takes constant
values in the regions separated by the vertically crossing channels, so that
its gradient is zero outside the channels. Furthermore, inside the verti-
cally crossing channels, the level sets of the trial function coincide with the
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streamlines. This is compatible with the boundary condition (4.27) since
the channels do not cross either z = 0 or z = n. With this the nonlocal
term in the functional in (4.21) drops out because

(4.28) V- UVf=u-Vf=0.
The first term in the functional can be estimated by
1 1 n
4.2 — Vf <e—(—)2nttds = epdi—r
(4.29) 72 Joup Vf-Vf< ¢ (n”) n cn

in which I is the magnitude of the gradient and n#*ds is the total area

of the channels. Thus we have the upper bound
(4.30) opn < endiH,

To take the same advantage of the flow configuration Fig 1 in the dual
problem we take e = e in using the dual principle (4.23) to estimate o,
from below. We take the trial function

(4.31) g=1f

so that the mean field of V1g is in the e direction
1

(4.32) — Vig=es.
n2 [0,n]2

Once again the nonlocal term in the functional of (4.23) drops out because

(4.33) \Ye TVg =0.

1492
The first term in (4.23) can be estimated by

1 1 1 1  n
4.34) — — vig-vig<e—— 2pditi — ppdr—3u
35 /[o,n]2 T2 977 9= )™ o

Thus we have the lower bound

1
(4.35) Eni‘w—df < op.

The lower bound (4.35) gives a sufficient condition for super-diffusion:
(4.36) dy < 3p.

Combining the upper and lower bounds (4.30), (4.35) we get the consistency
condition (4.15).

Unfortunately, the fractal dimension dy is difficult to calculate. One of-
ten has to resort to numerical simulation. Two different formulae ([13],[15])
for dy in terms of 1 were proposed but neither of them agrees with the nu-
merical result (dy = 1.272) of [1] for the Manhattan model (see below) for
which p =1/2.
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5. Examples of Flows with Discrete Symmetry.

5.1. Kolmogorov’s Spectrum. A widely used model for turbulence
velocity spectrum in three dimensions is the modified Kolmogorov spectrum

: || A=A/, k| > 1/L
(5.1) R(k) { 0, k| < 1/L
or, equivalently,
(5.2) R(x) ~ |;1;|(2+ﬁ)/3, lz| <L

in the inertial range where 0 < 8 < 3 accounts for the intermittency effect
([11]). The exponent 8 = 0 corresponds to the original 1941 Kolmogorov
theory. For the correlation (5.1), the growth index is one with coefficient
of order L(2+0)/6

(5.3) (TnPB) ~ L6 <L

which fails to produce Richardson’s law, as was noted in the introduction.
For 8 =0, (5.3) only resembles Richarson’s law, at distance n ~ L, in the
order of magnitude

(5.4) (0n) ~ L*?
as L — oo, but not in its power law relation to n.

5.2. The random composite channel flows. The random compos-
ite channel flows is given by the velocity

(5.5) u(z) = (u(y, 2),v(z, 2), w(z,y)), @ =(z,y,2)

The velocity field given by (5.5) has the discrete symmetry if u,v,w are
identically distributed. An explicit example is when u,v,w are indepen-
dent Bernoulli random variables, taking values £+1, on the two-dimensional
lattice grids orthogonal to z,y, z respectively (see Fig. 2 for the channel
flow in the z direction). Because each velocity component depends only on
two coordinates, the “effective dimensions” are two.

If the correlation is given by

1

— . v>0, asy’+22 00
(y2 +22)(17u) Yy

(5.6) Rui(y,2) ~

then
(5.7 p=v
as in (3.11), and

1
(5.8) A= 5"

For v < 0, the nonstationarity of stream matrix is logarithmic (3.12) and
result (4.14) applies.
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z

Fic. 2. A random channel flow in z-direction.

5.3. The Manhattan model. A two-dimensional analog of (5.5) is
the Manhattan model formed by superposing two independent shear layer
flows in orthogonal directions

(5.9) u(z) = (u(y), v(z))

where u(y) and v(z) are independent, identically distributed stationary
random functions with fast decaying correlation and are statistically in-
variant under the change of sign u,v = —u, —v. The stream function ¢ for
u is a sum of two independent functions )y (y), ¥2(z)

(5.10) Y(x) = P1(y) + 2 (z)

with
(511) ) = /Oyu@')dy', va(e) = /va@c')dw'.

An explicit example is a Poisson construction, where the velocity field is
based on a random lattice generated by independent Poisson distributed
grid points on both z and y axes. The magnitudes of both z and y com-
ponents of velocity are constant, say one, in the lattice. The y component
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/
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/
\

NN S

F1G. 3. The Manhattan Model

reverses iteself upon a passage from a box to an adjacent box in the z di-
rection with z component remains the same. The x component is similarly
determined with the roles of z and y reversed (See Fig. 3).

The velocity field (5.9) has the full discrete symmetry and the growth
index is 1/2 for fast decaying correlation. The numerical value of the fractal
dimension dy in [1] is 1.272 which satisfies the consistency condition (4.15).
Thus formula (1.38) yields the result

(5.12) A=3
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