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Abstract

We consider Casal’s strain gradient elasticity with two material lengths £,¢', associated
with volumetric and surface energies, respectively. For a Mode III finite crack we formulate
a hypersingular integrodifferential equation for the crack slope supplemented with the natural
crack-tip conditions.

The full field solution is then expressed in terms of the crack profile and the Green function,
which is obtained explicitly. For £/ = 0, we obtain a closed-form solution for the crack profile.
The case of small ¢ is shown to be a regular perturbation. The question of convergence, as
£,0' — 0, is studied in detail both analytically and numerically.

1 Introduction

Classical elasticity is a scale-free continuum theory in which there is no microstructure associated
with material points. In contrast, strain-gradient elasticity enriches the classical continuum with
additional material characteristic lengths in order to describe the size (or scale) effects resulting
from the underlying microstructures. This consideration generally results in constitutive relations
in which the strain energy density W, is not only a function of the classical strain but also the spatial
derivatives of deformation, i.e. W = W (e, {Ve, £2V?¢,...) where £ represents generically a material
characteristic length. Microstructural size effects can, in theory, be present in any materials: in the
case of crystals, the microstructure is the atomic lattice and £ is roughly the distance of interaction
(Askar 1985; Bardenhagen & Triantafyllidis 1994); in the case of polycrystalline metals or granular
materials the microstructure is determined by the compositional grains and probably has a larger
characteristic length. In either case, the magnitude of ¢, after nondimensionalization, represents
the ratio of the spatial scale of observation and the scale of the microstructure and is typically
small. A graphical way of representing the transition from the classical continuum to the enriched
continuum is replacing material points in the classical continuum with material particles (grains
or cells) with internal structure which gives rise to macroscopic effects described by the strain-
gradient terms in the constitutive relations. There has been a surge of renewed interest in using
strain-gradient theories to account for size (or scale) effects in materials (see, for examples, Lakes
1983, 1986; Smyshlyaev & Fleck 1996; Gao et al. 1998; Van Vliet & Van Mier 1999).

Since the pioneering work of Cosserat & Cosserat (1909), various strain-gradient elasticity
theories have been proposed and studied by, for example, Toupin (1964), Mindlin (1964), Eringen
& Suhubi (1964), Green & Rivlin (1964), Casal (1972), Germain (1973) among others. Toupin-
Mindlin’s couple-stress theory is isotropic and its simplest kind (the first order strain-gradient



theory) has the following strain-energy density given by
1
W = 5)\6“'6]']' + Geijej-i + EQGBkwijaka, £>0 (1)
1 1
€ij = 5(81’11,] + 8jui), wij = E(BZ'U,J — Bju,)

where G is the shear modulus and A is the Lamé constant. Here and below we adopt the summation
convention that terms are summed over the repeated subscripts. The gradient of the rotation tensor
Okwij; represents certain curvature-twist effect. Because of the requirement of isotropy, (1) does not
have terms representing surface energy (from the boundaries or the crack faces). To include surface
energy within the Toupin-Mindlin continuum, one has to go to the second order gradient theory
(Mindlin 1965; Wu 1992). On the other hand, Casal’s continuum is anisotropic and has the strain-
energy density

1 1 1
W = 5/\6”'6]']' + Gejjeji + 2 (EAakeiiakéjj + G@keijakeji> + Vv 0 (GeijGji + 5)\6“'6]']) , (2)

where ¢ is another material characteristic length associated with surfaces and vy, Opvy = 0, is a
director field equal to the unit outer normal n; on the boundaries. It is easy to see, after integrating
W over the material domain and applying the Stokes theorem, that the term containing #' becomes

a surface integral
1
7 (G/BQ €ij €5 dA + 5)\/{99 €ii €5 dA)

corresponding to certain surface energy which is allowed to be negative. Clearly, for £, > 0,
the total strain-energy is positive-definite. On the other hand, it is straightforward to check that
the strain energy density (2) is point-wise positive for —1 < ¢'/¢ < 1. These two facts together
imply that, for p = £'/¢ > —1, the total energy is positive-definite and the associated boundary-
value problems do not have oscillatory solutions. For p < —1, however, oscillations as well as
displacements opposite to the loading condition may arise in the crack profile (see Figures 1, 2 and
the discussion in Section 9).
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Figure 1: Crack profiles for £ = 0.05 and Figure 2: Crack profiles for £ = 0.05 and
various p = £'/£ > 1. various p = £’ /£ near -1.

Recently, Zhang et al. (1998) studied the Mode III crack problem for the Toupin-Mindlin
continuum with a semi-infinite crack subjected to the classical K;r; field imposed at the far field



or arbitrary anti-plane shear tractions on crack faces. They used the Wiener-Hopf technique of
analytic continuation to solve for the solutions and found that the stresses have r~3/2 singularity
near the crack tip with a (normalized) stress intensity factor significantly larger than the classical
one within a zone of size £ to the crack tip. Moreover, the crack displacement cusps at the crack
tip like 73/2, in departure from the classical result of r}/2. On the other hand, Exadaktylos et al.
(1996) and Vardoulakis et al. (1996) studied Mode III crack problem with a finite crack in Casal’s
continuum with or without surface energy term (see (2)) and found a 73/2 crack-tip cusping, similar
to Zhang et. al (1998), but a different stress singularity, 7 /2.

To make a fair comparison, let us note that, except for the material length ¢/, Toupin and
Mindlin’s strain energy and Casal’s strain energy for the Mode III crack problem, in which the only
nonzero strains are €;, and €, can be written in the same form

W =2 [G(egz + 62212) + GO (|Vegs|* + |Vey: ) + Glv 0k (2, + eiz)] )

Namely, for Mode III crack problem, Toupin and Mindlin’s continuum is a special case of Casal’s
continuum with #/ = 0. This is not true, of course, for plane crack problems. Besides the presence of
the material length ¢, the boundary conditions used in Vardoulakis et al. (1996) and Exadaktylos et
al. (1996) are somewhat different from, but closely related to, those of Zhang et al. (1998) (see
Section 3 for details).

