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Phase retrieval

Problem
Reconstruct the object f from the Fourier magnitude |Φf |.

Why do we care?

X-ray crystallography, single-molecule imaging, astronomy etc.

1985 Nobel Prize in Chemistry for Hauptman and Karle: partial

solution of phasing problem.
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Phasing problem formulation

Discrete finite objects

Let n = (n1, n2) ∈ Z2 and z = (z1, z2) ∈ C2.

multi-index : zn = zn11 zn22

Let the object be represented by f(n),n ≤ N = (N,N).

Binary objects: white = 1, black = 0.
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fL = Lena fB = Barbara
FL(w) = |FL(w)|eiθL(w) FB(w) = |FB(w)|eiθB(w)

F1(w) = |FB(w)|eiθL(w) F2(w) = |FL(w)|eiθB(w)

f1 = |Φ∗F1| f2 = |Φ∗F2|
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Fourier Magnitude: Barbara  Fourier Phase: Lena Fourier Magnitude: Lena  Fourier Phase: Barbara

F1(w) = |FB(w)|eiθL(w) F2(w) = |FL(w)|eiθB(w)

f1 = |Φ∗F1| f2 = |Φ∗F2|
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diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256

.

Fourier transform describes wave propagation

F (ei2πw1, ei2πw2) =
�

n
f(n)e−i2πn·w

Analytic continuation =⇒ z-transform

F (z) =
�

n
f(n)z−n.

Discrete phase retrieval problem:

Determine f(n) from Fourier magnitude data

|F (w)|, ∀w = (ei2πw1, ei2πw2) ∈ [0,1]2

Phasing problem formulation

Discrete finite objects

Let n = (n1, n2) ∈ Z2 and z = (z1, z2) ∈ C2.

multi-index : zn = zn11 zn22

Let the object be represented by f(n),n ≤ N = (N,N).

Binary objects: white = 1, black = 0.
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Fourier magnitude data:

|F (w)|2 =
N�

n=−N

�

m
f(m+ n)f∗(m)e−i2πn·w

=
N�

n=−N

Cf(n)e−i2πn·w

where

Cf(n) =
�

m
f(m+ n)f∗(m)

is the autocorrelation function of f.

Fourier magnitude data contain complete information about

autocorrelation function.

Sampling Theorem:

supp(Cf) ⊂ [−N,N ]2=⇒ [0,1]2 is reduced to the Nyquist grid

M =
�
(k1, k2) : kj = 0,

1

2N +1
,

2

2N +1
, · · · ,

2N

2N +1

�
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if sampled at the lattice

L =

�
ω = (ω1, ...,ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

�
(3)

which is 2d times of the grid of the original image. The standard phasing problem is to

recover the array f(n) from its Fourier intensity measurement Y (ω) = |F (ei2πω)| for ω ∈ L
or smaller sampling sets.

Clearly the correlation function Cf and the Fourier magnitude data are invariant under

spatial translation

f(·) → f(·+ t) for some t ∈ Zd,

conjugate inversion

f(·) → f(N− ·)

and constant global phase change

f(·) → eiθf(·).

These trivial associates all share the same global geometric information as the original object.

The classical results of uniqueness given in [5] [6] [12] say that for almost all objects in

dimension two or higher the trivial associates are the only ambiguities there are with phase

retrieval. When none of the ambiguities arises, we say that the phasing problem has an

absolutely unique solution [1].

On the other hand, by dimension counting Miao et al. [11] have argued that overall 2

times oversampling, independent of the dimension d, uniquely determines a unique phasing

solution up to spatial shift, conjugate inversion and global phase factor. To measure the

degree of oversampling we use the oversampling ratio (OR)

σ =
Fourier magnitude data number

unknown image pixel number

introduced in [11]. As we demonstrate below, Miao et al.’s conjecture can be realized by

using RPI, but not uniform illumination.

