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Abstract

The null vector method, based on a simple linear algebraic concept, is proposed as
an initialization method for non-convex approaches to the phase retrieval problem. In
the case of complex Gaussian random measurement matrices, a non-asymptotic error
bound is derived, yielding an asymptotically accurate approximation, in the limit of
large oversampling ratio, better than that of the spectral vector method. Numerical
experiments show that the null vector method also has a superior performance for small
to medium oversampling ratios.

1 Introduction

We consider the following phase retrieval problem: Let A = [aij] ∈ Cn×N where aij are
independently and identically distributed (i.i.d.), circularly symmetric complex standard
Gaussian random variables (the n×N standard complex Gaussian ensemble). Let x0 ∈ Cn

and y = A∗x0. Suppose we are given A and b := |y| where |y| denote the vector such that
|y|(j) = |y(j)|,∀j. The aim of phase retrieval is to find x0.

Clearly this is a nonlinear inversion problem. Simple dimension count shows that, for the
solution to be unique in general, the number of (nonnegative) data N needs to be at least
twice the number n of unknown (complex) components. There are many approaches to phase
retrieval, the most efficient and effective, especially when the problem size is large, being
fixed point algorithms (see [4,6,7] and references therein) and gradient-descent methods [2,3].
Phase retrieval has a wide range of applications, see [9] for a recent survey.

A key to the success of any non-convex methods is an effective initialization. The following
observation motivates our approach based on a simple linear algebraic concept: Let I be a
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subset of {1, · · · , N} and Ic its complement such that b(i) ≤ b(j) for all i ∈ I, j ∈ Ic. In
other words, {b(i) : i ∈ I} are the “weak” signals and {b(j) : j ∈ Ic} the “strong” signals.
Let |I| be the cardinality of the set I. We always assume |I| ≥ n. Since b(i) = |a∗ix0|, i ∈ I,
are small, {ai}i∈I is a set of sensing vectors nearly orthogonal to x0. Denote the sub-column
matrices consisting of {ai}i∈I and {aj}j∈Ic by AI and AIc , respectively. For |I| ≥ n, define
the null vector as the singular vector for the least singular value of AI :

xnull := arg min
{
‖A∗Ix‖2 : x ∈ Cn, ‖x‖ = ‖x0‖

}
(1)

which can be computed by various matrix methods.

The main goal of the paper is to prove a non-asymptotic error bound for xnull as an estimate of
x0 (Theorem 2.1 and Corollary 2.2) and given ample numerical evidence for the performance
of the null vector method (Section 5).

2 Main results

Note that both xnull and the phase retrieval solution is at best uniquely defined up to a global
phase factor. So a standard error metric must be phase-adjusted as in

min
θ∈R
‖eiθxnull − x0‖ =

√
2(‖x0‖2 − |x∗0xnull|). (2)

Alternatively, we can use the following error metric

‖x0x∗0 − xnullx∗null‖ =
√

2(‖x0‖4 − |x∗0xnull|2) (3)

where the left hand size is measured in the spectral norm.

The following non-asymptotic estimate is our main theoretical result.
Theorem 2.1. Let A be drawn from the n × N standard complex Gaussian ensemble. Let
σ, ν, ε, δ, t be any constants constrained as follows

σ :=
|I|
N

< 1, ν =
n

|I| < 1, ε ∈ (0, 1), δ > 0, t ∈ (0, ν−1/2 − 1). (4)

Then for any x0 ∈ Cn and xnull given by (1) the following error bound

‖x0x∗0 − xnullx∗null‖2 ≤
((

2 + t

1− ε

)
σ + ε (−2 ln(1− σ) + δ)

) ‖x0‖4
(1− (1 + t)

√
ν)

2 (5)

holds with probability at least

1− 2 exp

(
−1

2
Nδ2e−δ|1− σ|2

)
− exp

(
−2
b|I|εc2
N

)
− 2 exp

{
−cet

4
|I| ln 1

σ

}
− 4e−nt

2/2(6)

with an absolute constant c.
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The proof of Theorem 2.1 is given in Section 3.

To unpack the implications of Theorem 2.1, let us consider an asymptotic regime where the
error bound (5) is arbitrarily small and the success probability bound (6) is arbitrarily close
to one.