One of the main purposes of this article is to resolve the crack-tip asymptotics for a finite
crack embedded in an infinite homogeneous medium with anti-plane traction on the crack faces
(Mode III) and to study the dependence of solutions on £,¢ using the method of hypersingular
integrodifferential equations which has been instrumental in studying crack problems in the classical
theory (Muskhelishvili 1953; Erdogan et al. 1973; Erdogan 1978). In the special case of ' =0, the
ezact solution is obtained in closed form and written in the physical variables such that the crack-tip
asymptotics is explicit. Solutions of Mode I (and mixed-mode) problems for Casal’s theory are
significantly different from those for Toupin-Mindlin’s theory (Sternberg & Muki 1967; Atkinson &
Leppington 1977; Xia & Hutchinson 1996) and may be addressed by the method presented in this
work.

The other goal of this paper is to answer the question of convergence to the classical linear
elastic fracture mechanics, as £, — 0. The results turn out to depend on whether p > —1 or
p < —1 (Section 8 and 9). We show analytically that the convergence holds for small p ~ 0 and
numerically for p > —1, and for p < —1 the crack profiles diverge as £,# — 0. This bifurcation
phenomenon is consistent with the above analysis of positive-definiteness of the strain energy.

2 Constitutive relations and equilibrium equations

For the Mode III problem, whose configuration is displayed in Figure 3, the z,y displacements are
zero, i.e. uy = uy = 0, and the director field (v;) = (0, —1,0). We set u,(z,y) = w(z,y).
We define the Cauchy stresses 7;;, the couple stresses uj;; and the total stresses o;; as:
Tij = 3W/86U = A(Sijekk + 2G€z’j + é’()\dijukake” + QGVkakeij)
MEij = aW/aéij’k = 62(/\(51']'3]66” + 2G8k6ij) + E’(A«Sijuke” + QGI/keij)
Oij = Tij — ak,ukij = )x(siij]c + 2G6¢j — 22(>\5,~jv2ql + 2GV2€Z’]')

and we have, for Mode III crack problem, only the following nonzero stresses:

Tor = 2Gez, — 2Gl'Oyey,
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Figure 3: Geometry of the mode III crack problem.

Tye = 2Gey, —2Gl Oyey,

faz: = 2G0?0ey,/0x

Payz: = 2G£286yz/8x

Pyzz = 2G(£20ey, |0y — leyy,)

Kyyz = 2G(e2a€yz/ Oy — elfyz)
Opz = 2G(ez, — 1?VZey,)
oy = 2G(eyz — £2V26yz)

A calculation based on the principle of virtual work (Germain 1973) leads to the following
equilibrium equations

8¢oz~j +F;=0 (3)
N;0jj — Df(nklﬁkm) + (Dfnl)nkniﬂkij +T;=0 (4)
ngNifki; + Q5 =0 (5)

for the balance of the external body force F}, the traction 7T and the double traction (); on the
boundaries, respectively, where D! stands for the tangential derivatives on the boundaries. For the
Mode III problem in the absence of external body force, the equilibrium equation (3) reduces to

004,/0z + oy, [0y =0,
which, in the case of homogeneous materials (G = constant.), takes the simple form
V44 V2w=0 or (1-£V)Vw=0. (6)

Equations (4) and (5) become the boundary conditions on the crack faces, which we will discuss
next.



3 Boundary conditions

For the convenience of deriving a hypersingular integral equation, we treat the entire z-axis as the
boundary on which the boundary conditions are imposed, and the upper-half plane the domain in
which equation (6) is to be solved. Naturally the far-field boundary condition is imposed:

lim w(z,y) =0. (7)

T,Y—00
With the outward unit normal (ng,ny,n,) = (0,—1,0) on the z-axis, equations (4) and (5)
become
T, = Oyz _azﬂyyz (8)
Q. = ~Hyyz - (9)

On the crack faces y = 0,z € (—a,a), the medium is loaded with a nonzero shear traction T, = p(x)
and zero double traction ), = 0. Thus,

O'yz(an) = p(z), [z]<a (10)

Pyyz(2,0) = 0, |z] <a. (11)

On the ligament y = 0, |z| > a, the displacement is assumed to be zero
w(z,0) =0, |z|>a (12)

which may be due to one of the following loading conditions. One condition is the antisymmetry
of the loading with respect to the z-axis so that the displacement is antisymmetric with respect to
the z-axis. In this case, one can furnish another condition

0%w(z,0)
oy?
This is the condition used in Zhang et al. (1998) in the case of £ = 0. Or the ligament is clamped
to a rigid substrate so that

=0, |z|>a. (13)

M:o, |z] > a. (14)
Ay

The boundary condition studied in much greater detail in the sequel is a linear combination of
the above two:

—ley, +020¢,, /0y =0, |z| > a. (15)
which, in conjunction with (11), implies
Hyy2($a0+) =0, Vze (—OO, OO) (16)

This is the condition used in Vardoulakis et al. (1996). Conditions (7), (10), (11) together with
either (13), (14) or (15) constitute a mixed boundary value problem for equation (6). Conditions
(13), (14) and (15) are analogous to the Neumann, Dirichlet and Robin conditions, respectively, in
classical potential theory. In the case of £’ # 0, conditions (13) and (14) are more complicated to
deal with than (15). In the special case £ = 0, however, condition (15) reduces to condition (13)
of Zhang et al. (1998).