As shown in [1] random illumination (RI) can help remove the phasing ambiguities of

spatial shift and conjugate inversion. An illumination amounts to replacing the original

image f(n) by

g(n) = λ(n)f(n),

where λ(n) is a known array representing the incident wave. In the case of uniform illumi-

nation, λ(n) = 1. In the case of random phase illumination (RPI) [13],

λ(n) = eiφ(n) (4)

3

Standard ratio: 

Compressed sensing: 

Saturday, June 9, 2012



Trivial ambiguities
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Trivial ambiguities

Autocorrelation:

Cf(n) =
�

m+n∈N
f(m+ n)f∗(m)

Invariant under:

(i) global phase,

f(n) −→ eiθf(n), for some θ ∈ [0,2π],

(ii) spatial translation

f(n) −→ f(n⊕m), n⊕m = n+m mod(N), some m ∈ Z2

(iii) conjugate inversion (twin image)

f(n) −→ f∗(N− n).
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Sources of ambiguity

THEOREM (Hayes 82, Pitts-Greenleaf 03)

Let the z-transform F (z) of a finite complex-valued sequence

{f(n)} be given by

F (z) = αz−m
p�

k=1

Fk(z), m ∈ N2,α ∈ C

where Fk, k = 1, ..., p are nontrivial irreducible polynomials. Let

G(z) be the z-transform of another finite sequence g(n). Sup-

pose |F (w)| = |G(w)|, ∀w ∈ [0,1]2. Then G(z) must have the

form

G(z) = |α|eiθz−p




�

k∈I
Fk(z)








�

k∈Ic
F ∗
k (1/z

∗
)



, p ∈ N2, θ ∈ R

where I is a subset of {1,2, ..., p}.

Nontrivial ambiguity: Partial conjugate inversion on factors.
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Random Illumination

Coded aperture imaging

diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256
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diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
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Diffuser generated speckle pattern: Garcia-Zalevsky-Fixler 05

expanding the laser beam and impinging on a plate of translucent perpex, which acts as an 
opal diffuser, with unnoticeable grain and nearly Lambertian scattering of the light. In the 
fluorescence experiments the sample is coated with a thin layer (~5 µm) of solution of 
fluorescein diacetate (FDA) that reemits incoherent light in the green wavelengths of the 
optical spectrum.  

The process requires a high resolution image of the speckle that acts as the encoding-
decoding mask. We take these reference images prior to each experiment by focusing at a 
transparent region in the sample plane using a lens with high NA (0.4). Figure 2 displays the 
reference image and its autocorrelation. The size of the autocorrelation peak is the expected 
resolution after the superresolution process when a low NA lens is used. 

 

 
Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern. 

 
Once the reference speckle pattern is captured, the sample is set in place and the lens is 

replaced by a lens with a low NA in the horizontal direction. Then the sample position is 
laterally scanned and the image set is captured. Note that instead of displacing the projected 
pattern (or, equivalently, the diffuser) and the decoding pattern synchronously, we instead 
scan the sample position and keep the encoding and decoding masks static. The situation is 
fully equivalent, provided that the captured images are shifted digitally, to compensate the 
mechanical movement of the sample. The discrete sampling affects the autocorrelation that 
determines the impulse response of the process. Thus in Eq. (3) the integral becomes a 
summation and the variable ξ is discretized. The correlation is obtained by spatial averaging; 
thus the minimum shift should be similar to the correlation run length of the speckle pattern 
(otherwise the contribution of different samples would coincide). The span between extreme 
samples should be significantly larger than the speckle size, for obtaining sufficient statistical 
averaging. The larger the number of samples the better will the correlation estimation be 
(typically a few tenths should suffice).  

We capture a set of 60 images. Each one is multiplied by the previously recorded high 
resolution speckle pattern and the resulting images are added together. Figure 4(a) shows a 
sample image captured with the low resolution lens. No information can be observed on it. 
The typical horizontal speckle size is related with the lens resolution and is too large to 
resolve the pattern in the sample. Figure 4(b) displays the reconstructed image. Although 
speckle noise corrupts the image, the sample can be clearly distinguished. The movie 
associated to the figure shows how the reconstruction is built over time as subsequent frames 
are added. This movie gives also a direct visual interpretation of the underlying principle in 
the method. Note that, despite of the large speckle size, the speckles are blinking as the pass 
the different transmittance areas of the sample. This information is decoded using the same 
mask that was blurred by the low NA lens and recovers the resolution of the high resolution 
encoding mask. 