For the error bound to be small, we fix ε > 0, t > 0 and let

ν < (1 + t)−2/2 (7)

which can be arbitrarily small.

Next we set δ = c0σ where c0 is a positive constant and let σ � 1. The error bound (5)
becomes

‖x0‖−2‖x0x∗0 − xnullx∗null‖ ≤ c
√
σ (8)

where c is a constant.

To ensure the success probability is close to one, we let n� 1 and |I|2/N � 1. As a result,
the second and third term in (6) are bounded from above by a term of the form

c1 exp
(
−c2|I|2/N

)
(9)

for some constants c1, c2. Moreover, since |I| � |I|2/N , the third term is also bounded from
above by a term like (9).

In summary, with ε > 0, t > 0 fixed and arbitrary ν bounded by (7) we obtain the following
estimate.
Corollary 2.2. Under

1� n < |I| � N � |I|2 (10)

we have the error bound

‖x0‖−2‖x0x∗0 − xnullx∗null‖ ≤ c

√
|I|
N

(11)

with probability at least
1− c1 exp

(
−c2|I|2/N

)
− 4e−nt

2/2

for some constants c, c1, c2, t.

In other words, under the regime (10), the relative error (11) is arbitrarily small with prob-
ability exponentially (in n and |I|2/N) close to 1.

Next, we describe a power method for computing the null vector.
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3 The null vector algorithm

For a full rank A, let A∗ = QR be the QR-decomposition of A∗ where Q is isometric and
R is a full-rank, upper-triangular square matrix. Let z = Rx, z0 = Rx0 and znull = Rxnull.
Clearly, znull is the null vector for the isometric phase retrieval problem b = |Qz|.
Denote the sub-column matrices of Q corresponding to the index sets I and Ic (the comple-
ment of I), respectively, by QI and QIc .

Let

znull := arg min

{∑
i∈I

‖QIz‖2 : ‖z‖ = ‖b‖
}
. (12)

which is assumed to have the optimal global phase.

zdual := arg max
{
‖QIcx‖2 : ‖z‖ = ‖b‖

}
(13)

whose phase factor is optimally adjusted as znull.

We have
‖Q∗Iz‖2 + ‖Q∗Icz‖2 = ‖b‖2

and hence

znull = zdual. (14)

Eq. (14) can be used to construct the null vector from Q∗IcQIc by the power method as in
Algorithm 1 where 1c is the indicator function of Ic and zrand denote random initialization
whose pixels are given by, e.g. independent uniform random variables over [0, 1].

Algorithm 1: The null vector

1 Random initialization: z1 = zrand
2 Loop:
3 for k = 1 : kmax − 1 do
4 z′k ← Q∗(1c �Qzk);
5 zk+1 ← z

′

k/‖z
′

k‖
6 end
7 Output: ẑdual = zkmax‖b‖/‖zrand‖.

3.1 The spectral method

Here we compare the null vector method with the spectral method in [3] and [2].
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The spectral vector method [2, 3, 8] is another linear algebraic method and uses the leading
singular vector xspec of B∗ = diag[b]A∗ to approximate x0 where

xspec := arg max
{
‖B∗x‖2 : x ∈ Cn, ‖x‖ = ‖x0‖

}
.

Algorithm 2: The spectral vector

1 Random vector: x1 = xrand
2 Loop:
3 for k = 1 : kmax − 1 do
4 x′k ← A(|b|2 � A∗xk);
5 xk+1 ← [x

′

k]X/‖[x
′

k]X‖;
6 end
7 Output: xspec = xkmax‖x0‖/‖xrand‖.

The key difference between Algorithms 1 and 2 is the different weights used in step 4 where
the null vector method uses 1c and the spectral vector method uses |b|2 (Algorithm 2). The
truncated spectral vector method uses a still different weighting

xt-spec = argmax
‖x‖=1

‖A
(
1τ � |b|2 � A∗x

)
‖ (15)

where 1τ is the characteristic function of the set

{i : |A∗x(i)| ≤ τ‖b‖} (16)

with a thresholding parameter τ . Both γ of Algorithm 1 and τ of (15) can be optimized by
tracking and minimizing the residual ‖b− |A∗xk|‖.
The performance guarantee for the spectral method (Theorem 4.1 of [8] and Theorem 3.3
of [3]) is weaker than Theorem 2.1. Specifically, for some constant C1 and

N =
C1

c2
n ln3(n), n� 1, (17)

the spectral method initialization achieves the accuracy

‖x0‖−2‖x0x∗0 − xspecx∗spec‖ ≤
√
c,

where the positive constant c is arbitrary, with probability at least 1 − 4/N2 (Theorem 4.1
of [8]). In comparison, for some C1 > 0 and arbitrary C > 1 and |I| = Cn, Corollary 2.2
implies that

‖x0‖−2‖x0x∗0 − xnullx∗null‖ ≤ C1(lnn)−3/2

with probability at least exponentially (in n) close to one.

