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Abstract - Theory of absolute uniqueness for phase

retrieval with random illumination is presented.

Suitable random illumination eliminates all sources

of ambiguity, trivial and nontrivial. As a result,

random-illumination-aided phase retrieval algorithms

can accurately recover objects with a below-Nyquist

sampling rate close to the minimum and reduce the

number of iterations by order of magnitude.

I. INTRODUCTION

Fourier phase retrieval is the inverse problem of recover-
ing the phase information given the Fourier magnitude data
which plays an important role in many areas of science and
engineering.

Since our motivation is lensless imaging [8], let us con-
sider discrete phase retrieval in two dimensions: Let n =
(n1, n2) ∈ Z2 and z = (z1, z2) ∈ C2. Define the multi-
index notation zn = zn1

1 zn2
2 . Let f(n) be a complex-valued

function defined on Z2 vanishing outside the finite lattice

N =
{

0 ≤ n ≤ N
}

for N = (N1, N2) ∈ N2. m ≤ n means

mj ≤ nj ,∀j. The discrete phase retrieval problem is to de-
termine f(n) from the knowledge of the magnitude of the
Fourier transform

F (w) =
∑
n

f(n)e−i2πn·w, w = (w1, w2) ∈ [0, 1]2.

It is convenient to write

|F (w)|2 =

N∑
n=−N

Cf (n)e−i2πn·w

where

Cf (n) =
∑

m+n∈N
f(m + n)f∗(m)

is the autocorrelation function of f . By Shannon’s sam-
pling theorem Cf can be fully extracted from the Fourier
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magnitude sampled on the regular grid

L =
{

(k1, k2) : kj = 0,
1

2Nj + 1
, · · · , 2Nj

2Nj + 1

}
. (1)

Then the phase retrieval problem can be stated as determin-
ing the object function f from its autocorrelation function
Cf .

The first central question is that of uniqueness which tra-
ditionally has meant uniqueness up to equivalence class of
“trivial associates”, including constant global phase,

f(n) −→ eiθf(n), for some θ ∈ [0, 2π],

spatial shift

f(n) −→ f(n⊕m), for some m ∈ Z2 (2)

and conjugate inversion

f(n) −→ f∗(N− n⊕m) (3)

where n⊕m = n+m(mod(N1+1, N2+1)) [1, 6, 7]. Conju-
gate inversion produces a twin image which is a main stum-
bling block for standard phase retrieval algorithms [11].

In our approach [3], we pursue the notation of absolute
uniqueness: if two finite objects f and g give rise to the
same Fourier magnitude data, then f = g unequivocally.
An essential ingredient of our approach is random (phase or
amplitude) illumination which is a form of coded-aperture
imaging. This turns out to be pertinent to the main focus
of the present paper, i.e. to achieve phase retrieval with
sampling rate strictly below the Nyquist rate (1).

The rest of the paper is organized as follows. In Section
II, we discuss phase retrieval from the perspective of
compressed sensing. In Section III, we present the theory
of absolute uniqueness. In Section IV, we present our
numerical results. We draw conclusions in Section V.

II. COMPRESSED MEASUREMENTS

When the autocorrelation function Cf is sparse and has,
say, K non-zero elements, then, with a high probability,



expanding the laser beam and impinging on a plate of translucent perpex, which acts as an 
opal diffuser, with unnoticeable grain and nearly Lambertian scattering of the light. In the 
fluorescence experiments the sample is coated with a thin layer (~5 µm) of solution of 
fluorescein diacetate (FDA) that reemits incoherent light in the green wavelengths of the 
optical spectrum.  

The process requires a high resolution image of the speckle that acts as the encoding-
decoding mask. We take these reference images prior to each experiment by focusing at a 
transparent region in the sample plane using a lens with high NA (0.4). Figure 2 displays the 
reference image and its autocorrelation. The size of the autocorrelation peak is the expected 
resolution after the superresolution process when a low NA lens is used. 

 

 
Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern. 

 
Once the reference speckle pattern is captured, the sample is set in place and the lens is 

replaced by a lens with a low NA in the horizontal direction. Then the sample position is 
laterally scanned and the image set is captured. Note that instead of displacing the projected 
pattern (or, equivalently, the diffuser) and the decoding pattern synchronously, we instead 
scan the sample position and keep the encoding and decoding masks static. The situation is 
fully equivalent, provided that the captured images are shifted digitally, to compensate the 
mechanical movement of the sample. The discrete sampling affects the autocorrelation that 
determines the impulse response of the process. Thus in Eq. (3) the integral becomes a 
summation and the variable ξ is discretized. The correlation is obtained by spatial averaging; 
thus the minimum shift should be similar to the correlation run length of the speckle pattern 
(otherwise the contribution of different samples would coincide). The span between extreme 
samples should be significantly larger than the speckle size, for obtaining sufficient statistical 
averaging. The larger the number of samples the better will the correlation estimation be 
(typically a few tenths should suffice).  