Finally, we performed a similar test but after covering the sample with a thin layer of 
FDA. This converts the speckle pattern in the sample into an incoherent distribution. Figure 5 

(a) (b) 

(C) 2005 OSA 8 August 2005 / Vol. 13,  No. 16 / OPTICS EXPRESS  6077
#7712 - $15.00 US Received 3 June 2005; revised 25 July 2005; accepted 25 July 2005
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Massively parallel X-ray holography
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Advances in the development of free-electron lasers offer the
realistic prospect of nanoscale imaging on the timescale of
atomic motions. We identify X-ray Fourier-transform
holography1,2,3 as a promising but, so far, inefficient scheme to
do this. We show that a uniformly redundant array4 placed
next to the sample, multiplies the efficiency of X-ray Fourier
transform holography by more than three orders of magnitude,
approaching that of a perfect lens, and provides holographic
images with both amplitude- and phase-contrast information.
The experiments reported here demonstrate this concept by
imaging a nano-fabricated object at a synchrotron source, and
a bacterial cell with a soft-X-ray free-electron laser, where
illumination by a single 15-fs pulse was successfully used in
producing the holographic image. As X-ray lasers move to
shorter wavelengths we expect to obtain higher spatial
resolution ultrafast movies of transient states of matter.

Pinhole cameras were used by Chinese, Arab and European
scholars to study the Sun and solar eclipses, and sixteenth-
century European painters used the camera obscura to form an
image of a subject on a canvas. It was well understood that a
small pinhole was required to achieve high spatial resolution, but
the small pinhole also dimmed the light in the image5. Multiple
pinholes increased light intensity, but they made image
reconstruction more involved, and this approach had to wait
until the development of computers and fast numerical methods.
Each bright point of a scene deposits a shadow-image of the
pinhole array on the viewing screen. Depth information about
the object is encoded in the scaling of the shadow image of the
object points6. Knowledge of the geometry of the pinhole array
(the ‘coded aperture’) allows for numerical recovery of the image.
Initially, random arrays of pinholes were used in X-ray
astronomy7,8, and these were eventually replaced by binary
uniformly redundant arrays (URAs), which were shown to be

optimal for imaging4. The multitude of sharp open features
contain equal amounts of all possible spatial frequencies, thereby
allowing high spatial resolution without sacrificing image
brightness. URA-based coded apertures are now commonly used

Figure 1 Experimental geometry and imaging. A coherent X-ray beam
illuminates both the sample and a URA placed next to it. An area detector
(a charge-coupled device, CCD, in these experiments) collects the diffracted X-rays.
The Fourier transform of the diffraction pattern yields the autocorrelation map with a

holographic term (in the circle) displaced from the centre. The Hadamard transform
decodes the hologram. Resolution can be extended beyond the resolution of the
URA by subsequent iterative phase extension for both the object and the URA.

LETTERS
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in hard X-ray astronomy9, medical imaging10, plasma research11,
homeland security12 and spectroscopy13. They improve
brightness where lenses are not applicable.

The forerunner of the massively parallel X-ray holography
method reported here is conventional visible-light Fourier-
transform holography (FTH)1. The interference pattern between
light scattered from an object and light scattered from a nearby
pinhole used as a reference source is recorded far downstream (in
the far-field). When the hologram is re-illuminated by the
pinhole reference wave, the hologram diffracts the wavefront to
produce an image of the object. A second inverted (‘twin’) copy
of the object is produced on the opposite side of the optical axis.
Under far-field measurement conditions, a simple inverse Fourier
transform of the recorded hologram produces an image of
the specimen convolved with the reference pinhole source. As in
the pinhole image of the camera obscura the image is weak, and
the brightness of the image (or equivalently, the signal-to-noise
ratio, SNR) increases as the reference pinhole increases in size, at
the expense of image resolution. In general the solution to this
problem is to use multiple reference sources. For example, a
unique mesoscale object has been imaged by X-ray FTH using
five pinhole sources14. However, the image brightness and the
number of pixels available to image the specimen are still limited
in this geometry.

The improvement in the SNR of Fourier-transform holograms
with a strong reference saturates at half of the SNR of an amplitude
image formed by a perfect lens15; lens-based images result in
additional loss of phase information. Furthermore, lens-based
amplitude images suffer from a limited focal length at high
resolutions. For instance, the focal length of a soft-X-ray lens
operating in the water window at 15-nm resolution is !200 mm,
and the depth of field is !100 nm. This hinders sample rotation
about an axis normal to the beam in front of the lens, and
restricts sample translation along the beam.