Compared to the spectral method, the null vector method uses less information from the
measured data (b versus Ic) but counterintuitively produces more accurate estimate of the
object (see Section 5). Moreover, because the null vector method depends only on the
choice of the index set I and not explicitly on b, the method is more stable to measurement
noise.
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4 Proof of Theorem 2.1

Let us begin with the following linear algebraic inequality.
Proposition 4.1. There exists x⊥ ∈ Cn with x∗⊥x0 = 0 and ‖x⊥‖ = ‖x0‖ = 1 such that

‖x0x∗0 − xnullx∗null‖2 ≤
2‖bI‖2
‖A∗Ix⊥‖2

. (18)

Proof. Since xnull is optimally phase-adjusted, we have

β := x∗0xnull ≥ 0 (19)

and

x0 = βxnull +
√

1− β2 z (20)

for some unit vector z∗xnull = 0. Then

x⊥ := −(1− β2)1/2xnull + βz (21)

is a unit vector satisfying x∗0x⊥ = 0. Since xnull is a singular vector and z belongs in another
singular subspace, we have

‖A∗Ix0‖2 = β2‖A∗Ixnull‖2 + (1− β2)‖A∗Iz‖2,
‖A∗Ix⊥‖2 = (1− β2)‖A∗Ixnull‖2 + β2‖A∗Iz‖2

from which it follows that

‖A∗Ix0‖2 − (1− β2)‖A∗Ix⊥‖2 (22)

= β2‖A∗Ixnull‖2 + (1− β2)2
(
‖A∗Iz‖2 − ‖A∗Ixnull‖2

)
≥ 0.

By (22), (3) and ‖bI‖ = ‖A∗Ix0‖, we also have

‖bI‖2
‖A∗Ix⊥‖2

≥ 1− β2 =
1

2
‖x0x∗0 − xnullx∗null‖2. (23)

In view of (18), we seek to give a upper bound on ‖bI‖ and lower bound on ‖A∗Ix⊥‖ as
follows.

Without loss of the generality we may assume ‖x0‖ = 1. Otherwise, we replace x0, xnull by
x0/‖x0‖ and xnull/‖x0‖, respectively. Let Q = [Q1 Q2 · · · Qn] be a unitary transformation
where Q1 = x0 or equivalently x0 = Qe1 where e1 is the canonical vector with 1 as the
first entry and zero elsewhere. Since unitary transformations do not affect the covariance
structure of Gaussian random vectors, the matrix A∗Q is distributed as the standard complex
Gaussian ensemble.
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Proposition 4.2. Let I be any set such that b(i) ≤ b(j) for all i ∈ I and j ∈ Ic =
{1, 2, ..., N} \ I. For any unitary matrix Q, let A′ ∈ C|I|×(n−1) be the sub-column matrix
of A∗IQ with its first column vector deleted. Then A′ is distributed as the standard complex
Gaussian ensemble.

Proof. First note that A∗IQ = (A∗Q)I , the row submatrix of A∗Q indexed by I. As noted
already, A∗Q is distributed as the standard complex Gaussian ensemble.

Since x0 = Qe1 and b = |A∗Qe1|, I and Ic are entirely determined by the first column of
A∗Q which is independent of the other columns of A∗Q. Consequently, the probability law
of A′ conditioned on the choice of I equals the probability law of A′ for a fixed I. Therefore,
A′ is distributed as the standard complex Gaussian ensemble.