By standard elliptic PDE theory, the solution w(z,y) of equation (6) with the mixed boundary
conditions (10), (11), (12) and (15) (or (13) or (14)) is unique in a general class of functions, and
is infinitely differentiable in the interior and continuous up to the boundary. One of the main goals
of this paper is to characterize precisely the behavior of the solution as it approaches the boundary,
in particular the points (i.e. the crack-tips) where the boundary conditions change type.



4 The Green function and integral representation of solution

Let the Fourier transform be defined as
3 L e —int
F=FNO = o [ Flm)ean
—0o0
By the Fourier inversion theorem, we have
1, 1 O 2 ey aizt
f=F ) = o [ e
—00
Let
(2,5) = — /oo W (&, y)e™ d¢
w\T, - T ’ ’
vV 21 J—o00
then from (6), we obtain

2
— (20262 + 1)% + (2 EOW =0. (17)

‘W

EQ
dy*

The characteristic equation corresponding to equation (17) is
CX— 2+ )N + (P4 + %) =0,

which can be factorized as
[N = (L+ 28|\ - €% =0

A=z, or £4/&2+4£72

By the symmetry of the problem, only upper-half plane (y > 0) is considered, so we keep only the

negative roots
M(E) = —l¢] and Ao(€) = —\/e2+£2.

The general solution w(z,y) to equation (6) can be given by

and solved

w(z,y) = \/%7 / O:o [A©)eM? + Be)e™] etde, y>0 (18)

satisfies the far field condition (7). The coefficients A(¢) and B(€) are to be determined by the
boundary conditions. Note that A2(£) has the following asymptotics

1 1 1

which is used in the next section. After substitution, we obtain
_ G = 2¢2 4 gt —[€ly
pela) = [ {A@© (P€ + i) e
b OB [P+ 1+(@/0)er v 1] e OVETT  inta y 50 (20)

Condition (16) and equation (20) then imply that

_ —£2€% — V'|¢]
(00 VPE T 4262 41

6

B(¢) A(¢) - (21)



As we will see below, A(§) does not decay in £ for £|£] > 1, so Eq. (54) is not well-defined for
y = 0 and the stress g,,(z,0") should be obtained from Eq. (54) by a limiting procedure y — 0"
giving rise to Hadamard’s finite-part integrals (see the next section and Appendices A, B). On the
other hand, the integral in Eq. (18), for |y| < ¢, is a much nicer object due to cancellation of
singularities in A and B. Indeed, from Eq. (21), we see that

1
B ~ (<14 7 ) A©), el 1

so we have

A©) + BE) ~ e,

Similar cancellation occurs in Eq. (20) (cf. Eq. (59)-(60)).

0] > 1.

Define the slope function

0

#x) = San(a,0°) 22
so that
P(z) =0, [z[>a ,
and .
/ $(z)dz = w(a,07) — w(—a,0") = 0 (23)
Since (18) implies
Wit [T i [a@e e Be OV et 20

we have the integral representation for ¢(z)

#a) = <= [ A + Bleetde, —0<a <o
Inverting the Fourier transform, we obtain
: _ Lo i€ty .
ig[A(£) + B(¢)] VT  p)eTHdt = 6() (25)

Clearly §(€)/(i€) = (€, 0) 1= = [, w(t,0")e~i¢tdt.
Substituting (21) into (25), we obtain

A©) = Aie,0) (26
BE) = Ble)o(E0h) en
with
Ty L pVPEFILCELT
A = vEE gy e P )
Ao 0262 + €] y
BV T e N )



With (28) and (21), we can rewrite equation (18) as

a

w(z,y) = f - w(t,01)G(x —t,y)dt (30)
where the Green function G(z,y) is given by
G(z,y) \/27/ et [ ekl + B(g)elv/OVELT gg . (31)

In contrast, the displacement w.(z,y) of the classical elasticity, under the boundary conditions

(10), (12) is

(‘T y) m wc(t O )QC("'C - ta y)dt (32)
—a
with the Green function
1 - Yy

In Section 8 we show the convergence of G to G, as £ tends to zero for any p = ¢'/¢ # —1.

5 Hypersingular integrodifferential equations

Substituting (30) in (54), passing to the limit y — 0", and using the condition (10), we obtain the
following integral equation:

G
Ii zf z—t) 4
Jim, _27r/ / K(¢&y) Jdg dt = —p(z), |z|<a (34)
with the kernel

g e'/e sz —eg[+ 1

The limit y — 0% in (34) is singular since K ({ ,0) does not decay in £&. So we write

K(£,0) = Koo(€) + Ko(¢)
with the nondecaying part K, o (&,0) given by

A4
e =B (5) 4 e e (3
and the decaying part Ko(¢) given by

i e (1612 + (¢ /20%] (VPEE+T — Llel) + (/0 /4

Ko(¢) = i€ )04 /P2 114 4)¢|
) 4 622 ! 4
_ ez (VEER T ) w s (36)
P p+ V22 + 1+ L)€

By (35) and the results of Appendix B

/ 7 Rool6, )@ dg

—0o0



converges, as y — 07, in the sense of distribution, to the hypersingular kernels of the following
equation (37) whereas K(¢) gives rise to the regular kernel Ky. Thus, as y — 07, equation (34)
becomes

202 [a 1—p?/4 [° ¢
_7]£_a (tqi(12)3dt+ 7f / . t¢£ldt+ - _aK o(t — z)é(t)dt — §¢'(x) = ]% . (37)
where |z| < a, and the regular kernel Kj can be written as
Kot =) =2 [ Ko(¢)sinlé(t ~ 0)d¢ (38)

in view of the anti-symmetry of Ko(¢). Here £ , denotes Hadamard’s finite-part integral and £,
denotes Cauchy’s principal value integral (Folland 1992; Meyer 1998). Since the dominant kernel
in (37) is cubically singular, we need to furnish, in addition to (23), two more crack-tip conditions:

$(a) = ¢(-a) =0 (39)

in departure from the classical elasticity in which the displacement gradient ¢(z) has the end-point
asymptotics
1

), asz—a, (—a)t (40)
)
(see below for more discussion on this). As we shall see, a much weaker condition than (39) is
sufficient to ensure the uniqueness of solution which, in turn, can be shown to satisfy (39).