We capture a set of 60 images. Each one is multiplied by the previously recorded high 
resolution speckle pattern and the resulting images are added together. Figure 4(a) shows a 
sample image captured with the low resolution lens. No information can be observed on it. 
The typical horizontal speckle size is related with the lens resolution and is too large to 
resolve the pattern in the sample. Figure 4(b) displays the reconstructed image. Although 
speckle noise corrupts the image, the sample can be clearly distinguished. The movie 
associated to the figure shows how the reconstruction is built over time as subsequent frames 
are added. This movie gives also a direct visual interpretation of the underlying principle in 
the method. Note that, despite of the large speckle size, the speckles are blinking as the pass 
the different transmittance areas of the sample. This information is decoded using the same 
mask that was blurred by the low NA lens and recovers the resolution of the high resolution 
encoding mask. 

Finally, we performed a similar test but after covering the sample with a thin layer of 
FDA. This converts the speckle pattern in the sample into an incoherent distribution. Figure 5 

(a) (b) 
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Figure 1: (a) Nearly i.i.d. speckle pattern and (b) its auto-
correlation produced by a light diffuser (adapted from [5]).

the whole function |F (w)|2,w ∈ L can be recovered by
compressed sensing techniques [10] from a sampling sub-

set consisting of O(K
∑2
j=1 logNj) independent, uniformly

distributed points in L or [0, 1]2.
If the sequence f has S ≤ |N | nonzero components

(i.e. the sparsity equals S), then it is easy to see that Cf
has at most S(S − 1)/2 + 1 nonzero components. Hence
the whole function |F (w)|2,w ∈ L can be recovered from

O(S2
∑2
j=1 logNj) samples with high probability.

Unfortunately, taking advantage of this standard com-
pressed sensing result would limit the objects of interest to
the class of one-dimensional objects. A more powerful ap-
proach is to use random illumination to effectively turn the
deterministic object into a random object.

Random illumination amounts to replacing the original
object f(n) by

f̃(n) = f(n)λ(n)

where λ(n), representing the incident field, is a known se-
quence of samples of random variables, typically assumed
to be independent and identically distributed (i.i.d.), Figure
1.

The most important property about λ(n) is that they are
continuous random variables with respect to the Lebesgue
measure on S1 (the unit circle), R or C. The case of S1 can
be facilitated by a random phase modulator with

λ(n) = eiφ(n) (4)

where φ(n) are continuous random variables on [0, 2π] while
the case of R can be facilitated by a random amplitude
modulator. The Gaussian and binary masks used in [2]
are examples of random amplitude illumination. The case
of C involves simultaneously both phase and amplitude
modulations.

For a metric of compression, let us define the sampling
ratio

ρ = # Fourier magnitude data/# image pixels

following [9]. The Nyquist rate (1) corresponds to ρ = 4 in
two dimensions. The goal of compressed sensing is Fourier
phasing with the sampling ratio ρ < 4.

III. ABSOLUTE UNIQUENESS

First we have the following uniqueness result [3].

Theorem 1. Suppose that f(n) is real and nonnegative for
every n and that {λ(n)} are independent continuous ran-
dom variables on S1 or R or C. Then, with probability one,
f is determined absolutely uniquely by the Fourier magni-
tude measurement on the lattice L.

Another widely used constraint is the positivity of both
real and imaginary parts of complex-valued objects [9]. For
such objects, we have the following result [3].

Theorem 2. Suppose that f(n) has nonnegative real and
imaginary parts for every n. Let S be the sparsity (the
number of nonzero elements) of the object.

(i) Consider the random phase illumination (4). Suppose
that the phases φ(n) are i.i.d. uniform random variables
on [0, 2π]. Then with probability no less than 1−|N |4−[S/2]
the object f is absolutely uniquely determined by the Fourier
magnitude measurement. Here [S/2] is the greatest integer
less than or equal to S/2.

(ii) Consider the random amplitude illumination with
i.i.d. random variables {λ(n)} ⊂ R that are equally likely
negative or positive, i.e. P{λ(n) > 0} = P{λ(n) <
0} = 1/2,∀n. Then with probability no less than 1 −
2−[(S−1)/2]|N | the object f is absolutely uniquely determined
by the Fourier magnitude measurement on L.

Such results do not hold for the 1-dimensional phasing
problem.

Both Theorem 1 and 2 require the Nyquist sampling
with ρ = 4 which appears to be an overestimate. Actual
reconstruction with random illumination requires a much
smaller ρ as shown below.