Let {νi}n−1i=1 be the singular values of A′ in the ascending order. For any z ∈ Cn−1 the
matrix

B′ := A′ diag(z/|z|)
has the same set of singular values as A′. Again, we adopt the convention that z(j)/|z(j)| = 1
when z(j) = 0. We have

‖A′z‖ = ‖B′ |z|‖
and hence

‖A′z‖ = (‖<(B′) |z|‖2 + ‖=(B′) |z|‖2)1/2 ≥
√

2 (‖<(B′) |z|‖ ∧ ‖=(B′) |z|‖) .

The following statement gives the desired upper bound on ‖bI‖.
Proposition 4.3. For any ε > 0, δ > 0, t > 0

‖bI‖2 ≤ |I|
((

2 + t

1− ε

) |I|
N

+ ε

(
−2 ln

(
1− |I|

N

)
+ δ

))
with probability at least

1− 2 exp
(
−Nδ2e−δ|1− σ|2/2

)
− 2 exp

(
−2ε2|1− σ|2σ2N

)
−Q (24)

where Q has the asymptotic upper bound

2 exp

{
−cmin

[
e2t2

16

|I|2
N

(
lnσ−1

)2
,
et

4
|I| lnσ−1

]}
, σ :=

|I|
N
� 1.

The proof of Proposition 4.3 is given in Section 4.1.

The lower bound on ‖A∗Ix⊥‖ is given by the theory of Wishart matrices [10,11]. The singu-
lar values {νRj }n−1j=1 , {νIj }n−1j=1 (in the ascending order) of <(B′),=(B′) satisfy the probability
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bounds that for every t > 0 and j = 1, · · · , n− 1

P
(√
|I| − (1 + t)

√
n ≤ νRj ≤

√
|I|+ (1 + t)

√
n
)
≥ 1− 2e−nt

2/2, (25)

P
(√
|I| − (1 + t)

√
n ≤ νIj ≤

√
|I|+ (1 + t)

√
n
)
≥ 1− 2e−nt

2/2. (26)

If x⊥ ⊥ x0, then x⊥ = (0, z>)> with z ∈ Cn−1. By Proposition 4.1 and (25)-(26), we have
for some z ∈ Cn−1, ‖z‖ = 1 that

‖x0x∗0 − xnullx∗null‖ ≤
‖bI‖

‖<(B′) |z|‖ ∧ ‖=(B′) |z|‖
≤ ‖bI‖(νRn−1 ∧ νIn−1)−1

≤ ‖bI‖(
√
|I| − (1 + t)

√
n)−1.

By Proposition 4.3, we obtain the desired bound (5). The success probability is at least the
expression (24) minus 4e−nt

2/2.

Now let

4.1 Proof of Proposition 4.3

By the Gaussian assumption, b(i)2 = |a∗ix0|2 has a chi-squared distribution with the proba-
bility density e−z/2/2 on z ∈ [0,∞) and the cumulative distribution

F (τ) :=

∫ τ

0

2−1 exp(−z/2)dz = 1− exp(−τ/2).

Let

τ∗ = −2 ln(1− |I|/N) (27)

for which F (τ∗) = |I|/N.
Define

Î := {i : b(i)2 ≤ τ∗} = {i : F (b2(i)) ≤ |I|/N},
and

‖b̂‖2 :=
∑
i∈Î

b(i)2.

Let
{τ1 ≤ τ2 ≤ . . . ≤ τN}

be the sorted sequence of {b(1)2, . . . , b(N)2} in magnitude.
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Proposition 4.4. (i) For any δ > 0, we have

τ|I| ≤ τ∗ + δ (28)

with probability at least

1− exp

(
−N

2
δ2e−δ|1− |I|/N |2

)
(29)

(ii) For each ε > 0, we have

|Î| ≥ |I|(1− ε) (30)

or equivalently,

τb|I|(1−ε)c ≤ τ∗ (31)

with probability at least

1− 2 exp
(
−4ε2|1− |I|/N |2|I|2/N

)
(32)

Proof. (i) Since F ′(τ) = exp(−τ/2)/2,

|F (τ + ε)− F (τ)| ≥ ε/2 exp(−(τ + ε)/2). (33)

For δ > 0, let
ζ := F (τ∗ + δ)− F (τ∗)

which by (33) satisfies

ζ ≥ δ

2
exp(−1

2
(τ∗ + δ)). (34)

Let {wi : i = 1, . . . , N} be the i.i.d. indicator random variables

wi = χ{b(i)2>τ∗+δ}

whose expectation is given by
E[wi] = 1− F (τ∗ + δ).