Efforts to overcome the depth of field problem and to produce
strong holograms have been pursued using complicated reference
objects1,16,17; however, there is still the difficulty of deconvolution
due to the missing frequency content of the reference. This can
be overcome by URAs, which have a flat power spectrum. The
gain in flux compared with a single pinhole is a factor of the
number of opaque elements in the URA (twice as much for
phase URAs). The number of such elements can be orders of
magnitude higher than in classical FTH. The SNR in the URA-
produced image increases more slowly than the brightness of the
image, and is initially proportional to the square root of the
number of pixels13 in the URA (see Methods). The sample and
the URA are placed next to each other in the object plane
(Fig. 1) to ensure a convenient separation of the correlation
terms of the object and the URA.

We report here two experiments with this geometry. The first of
these (Fig. 2) was performed with 2.3-nm-wavelength synchrotron
radiation at Beamline 9.0.118–20 of the Advanced Light Source
(ALS), where we used a 4-mm coherence-selecting pinhole to
define the beam. The beam illuminated the test object together
with a 71 " 73 twin-prime URA of 44 nm resolution (equal to
the diameter of the scattering elements). Figure 2 shows the
reconstructed exit wavefront, and Fig. 2d,e demonstrates the flux
advantage of the URA method in this experiment.

The second set of experiments (Fig. 3) was performed with
13.5-nm radiation from the FLASH free-electron laser in
Hamburg21,22, where a single 15-fs pulse of 1 " 1012 photons was
used to image a bacterium (Spiroplasma melliferum) with a URA
of 150 nm resolution. The high-intensity FEL pulse vaporized the
sample and the URA, but in line with expectations23 and initial
observations19,24, the objects in the beam remained intact during
exposure. The reconstructed exit wavefront (Fig. 3) shows no
signs of damage. These results illustrate the feasibility of imaging
micrometre-sized biological objects with an FEL pulse. These
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Figure 2 Massively parallel holography at high resolutions. a, A lithographic test sample imaged by scanning electron microscopy (SEM) next to a 30-nm-thick
twin-prime 71 " 73 array with 44-nm square gold scattering elements. The scale bar is 2 mm. b, The diffraction pattern collected at the ALS (l ¼ 2.3 nm, 1 " 106

photons in 5-s exposure, 200 mm from the sample). c, The real part of the reconstructed hologram. d, The simulation with 1 " 106 photons. The grey scale
represents the real part of the hologram. e, A simulation with the same number of photons, but a single reference pinhole. f, Line through the two dots
indicated in c. The vertical scale represents the real part of the hologram.
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X-ray holograhy with URA (Marchesini et al. 08).

Coherent X-ray imaging will be a key technique for developing nanoscience

and nanotechnology.

One shot imaging: Bright and ultrashort X-ray pulse vaporizes the

sample right after the pulse passes the sample.

Random illumination amounts to replacing the original object f(n)

by

f̃(n) = f(n)λ(n) (illuminated object)
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Random illumination

f̃(n) = f(n)λ(n) (illuminated object)

λ(n), representing the illumination field, is a known sequence

of samples of random variables.

Let λ(n) be continuous random variables with respect to the

Lebesque measure on S1 (the unit circle), R or C.

Case of S1 can be facilitated by a random phase modulator

with

λ(n) = eiφ(n)

where φ(n) are continuous random variables on [0,2π].
Case of R: random amplitude modulator.

Case of C: both phase and amplitude modulations.
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Irreducibility

THEOREM. Suppose that the support of the object {f(n)}
has rank ≥ 2. Then the the z-transform of the illuminated

object f(n)λ(n) is irreducible with probability one.

• False for 1-d objects: fundamental theorem of algebra of

one complex variable.False for rank 1 objects: fundamental thm of algebra

if sampled at the lattice

L =

�
ω = (ω1, ...,ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

�
(3)

which is 2d times of the grid of the original image. The standard phasing problem is to

recover the array f(n) from its Fourier intensity measurement Y (ω) = |F (ei2πω)| for ω ∈ L
or smaller sampling sets.

Clearly the correlation function Cf and the Fourier magnitude data are invariant under

spatial translation

f(·) → f(·+ t) for some t ∈ Zd,

conjugate inversion

f(·) → f(N− ·)

and constant global phase change

f(·) → eiθf(·).

These trivial associates all share the same global geometric information as the original object.