An important observation is that once ¢(z) is solved from Eq. (37) the coefficients A(£) and
B(¢) can be obtained from (28) and (29), respectively, and, then, the full field solution w(z,y) is
explicitly given by (18).

In contrast to condition (15) which is assumed in the preceding discussion, it is more convenient
to use two density functions, ¢, for (13) or (14) and the resulting system becomes two coupled
hypersingular integrodifferential equations:

Condition (13): For |z| < q,

2 a a 2 a
_% 3 (tcb_(ti)?’dw%][_a t‘ﬁfldt i 9 ;ﬁ_(ldt — p(2)/G
QPR ki(t — z)p(t )UZH1 ka(t —z)p(t) dt = 0

E —a t — X ™ —a —a
with the density functions
_ 0 n _ 0 |0%w(z,0)
$(z) = 5 w(z,07),  YP(z) = o~ lTyQ

and regular kernels k1, k».

Condition (14): For |z| < a,

_A/2 ra a a

f ]é_ (t‘ﬁ_(;) dt +% - fftldu% _ak3(t—:v)¢(t)dt—2€2¢'(:v)
o [ e -owod = pla)/6

—E%S'(x)—i—%/_a kstt— o)pdt + 25 [ YD g b L [ ket - mar = 0

™ J_gt—=x T™J_a

9



with the density functions
0 n B 0%w(z,0)

and the regular kernels k3, k4, k5, kg-

In addition, appropriate crack-tip conditions also need to be specified to ensure existence and
uniqueness of solution. The above two systems of equations are more difficult to analyse and will
be studied in a separate investigation.

6 Solutions of the integral equations

It is convenient to nondimensionalize equation (37) by the half crack length a. In view of the fact
that both ¢(z) and p(z)/G are dimensionless, this amounts to normalizing the variables by a in
the equation and replacing £,#' by £ = £/a, #' = ¢ /a, respectively. But we will continue to call £ by
¢ and ? by ¢ for ease of notation.

6.1 Case /' = 0: closed form solution

Note that the regular kernel Ky(¢t — x) in equation (37) has a factor ¢, so it drops out from the
equation when ¢ = 0.
After normalizing by the half crack length a, equation (37) becomes:

202 1 B(t) 11
i — = 1. 41
F Gttt L 0 =p@)/G el < (41)
Let H denote the finite Hilbert transform
1 [t t
Holo) == f M.

mTJ_1t—=x

Then, by the definition of Hadamard’s finite-part integrals (Appendix A), equation (41) is a second
order differential equation for H[¢](x):

—H[4]" (z) + H[g)(z) = p(2)/G ,
which has the general solution
H[¢|(z) = 1 em/é/ [6_25/4/ et/t p(t) dt] ds + Cre™t + Cpe™/t (42)
22 -1 -1 G

Set . . i 0
_ L am/t —2s/¢ t/¢ P\t)
f(z) 7 ¢ / [e /_le e dt] ds ,

-1

then we have

1 ][1 L $(t)dt = f(x) + Cre* + Cre/ = g() . (43)

mJ_1t—=x
It is well known (Tricomi 1957) that the solution ¢(z) of equation (43), with condition (23), is
unique in LP[—1,1] for any p > 1, where LP[—1,1] is defined by
1 1/p
= {rsenno = [ r@pa] <o}

10



and ¢(z) can be written as

_ V1-—2a? ) z bog(?)
¢(z) = f Vl—ﬂ@—ﬂﬁ+ﬁ¢yﬂﬁ/lV1—ﬂﬁ
1 L tg(t) 1 '

+7r\/1—w2 /71 \/1—t2dt+ ™1 — 22 /4

provided that Eq. (44) is well-defined. For this, it suffices, for example, that g(z) € LP[—1,1] for
some p > 2, so g(t)/vV1 — 12 € L't[-1,1].

Under condition (23) and a stronger integrability condition, ¢ € LP[—1,1] for some p > 2
(instead of condition (39)), we then have the conditions determining g(x)

1 1
g9(t) tg(t)
/1V1—ﬂ “1V/1 -2

(44)

or equivalently

1 ot/e 1 o-t/t
dt+Cr [ st O | —dt = 0 45
aVi-& L Vi- lavi-e (45)
Ltf(t) tet/f 1 te‘¢/£
dt+C / X _dt+cC =0 46
/1¢1—ﬁ lavice ) e (46)

which determine uniquely the constants C7, Co:

B 1 ot/ e 1 pet/t
@ = ‘<2 _wwdt) _1\/@“‘(/ Vi ) / —t2

B 1 ot/ -1 F(t) 1 pet/t
2 _'_G/!vl—ﬁﬁ> 1¢1—ﬁﬁ+<u/ Vi )

With the above proviso, equation (44) becomes

m g(t)
1—ﬁw—ﬂ

1—752

P(z) = (47)
While the form (47) makes explicit the crack-tip asymptotics O(v/1 — z2) for the slope ¢(z), the
following alternative form [27] is also useful for analyzing the limiting behavior as £ — 0:

][ \/Wf dt+0][ \/—tht/ZdtJrCQ][l V1—12 e/t
-1

x—1

b(z) = dt] (48)

/1 — 22 [
since the limit has the singularity like (v/1 — 22)~! near the crack-tips (see Section 8, Eq. (66)).
To be consistent with the expression (47), the apparent singularity in (48) must be canceled.