The Hoeffding inequality yields

P(τ|I| > τ∗ + δ) = P

(
N∑
i=1

wi > N − |I|
)

(35)

= P

(
N−1

N∑
i=1

wi − E[wi] > 1− |I|/N − E[wi]

)

= P

(
N−1

N∑
i=1

wi − E[wi] > ζ

)
≤ exp(−2Nζ2).
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Hence, for any fixed δ > 0,

τ|I| ≤ τ∗ + δ (36)

holds with probability at least

1− exp(−2Nζ2) ≥ 1− exp

(
−Nδ

2

2
e−τ∗−δ

)
= 1− exp

(
−Nδ

2

2
e−δ |1− |I|/N |2

)
by (34).

(ii) Consider the following replacement

(a) |I| −→ d|I|(1− ε)e
(b) τ∗ −→ F−1(d|I|(1− ε)e/N)
(c) δ −→ F−1(|I|/N)− F−1(d|I|(1− ε)e/N)

(d) ζ −→ F−1(τ∗ + δ)− F−1(τ∗) = |I|/N − d|I|(1− ε)e/N = b|I|εc
N

in the preceding argument. Then (35) becomes

P
(
τd|I|(1−ε)e > F−1(|I|/N)

)
≤ exp(−2Nζ2) = exp

(
−2b|I|εc2

N

)
.

That is,
τd|I|(1−ε)e ≤ τ∗

holds with probability at least

1− exp(−2b|I|εc2/N).

Proposition 4.5. For each ε > 0 and δ > 0,

‖bI‖2
|I| ≤

‖b̂‖2
|Î|

+ ε(τ∗ + δ) (37)

with probability at least

1− 2 exp

(
−1

2
δ2e−δ|1− |I|/N |2N

)
− 2 exp

(
−2ε2|1− |I|/N |2 |I|

2

N

)
. (38)

Proof. Since {τj} is an increasing sequence, the function T (m) = m−1
∑m

i=1 τi is also increas-

ing. Consider the two alternatives either |I| ≥ |Î| or |Î| ≥ |I|. For the latter,

‖bI‖2/|I| ≤ ‖b̂‖2/|Î|
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due to the monotonicity of T .

For the former case |I| ≥ |Î|, we have

T (|I|) = |I|−1
 |Î|∑

i=1

τi +

|I|∑
i=|Î|+1

τi


≤ T (|Î|) + |I|−1(|I| − |Î|)τ|I|.

By Proposition 4.4 (ii) |Î| ≥ (1− ε)|I| and hence

T (|I|) ≤ T (|Î|) + |I|−1(|I| − |I|(1− ε))τ|I| = T (|Î|) + ετ|I|

with probability at least given by (32).

By Proposition 4.4 (i), τ|I| ≤ τ∗ + δ with probability at least given by (29).

Continuing the proof of Proposition 4.3, let us consider the i.i.d. centered, bounded random
variables

Zi :=
N2

|I|2
[
b(i)2χτ∗ − E[b(i)2χτ∗ ]

]
(39)

where χτ∗ is the characteristic function of the set {b(i)2 ≤ τ∗}. Note that

E(b(j)2χτ∗) =

∫ τ∗

0

2−1z exp(−z/2)dz = 2− (τ∗ + 2) exp(−τ∗/2) ≤ 2|I|2/N2 (40)

and hence

−2 ≤ Zi ≤ sup

{
N2

|I|2 b(i)
2χτ∗

}
=
N2

|I|2 τ∗. (41)

Next recall the Bernstein-inequality.
Proposition 4.6. [11] Let Z1, . . . , ZN be i.i.d. centered sub-exponential random variables.
Then for every t ≥ 0, we have

P

{
N−1|

N∑
i=1

Zi| ≥ t

}
≤ 2 exp

{
−cmin(Nt2/K2, Nt/K)

}
, (42)

where c is an absolute constant and

K = sup
p≥1

p−1(E|Zj|p)1/p.

11



Remark 4.7. For K we have the following estimates

K ≤ 2N2

|I|2 sup
p≥1

p−1(E|b(i)2χτ∗|p)1/p (43)

≤ 2N2

|I|2 τ∗ sup
p≥1

p−1(Eχτ∗)
1/p

≤ 2N2

|I|2 τ∗ sup
p≥1

p−1(1− e−τ∗/2)1/p.