IV. NUMERICAL EXPERIMENTS

The most widely used phase retrieval algorithm is
Fienup’s [4] Hybrid Input-Output Algorithm (HIO) based
on alternating projections in the object domain and the
Fourier domain. Given the k-th iterate fk(n) the (k + 1)st
iteration of HIO is given as follows.
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(a)

recovered image by 100 HIO + 10 ER(oversampling rate = 1.1)

||f frec||/||f|| = 2.6127% relative intensity error = 0.33143%(b)
recovered image by 3000 HIO + 10 ER(oversampling rate = 4)

||f frec||/||f|| = 4.3569% relative intensity error = 0.28157%(c)

recovered image by 3000 HIO + 10 ER(oversampling rate = 2)

||f frectwin||/||f|| = 39.9088% relative intensity error = 0.5702%(d)

Figure 2: (a) The original object and reconstructions with
(b) random phase illumination, ρ = 1.1, relative error ≈
2.61%; (c) constant illumination, ρ = 4, relative error ≈
4.36%; (d) constant illumination, ρ = 2.

HIO algorithm

� Update Fourier phase: Fk = Φfk = |Fk(w)|eiθk(w).

� Update Fourier magnitude: F̃k(w) = |F (w)|eiθk(w).

� Inverse Fourier transform f̃k = Φ∗F̃k.

� fk+1(n) =

{
f̃k(n) if Γ is satisfied

fk(n)− βf̃k(n) if Γ is violated
where Γ is the object domain constraints.

Here Φ is the discrete Fourier transform and β is the hy-
bridization parameter typically chosen between 0.5 and 1.
In our experiments β = 0.9. The object domain constraints
Γ may include the support constraint and the object value
constraint (e.g. positivity).

One way to introduce the support constraint is by zero-
padding with ρ > 1 [9]. LetN be the original object domain
with (N1 + 1)(N2 + 1) pixels. With ρ > 1 we enlarge the
object domain by adding (ρ− 1)(N1 + 1)(N2 + 1) pixels of
value zero around N . Zero-padding can reduce the chance
of confusing the object with a shifted object (2). However,
zero-padding can not prevent the twin image (3) from get-
ting in the way of reconstruction unless random illumination

bull

(a)

recovered image by 100 HIO + 10 ER(oversampling rate = 1.1)

||f frec||/||f|| = 2.9675% relative intensity error = 0.37058%(b)
recovered image by 3000 HIO + 10 ER(oversampling rate = 4)

||f frec||/||f|| = 13.2686% relative intensity error = 0.7442%(c)

recovered image by 3000 HIO + 10 ER(oversampling rate = 6)

||f frectwin||/||f|| = 17.3742% relative intensity error = 0.41448%(d)

Figure 3: (a) The original object and reconstructions with
(b) random phase illumination, ρ = 1.1, relative error ≈
2.97%; (c) constant illumination, ρ = 4 , relative error ≈
13%; (d) constant illumination, ρ = 6, ‖f̂ − ftwin‖/‖f‖ ≈
17%.

is applied.

In the following numerical examples (Figures 2 and 3)
we show how much reduction in data can be achieved by
random phase illumination (4). We apply the algorithm
HIO followed by 10 steps of error-reductions [4].

For both examples, with single random phase illumi-
nation, mere 100 HIO iterations and the sampling ratio
ρ = 1.1 are sufficient to achieve accurate recovery (less
than 3% relative error) (Figure 2 (b), Figure 3 (b)). In
contrast, with constant illumination (λ(n) = 1,∀n), even
3000 HIO iterations and the sampling ratio ρ = 4 fails to
recover the object due to the interference of the twin image
(3) in some case (Figure 3 (c)) and when the sampling ratio
increases to ρ = 6 the twin image finally overwhelms the
true image in the reconstruction (Figure 3 (d)). Even in
the case where recovery with constant illumination seems
successful (after 3000 iterations with ρ = 4), the recovered
image is contaminated with an artificial pattern of stripes
(Figure 2 (c)). If the sampling ratio reduces to ρ = 2, the
quality of recovery deteriorates drastically, again, due to
the interference of the twin image (Figure 2 (d)).

V. CONCLUSIONS

We have developed theory of absolute uniqueness for
phase retrieval with random illumination. In addition to



providing psychological assurance, the absence of (trivial
or nontrivial) ambiguity probably contributes in a signifi-
cant way to the superior qualities of random-illumination-
aided phase retrieval algorithms which use far fewer Fourier
magnitude data and order of magnitude fewer number of it-
erations.

By a simple dimension counting, it is easy to see that
ρ = 1 is a lower bound for the minimum sampling rate
for phasing real-valued objects. In our examples, we have
demonstrated that ρ = 1.1 is sufficient to accurately recover
the real-valued objects with single random phase illumina-
tion.
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