The unique solution satisfying (39) corresponds to the following choice of Ci, Cy. First we note
that, for f(z) € LP[-1,1],p > 2,

HIVT = 2f](-1 / £)dt < oo
HVI = £2£](1) = ——/ Bt < oo

11



1 _ 1
HIVI = e 14(—1) = l/ it gy — l/ ey — _HTZPet(1) < oo
TJ_ 14¢ T J_ 1—-1
V1= et/ 1+t e o/t V1= et
CHVI = 2641 L dt = H[V1 = 2et/(~1) < oo

Thus, in the presence of the factor 1/v/1 — z? in equation (48), the constants C; and Cy must
satisfy

HIV1—£2f](—-1) + 01 H[V1 — £2e¥4)(=1) + CoH[V1 — t2e7H¢)(—1) 0 (49)
H[ﬂ F1(1) + CiH[V1 — 2e/4)(1) + CoH[V1 — 2 H4(1) = o. (50)
The determinant of the above system is
HIV1 — 24 (-1)H[V1 — 274 (1) — H[V1 — 2e7/4(~1)H[V1 — 2e/4(1)
= {HVI-2e/y(-1))" - {H[\/ﬁet/@](n}2
#0

so C7 and C5 are uniquely determined by (49)-(50). It can be shown directly that with this choice
of C1,Cs, Eq. (48) has the crack-tip asymptotics O(v/1 — z2). The idea is that the expression

_ 42 2 t/z 1 1 — ¢2 —t/e
][ ‘/ﬁf dt+01][ vi-—ter +02][ vi—#rer
-1

t—=x

dt

generally has the asymptotics O(1 — z2) near the crack tips z = +1. We leave the details to the
reader.

6.2 Case /' # 0: regular perturbation

Integrating eq. (37) once in z, we obtain

™ t—x)

_ /p(t)/Gdt+Co, lz| < 1
0

where Ko(t) is a primitive function of the regular kernel Ky: K/ (t) = Ko(t). The constant Cp is
to be determined by the condition (23). With condition (39), eq. (51) is a type of quadratically
singular integral equation, studied in Martin (1991), in which the end-point asymptotics of ¢(z)
was proved to be O(v/1 — z2) by using the Mellin transform.

The crack-tip asymptotics can also be derived in another way. Integrating equation (37) twice
in z, we obtain

2 1 T 1 T s
_PH[(z) + #/_1 /_llog\t—s|ds¢(t)dt+ %/_1 /_lds/_ldaKo(t—a)qS(t)dt

14

— = | é@)dt = l/ ds/ dop(o) + C1z + Cy
2 -1 G -1 —1

which is a generalized Cauchy singular integral equation
X S
_PH[¢l(z) + / $(t)dt = / ds / dop(0)/G + Crz + G (52)
-1 -1

12



with a regular kernel
1—(¢/20)% (= 1 = s 2
K(z,t) = M/ 10g|t—s|ds+—/ ds/ doKo(t — o) — =Ty, o(t) ,
T 1 wJ 1 1 2 ’

where I;_; ) is the characteristic function of the interval [-1, z], V|z| < 1, i.e.

1, if te[-1, 2],
I, w]<t)={ ficll 4l

0, if t¢[-1, z].
Since
1,1
/ / K?(z,t)dtdz < oo ,
—1J-1
the integral operator

Kigla) = [ KGa,

is a Hilbert-Schmidt operator on L%[—l, 1]. Therefore the solution ¢ has the same end-point
asymptotics as that of the solutions ¢ of the dominant equation

~’H[g](z) = f(z) + C1z + Cy (53)

subject to the same set of end-point conditions (Muskhelishvili, 1953). The end-point asymptotics
of the solution of Eq. (53) can be analyzed as before. We will not repeat it here.

7 Stress asymptotics ahead of crack-tips

In this section we recover the original length unit so the crack length is 2a and the slope function
is ¢(z/a), z € (—a,a) where ¢(t),t € (—1,1) is the solution of Eq. (37).
The full-field stress is given by

ra) = ——= [ I1AE0(E 0 Gy >0 (54

which is analogous to its classical counterpart

oue(@ry) = ——o [T A be(e, 0 e b |y >0

a V21 J -0

with flc(f ) = 1. In the sequel, we focus on the stress along the ligament which has the alternative
expression given by the left hand side of Eq. (37).
First let us analyze the asymptotics of H[$](z) as z — a™. We write

d(t/a) = /1 —t2/a?u(t/a)

and we know that u(+1) # 0 in general. Set

z=a(l+e¢), 0<ex1

13



A simple calculation yields

Hl¢|(1+¢) = —%/lﬁlgu(t)dwr %/11 a =~ ;thiue(tz t)dt

B ae (1 [14+t (i)
a ¢(1)+_1 \/1——tl+e—tdt

2 © d
~ \/_u a\f/ —T, as e >0,

T2 41

since ¢(1) = 0. On the other hand, for the regular kernel K (z,t) in Eq. (52) the function

1
F(z/a) = / K(z/a,t)$(t)dt
-1
is twice continuously differentiable and its second derivative generally has a finite limit

lim F"(z) < oo . (55)

z—at

Thus the second anti-derivative of the stress ahead of x = 1 has the asymptotics

/a”” dt/at oy=(r)dr = O(yfs/a—1) as z—a*

In other words,

Krirt/a _ Krrrt
(z/a—1)32  \27(x — a)3/?