The maximum of the right hand side of (43) occurs at

p∗ = − ln(1− e−τ∗/2)

and hence

K ≤ 2N2

|I|2
τ∗
p∗

(1− e−τ∗/2)1/p∗ .

We are interested in the regime
τ∗ � 2|I|/N � 1

which implies

p∗ � − ln
τ∗
2
� ln

N

|I|
and consequently

K ≤ 4N

e|I|

(
ln
N

|I|

)−1
, σ = |I|/N � 1. (44)

On the other hand, upon substituting the asymptotic bound (44) in the probability bound

Q = 2 exp
{
−cmin(Nt2/K2, Nt/K)

}
of (42), we have

K ≤ 2 exp

{
−cmin

[
e2t2

16

(
lnσ−1

)2 |I|2/N, et
4
|I| lnσ−1

]}
, σ � 1.

The Bernstein inequality ensures that with high probability∣∣∣∣∣‖b̂‖2N
− E(b2(i)χτ∗)

∣∣∣∣∣ ≤ t
|I|2
N2

.
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By (30) and (40), we also have

‖b̂‖2
|Î|

≤ E(b(i)2χτ∗)
N

|Î|
+ t
|I|2
|Î|N

(45)

≤
(

E(b(i)2χτ∗)
N2

|I|2 + t

) |I|
N

≤ 2 + t

1− ε ·
|I|
N

By Prop. 4.5, we now have

‖bI‖2 ≤ |I|
(
‖b̂‖2
|Î|

+ ε (τ∗ + δ)

)

with probability at least given by (6), which together with (45) and (27) complete the proof
of Proposition 4.3.

5 Numerical experiments

In this section we test numerically the null vector method and the spectral vector method.
Let pk, qk, k = 1, · · · , n be independent standard normal random variables and define the
following three types of signals x0:

White noise x0(t) =

n
2
−1∑

k=−n
2

(pk + iqk)e
i2πk(t−1)/n, t = 0, 1, ..., n− 1; (46)

Low-pass signal x0(t) =

n
8
−1∑

k=−n
8

(pk + iqk)e
i2πk(t−1)/n, t = 0, 1, ..., n− 1; (47)

Randomly phased Phantom (RPP) signal: x0 is the vector form of the d√ne × d√ne
positive-valued Phantom with phase at each pixel being independently and uniformly dis-
tributed over [0, 2π).

5.1 Convergence test

First we test the capability of the null vector method as a stand-alone method for phase
retrieval under the regime (10) of Corollary 2.2. In particular, we would like to see how
sharp the error bound (11) is.
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(c) RPP

Figure 1: Log-log plot of relative error (RE) of the null vector method with α = 4/5 (blue),
α = 3/4 (green), α = 2/3 (red), the spectral (black) and the truncated spectral method
(yellow) vs. L ≤ 104. The legend at the top describes the results of linear regression.

To this end and for convenience of simulation, we let N = Ln and |I| = nLα with n = 160
and α ∈ (0.5, 1). The number L is called the oversampling ratio.

For Lmax = 104 we generate the largest measurement matrix Amax := [aj]j=1,...,nLmax and the
corresponding measurements bmax := |A∗maxx0|. For L < Lmax the measurement matrix A
consists of the first nL columns of Amax and b the first nL components of bmax.

In Fig. 1 we plot the logarithm of the relative error (RE)

RE := ‖x0‖−2‖x0x∗0 − x̂x̂∗‖2 (48)

where x̂ = xnull, xspec or xt−spec, as a function of logL. We use the data points for L ≥ 25
to estimate the slope and the intercept of the linear regression lines (dotted lines). The
estimated slope for the null vector method is less than −0.5 for α = 2/3, 3/4, 4/5 and all
three test signals, indicating overestimation of (11), and the estimated slope is also less
than those for the spectral method and its truncated version. For every L, the error of
the null vector method is significantly smaller than that of the spectral method. Here the
thresholding parameter in (16) is chosen to remove the top 1% (in magnitude) among the
components of b. In this test, however, the truncation does not improve the performance of
the spectral method.

5.2 Initialization test

In practice, the oversampling ratio L is usually small and hence we can not expect the null
vector method to produce an accurate estimate. According to [1], the phase retrieval map
M(x) = |A∗x| is injective for generic complex-valued A∗ if N ≥ 4n−2. So below we consider
the borderline case L = 4.

For computational consistency, we enforce the following nested structure in the test signal
and measurement matrix. For n ∈ [nmin, nmax], a test signal x

(nmax)
0 ∈ Cnmax is generated in
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(b) Low-pass signal
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Figure 2: RE vs the dimension n of the object vector with the oversampling ratio L = 4.

(a) Modulus of RPP (b) |xnull| (c) |xt-spec|

Figure 3: The initialization for (a) the original 120×120 RPP by (b) the null vector method
and (c) the truncated spectral method. REs corresponding to (b) and (c) are 1.0270 and
1.3063, respectively.

advance and fixed for the rest of trials. The test signal x0 of length n < nmax is a sub-vector
of x

(nmax)
0 :

x0(j) = x
(nmax)
0 (j), j = 1, 2, ..., n. (49)

For L = 4, the reconstruction error is highly fluctuating and to smooth out the error curves
we average the reconstruction errors from many trials. We randomly generate J complex
Gaussian matrices {A(j)

max}j=1,2,...,J ⊂ Cnmax×Lnmax , where the superscript j is the index of

the realization. For n < nmax, A
(j) is the upper left n × nL submatrix of A

(j)
max for each

j = 1, · · · , J .

Fig. 2 shows the average REs (with J = 104) versus n for L = 4 and various α. For the null
vector method, the simple rule of using the median value |I| = 0.5N is effective for small L
(corresponding to α = 1/2 for L = 4). The spectral method produces poor results which are
not shown. Here the truncation trick improves the performance of the spectral method. We
see that the null vector method significantly outperforms the truncated spectral method for
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Figure 4: AP reconstruction errors with the initializations xnull and xt-specfor the 50×50 and
120× 120 RPPs.

small L.

To better visualize the result of an individual trial, we show the moduli of the original
120 × 120 RPP, the truncated spectral and the null vector reconstructions in Fig 3. We
then use these results as initialization for the alternating projection (AP) or error reduction
(ER) [6,7] and plot the REs, on the logarithmic scale, of the AP in Fig. 4. For the reader’s
convenience, we describe the version of AP that is implemented.

Step 1: Perform the QR factorization A∗ = QR where Q ∈ CN×n is isometric and R ∈ Cn×n

is upper triangular. For an i.i.d. Gaussian matrix A∗, R is invertible almost surely.

Step 2: Let ξ = Rx and rewrite |A∗x| = b as |Qξ| = b.

Step 3: Perform the iteration

ξk+1 = Q∗
(
b� Qξk

|Qξk|
)

(50)

for k = 0, 1, 2, ... with ξ0 = Rxnull or Rxt-spec. Let xk = R−1ξk.

Clearly, all iteration processes exhibited in Fig. 4 eventually enter the geometric convergence
regime with the null vector initialization entering at much earlier times. More importantly,
the null vector method does so essentially independent of the dimension of the object vector
while the results of the truncated spectral method are sensitive to the dimension of the object
vector .
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6 Conclusion and discussion

We have proposed an approximate method (the null vector method) for solving the phase
retrieval problem and given a performance guarantee in the case of independent Gaussian
measurement (Theorem 2.1). We have further identified an asymptotic regime for which
the reconstruction error tends to zero with probability exponentially close to one (Corollary
2.2). This is an improvement over the performance guarantee for the spectral method and
its truncated version.

In numerical experiments, the null vector method significantly outperforms the spectral
method for various test signals and exhibits a power-law behavior, in the limit of large over-
sampling ratio, that is consistent with, but more optimistic than, our theoretical prediction
(Corollary 2.2). It remains an open problem as to what the optimal scaling law of the
reconstruction error should be.

Numerical experiments further show that, in the opposite regime of small oversampling ratio,
the null vector method also has a superior performance as initialization for iterative phase
retrieval algorithms.

In the case of phase retrieval with coded diffraction patterns, the null vector method continues
to perform well regardless of structured measurement matrices inherent in this context [5].
Also, because the null vector method depends only on the choice of the index set I and not
explicitly on b, it is more stable to measurement noise.
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