with the mode III stress intensity factor (SIF)
Kiir = V2ryaKiy;

where K7 is the normalized SIF, independent of the crack length. The SIF Kjjr of the gradient
elasticity is defined so as to have the same unit as its counterpart in the classical elasticity. It
should be noted also, because of (55), the other singular term O ((w/a — 1)_1/2) in the asymptotic
expansion of o,,(z) as £ — a™ is also determined by the dominant cubically singular kernel. In
Table 1, we see that the numerical values of Kjrr converge to the negative classical value of SIF
(i.e. -1) for p > —1 and diverge for p < —1 as £,¢' — 0.

oyz(z/a,0) ~ as x —at,

8 Convergence to classical elasticity as ¢,/ — 0

On one hand, it is natural to expect the convergence of the gradient elasticity to the classical
elasticity in the limit £, — 0 in a suitable sense; on the other hand, the convergence can not
be uniform throughout the domain for certain physical quantities in view of the fact that strains
and stresses of the gradient elasticity have different kinds of asymptotics near the crack-tips from
those of the classical elasticity as we have shown in the preceding sections. In this section, we show
analytically the convergence results for small p and, in the next section, we show numerically the
convergence results for p > —1 and the divergence results for p < —1.

14



8.1 Convergence of the Green functions

We consider a general form of the classical limit in which £ , ¢’ tend to zero with a finite ratio p

. ! _
Z,IZI’EOE /= p. (56)

First we analyze the asymptotic behaviors of A(£), B(€) as given by (28), (29). We divide the
domain into two regions: £|¢| < 1 and £|¢| > 1. Clearly, we have, for £|¢| < 1,

7 14+ 626%/(2=2p), ifp# -1
AL~ { el/2, if = 1. (57)
B | D e o
and, for £|¢] > 1,
Ag) ~ £ +lE/2+1—p%/4 (59)
B(&) ~ —£2¢-rE/2+ /4 (60)

In Eq. (59)-(60) we write several leading terms of the asymptotic expansion because they are
related to the cancellation of singularities alluded to in the discussion after Eq. (21). As a result
of this cancellation, we have from Eq. (59)-(60) that

G, y) ~e Y forbl¢g| > 1 (61)

after a simple calculation taking into account of the exponential factors in (31). This asymptotics
(61) shows the absence of boundary layer behavior (i.e. y/¢ < 1) in Green’s functions as £, ¢ — 0.
Outside the /—neighborhood of the z—axis (i.e. y/£ > 1), Green’s function is dominated by the
contribution from A(¢), |¢[¢ < 1 due to the much smaller exponential factor associated with B(€)
in (31), so, again, we have

G(&y) ~e YEAE) ~e¥E for gg) < 1, (62)
except for the special case p = —1, for which case
G(&,y) ~ e VELA®E) ~ e7¥elelg]/2 for blg] < 1. (63)

Eqg. (61) and (62) shows the convergence of Green’s functions to the classical one throughout the
domain; while Eq. (63) clearly shows the divergence Green’s functions for p = —1 in the region
outside the £—neighborhood of the z—axis, i.e. y > ¢ (cf. (32)).

Therefore the full-field convergence of the displacement (30) to the classical one requires only
the uniform convergence of the crack displacement w(z,0), as determined from eq. (37), to that
of the classical elasticity on [—1,1]. This is addressed in the next section. The derivatives of the
displacement (such as strains and stresses), however, may still develop different singularities in the
£-neighborhood of the crack-tips preventing their uniform convergence (see Figures 4 and 5).

8.2 Convergence of crack displacement

Following from the above asymptotics, the regular kernel Ky has a singular limit as £, — 0

lim 1/1 Kolt — )p(ydt = 2 L 20 4
—1

200 T dr J 1 t—=x

15



since €l )
o
K =2
e,zlgo 0(¢) 1€ 4
Thus in the limit (56) the Cauchy singular integral equation of the classical elasticity (Muskhel-
ishvili, 1953) is formally recovered from (37)

1
L1020 g pwya, el <1 (64)
mJ1t—x

In the following, we show analytically the convergence to the classical elasticity of the separate
limits: limy_,q limy ¢ and, for the more complicated case of simultaneous limit (56), we show some
numerical results (Figures 4 and 5 for the convergence of the slopes and the stresses for p > —1;
Figure 6 for the divergence results for p < —1; Table 1 for the stress singularity factors).

In view of the integrated form of Eq. (52), the first limit of £ — 0 with fixed £ is a regular
perturbation by a vanishing Hilbert-Schmidt operator of

_2 Hig](z) + %/_11 (1) /_1 log\t—s|dsdt:/j ds /_51 do p(0)/G+Ciz+Co  (65)

as noted in Section 6.2. So the convergence follows from standard perturbation theory of integral
equations (Muskhelishvili 1953). Equation (65) is equivalent to Eq. (41) upon differentiating twice.
Next we examine the limit £ — 0 with # = 0. A similar limit has been studied in Zhang et al.
(1998) for a semi-infinite crack by using the Wiener-Hopf technique.
Let ¢.(z) be the solution of the Cauchy integral equation (64) and let A(z) = ¢(x) — ¢.(z) be
the difference. Then, by Eq. (41), A(z) satisfies the equation

H[A](z) = £°H[g]" (z) = H[$](z) — p(2)/G, |z <1.
Since A(z) integrates to zero on [—1,1], we have the formula for A(z) (Peters 1963):

Alz) = ][ */—

m (H[#](?) — p(t)/G)dt. (66)

Now we only need to show H[¢] — p/G vanishes as £ — 0. For clarity and simplicity of the
presentation, we consider the uniform loading p(z) = pg and po/G = 1 for which the crack profile
of the classical elasticity is the unit semi-circle. In this case, Eq. (42) becomes

H[g](z) = 1 — e'/e?t /2 — e Yte™2/t /2 4 C1e®/* 4 Coe %/t = 1 + Cle/t + Che /¢

where C; = C} +el/¢/2,Cy = C4 + e~1//2 satisty

c; 1 /1—1tt/Z cg 1 1—t,t/£ 1 1—t -
/ /1+t et 4+ CQ/ /1—}— S T / 141 Tty — o
1—¢ 1—1¢ 1-—1¢
) and (

50). It is easy to see

S o =

16

following from Eq. (



Thus, the right side of Eq. (66) becomes

c { Lviopelt ][ \/—ﬁe*t/z d} 9
™w1l—x )

m—t

Clearly, as £ — 0, the dominant contribution to the first integral in (68) comes from ¢ ~ 1 whereas
the dominant contribution to the second integral comes from ¢t ~ —1. The asymptotics of these
integrals, as £ — 0, are straightforward:

— 12at/¢ —s
][ V1 —tee vi-ter . . \/581/£€3/2][ \/_ _® VI s

z—t 0o z—1+4s
_ 12, t/L %

][ viZre T oo N OE g,
T —t 0o z+1—14s

So Eq. (68) is asymptotically equivalent to

c! 2V2e! /32y o e /s ds — { O(e'/403/2 |\/1 — 22), for 1 — 2% > nllogl/t
! =

VT=3% Jo (162" T | O(/2)T = a?). otherwise (69)

for some sufficiently large n > 0 (independent of £). On the other hand, the relevant integrals in
(67) have the following asymptotics

/\/:rtt/fdt /F—t/fdt \f\fel/f/ %s. (70)

Put together, Eq. (69), (70) and (66) imply the following bound on A(z):

Ol —z%)1?), 1—x2>nllogl/t
Ale) = { O((1 — z2)~1/2), otherwise (1)

uniformly for some sufficiently large n > 0 (independent of £). The first estimate of (71) provides
a rate of convergence of crack profile to the classical case away from the crack-tips. The second
estimate of (71), in conjunction with the following other estimate, gives control over the behaviors
in the immediate vicinity of the crack-tips.

To analyze the limiting behaviors in the neighborhood 1—z? < nflog 1/ of the crack-tips we use
the alternative form (47) of solution. For p/G = 1, we have f(z) = —1+ e'/%e®/t/2 4+ e=1/te=2/¢/2
and

qs(w):”‘g”z{

1 ot/ -1 t/e+e—t/1£
/ \/1—t2< 1 VI—2 ) \/1—t2(a:—t ][ \/1—t2m—t) '

A similar asymptotic analysis gives the following estimate on the slope ¢(x)

00 a—S \/_—$2 e$
"'")”/_llﬁ<oe%d> 1 b ve—a=wp

In contrast to (69), the relevant asymptotics is now

ds.

iz [ e’ O(V1—a?) for 1—22 > nllog1/t
— 72 — ) =
e )?) ds { O(¢=3/2y/1 — z%), otherwise (72)
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for some sufficiently large n (independent of £). Note that the second estimate of (71) holds for
¢(z) as it does for ¢.(z).

Now we can close the proof by applying the mean value theorem to the crack displacement
near the crack-tips: w(z) = w(—1) + ¢(z1)(1 + z), w(z) = w(l) + ¢(z2)(z — 1) for some z; €
(=1,z),Z2 € (x,1) by choosing x. The second estimates of (71) and (72) together imply that the
displacement in the region |z? — 1| < nflog1/¢ is uniformly bounded by

C min {€_3/2(1 — 2?32 (1 - $2)1/2}, for |z2 — 1| < nllogl/e,

which vanishes, as £ — 0, uniformly in the corresponding region as did the classical crack displace-
ment.

9 Numerical results

Our numerical solutions of Eq. (37) employ the fast Fourier transform and the collocation method
in terms of the Chebyshev polynomials. The results are shown in Figure 1, 2, 4, 5, 6, 7 and Table
1.

e Figure 1 and 2 show that for p > —1 no oscillations occur in the crack profile. We see that
the crack profiles of the gradient elasticity have cusps at the crack-tips and are consistent
with the analytical results of Section 6.

e Figure 2 also shows that for p < —1 oscillations as well as negative displacements (i.e. dis-
placement opposite to the loading condition) arise and, for p = —1, the profile is not stable.

¢ Figure 4 shows the convergence of the slopes to the classical counterpart, as £ — 0, in the
region away from the crack-tips, for p = 0.5. At the crack-tips, the slopes are zero in contrast
to the infinite slopes of the classical profile. Similar convergence holds for other values of
p > —1. This is consistent with the analytical results of Section 8.

e Figure 5 shows the convergence of the stresses to the classical counterpart, as £ — 0, in the
region away from the crack-tips, for p = 0.5. We see that, as the crack-tip is approached, the
stresses change sign and become negative. Near the crack-tips, the stresses of the gradient
elasticity are more singular than their classical counterpart. Similar convergence holds for
other values of p > —1. This is consistent with the analytical results of Section 8.

e Figure 6 shows, for p < —1, the slopes of the crack do not converge. Instead, oscillations
develop and, as ¢ — 0, become more severe. Similar divergence occurs for other values of
p<—L

e Table 1 indicates the convergence of the SIFs to the negative of the classical counterpart for
p = 0.1,1.5 and the divergence of the SIFs for p = —1.5, as £ — 0.

10 Conclusions

We have considered Casal’s strain gradient elasticity with two material lengths £, #' for a Mode I11
finite crack which gives rise to a higher-order elliptic mixed boundary value problem. We take the
boundary integral formulation and transform the problem into a hypersingular integrodifferential
equation on the crack line supplemented with the natural crack-tip conditions.

For a particular type of boundary condition we have obtained explicitly the Green function. The
full field solution is then expressed in terms of the crack profile and the Green function. For ¢ = 0,
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Figure 4: Slope of the crack for fixed Figure 5: Stress oy,(z/a,0)/G along the
p = 0.5 and various £ as indicated. The ligament for fixed p = 0.5 and various £ as indicated
dashed curve is the slope for the classical The dashed curve is the stress for the classical
elasticity. Similar convergence holds elasticity. Similar convergence holds for other
for other values of p > —1. values of p > —1.

pl| £=01 £=0.05 | £=0.025
0.1 || -0.9438012 | -0.9720323 | -0.9863192
1.5 || -0.9155931 | -0.9647259 | -1.0015685
-1.5 || -1.4612889 | -0.3336649 | -0.4651179

Figure 6: The slope of the crack profiles for

fixed p = —1.5 and various £ as indicated. Table 1: Normalized SIFs Z”—\/‘%.
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we have obtained a closed-form solution for the crack profile in two alternative forms which yield
explicitly the crack-tip asymptotics O((1 —z2/a?)3/?) for the displacement and O((1 — z%/a?)~%/2)
for the stress. The case of small #' is shown to be a regular perturbation of the case £/ = 0 and, thus,
shares the same type of asymptotics. Numerical solutions are given for various values of p # —1.

For the limit £ — 0 with p # —1 fixed we show the convergence of the Green function to its
classical counterpart. When p = —1, the Green function does not converge to the classical one. For
small p, we have shown analytically the full field convergence of displacement to its the classical
counterpart. For arbitrary p > —1 we show numerically the convergence of the crack profile, the
slope and the stress. For p < —1, numerical evidences point to the divergence of the crack profiles
and the slopes.

Moreover, the numerical calculation indicates the convergence of a suitably defined SIF to the
negative of the classical counterpart for p > —1, as £ — 0, even though the stresses are one-order
more singular than the classical stresses near the crack-tips. The SIFs for p < —1 are shown to
oscillate and diverge as £ — 0.
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Appendices

A Finite-part integrals

Let C*(—1,1) be the space of locally Holder continuous functions on (—1,1) with index o < 1.
Denote L't = U, L?[-1,1].

Definition 1 (Cauchy principal value integral)

][1 RO lim{/m_eﬂdt+ 1 Mdt}, lz| < 1,

1 t—x e—0 1 t—z et —
for any ¢ € C*(-1,1)NLH 0<a< 1.

By definition, we have

o) o $(t) — ¢(z) di
_1 t—mdt - 2%{/”—;525 t—x dt—i—cﬁ(m) /t_z|26t—x}

_ /1 p(t) — ¢(z) dt + ¢(z) ][1 dt (73)
-1 A

t— g4 t—x

Note that for any ¢ € C* « > 0, the first integral on the right side of (73) is an ordinary
Riemann integral and the second integral is

][1 @ 1og 1% <1
=log —— T :
1 t—z gl—l—w’

Denote by C™%(—1, 1) the space of functions whose m-th derivatives are locally Holder
continuous with index 0 < a < 1. Finite-part integrals are defined recursively as follows.
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Definition 2 ( Finite-part integral ) For any ¢ € C™*(—=1,1) N L'* and n =1,2,3, ...

bl 1d 4
£, mdt._ndmjé_l Gt el <1,

1 1
foa [,
1 t—=x —1 t—x
(From (73) and the definition of finite-part integrals, it follows that
1
—1 (t — .13)"

Lg(t) = i ¢V (@)t —2) /K dt
= /_1 ](()t—il,‘) Z¢J) /k!fl (D (74)

with

For ¢ € C™%(—1,1) N L'*, the first integral on the right side of (74) is an ordinary Riemann
integral. It is easy to check that the integration-by-parts formula holds for finite part integrals.

Proposition 1 For ¢ € C»*(—1,1) N L'*

A O NP S O #() v 9(=1)
fl (t—.’E)ndt N nfl (t—x)n+1dt+(1_$)n_(_]‘) ma nZ]-

and for ¢ € C*(—1,1) N LIF

/1 & (1) log |t — zldt = ][1 20 4 5(1)Tog |1 — 5| — d(—1) log [1 + 2]
—1 -1 t—=x

Alternatively, one can define finite-part integrals by equation (74) and deduce Definition 2 and
Proposition 1 as properties.

B Hypersingular kernels

For the derivation of hypersingular kernels, we use three basic ingredients:
e definition of finite part integrals;

e the following identity

i i) = == (%)

e the Plemelj formula (Elliott 1951; Muskhelishvili 1953).

Proposition 2

[t et [t
lim ——dt = ][—1

b 1
e—0J 1 (t —x) +ie _wdt+7”¢($), $e L'

t
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Observe that

bt —7,y) = 5 /_Zin|§|n%eey+i<tw)¢ dt
= e y-it-o) ]
- (—1)"\Ffm it - o)

\/7R [ (t—z+iy) 1].

lim 1k( 2,y)$(t) dt = lim (— \f/ Re[dnt—:v-i-zy) 1]q§()dt

y—0t y—>0+

Thus,

= ~ 1 - 1
Re[dwny—lf(% 1(t z+1iy)” gb()dt]

- \/jd:v" ][1 t—:v dt
_ n!(—l)"\/;jé_l % dt.

by the Plemelj formula and the definition of finite part integrals.
Note that, when n is an odd integer,

\/ﬂ/ n§n|€| “lelyritt-a)e ge —\/glm [sz—nn(t_x‘l‘iy)l].

Thus we have

L
1 jnen y+i(t—x)€
[ ot i, = [ e &

— 2 _ 1
- \Efm[dx—nﬁ%/ o —o-+in) ™ o
= —v27rdw—n (.’L')

where we have used the Plemelj formula again.
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