The classical results of uniqueness given in [5] [6] [12] say that for almost all objects in

dimension two or higher the trivial associates are the only ambiguities there are with phase

retrieval. When none of the ambiguities arises, we say that the phasing problem has an

absolutely unique solution [1].

On the other hand, by dimension counting Miao et al. [11] have argued that overall 2

times oversampling, independent of the dimension d, uniquely determines a unique phasing

solution up to spatial shift, conjugate inversion and global phase factor. To measure the

degree of oversampling we use the oversampling ratio (OR)

σ =
Fourier magnitude data number

unknown image pixel number

introduced in [11]. As we demonstrate below, Miao et al.’s conjecture can be realized by

using RPI, but not uniform illumination.

As shown in [1] random illumination (RI) can help remove the phasing ambiguities of

spatial shift and conjugate inversion. An illumination amounts to replacing the original

image f(n) by

g(n) = λ(n)f(n),

where λ(n) is a known array representing the incident wave. In the case of uniform illumi-

nation, λ(n) = 1. In the case of random phase illumination (RPI) [13],

λ(n) = eiφ(n) (4)

3

=
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Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability exponentially close to unity

(depending on the sparsity and the phase range |b− a|.)

Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability exponentially close to unity

(depending on the sparsity and the phase range |b− a|.)
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Complex objects, NO constraint

THEOREM. Suppose that {λ1(n)} are i.i.d. continuous ran-

dom variables with respect to the Lebesgue measure on S1, R
or C and in addition either one of the following conditions is

true.

(i) {λ2(n)} are i.i.d. continuous random variables with respect

to the Lebesgue measure on S1, R or C and {λ2(n)} are inde-

pendent of {λ1(n)}.

(ii) {λ2(n)} are deterministic.

Then with probability one f(n) is uniquely determined, up to

a constant phase factor, by the Fourier magnitude measure-

ments with two illuminations λ1 and λ2.

Complex objects w/o constraint

Saturday, June 9, 2012
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fk+1/fk
Λ �� gk

Φ �� Gk

T
��

f �
k

Po

��

g�kΛ−1
�� G�

kΦ−1
��

Fig. 1.

Proof.

εf(fk) = �fk − f �
k�

≥ �fk+1 − f �
k�

= �Gk+1 −G�
k�

≥ �Gk+1 −G�
k+1�

= �fk+1 − f �
k+1�

= εf(fk+1).

The equality holds only if �fk − f �
k� = �fk+1 − f �

k�, where fk+1 = Po{f �
k}. Since Γ is a closed

convex subset, fk+1 = fk according to Proposition 1.

Remark 1. Proposition 2 holds for the fk+1 = PoPθ
f fk with arbitrary θ(ω).

Proposition 2 shows that the error εf(fk) decreases strictly until it reaches a fixed point

of PoPf , implying that the ER iteration converges to a fixed point.

Proposition 3. Let fk+1 = PoPffk. Let Γ be a closed convex subset of C(N ) and Φ,Λ be

unitary matrices. Then every convergent subsequence of {fk} converges to some h such that

1. if ΦΛh(ω) �= 0, ∀ω ∈ L, h is a fixed point of PoPf .

2. if ΦΛh(ω) = 0 for some ω ∈ L, h is a fixed point of PoPθ
f for some θ.

The proof of Proposition 3 is given in the Appendix. The question is, Is a fixed point of

ER necessarily a phasing solution? With the uniform illumination, however, this is generally

8

Alternated projections

Gerchberg-Saxton; Error Reduction (Fienup)

• When Γ is the set of images with support S,

Po{h}(n) =
�

h(n) if n ∈ S

0 else
.

Two error metrics εo and εf defined by

εo(h) = �Po{h}− h�,

εf(h) = �Pf{h}− h�

play an important role of our studies. When ΦΛ is unitary, as in the case of RPI,

εf(h) = �Pf{h}− h� = �T ΦΛh− ΦΛh� = � Y − |ΦΛh| �.

3.B. Oversampling

The oversampling method has proven to be an effective, flexible way of implementing var-

ious phasing algorithms by converting Fourier magnitude data more finely sampled than

demanded by the original image grid into zero padding which then acts like a support con-

straint of the original image [5, 16, 20, 21]. In this set-up, the oversampling ratio is given

by

σ =
image pixel number + zero-padding pixel number

image pixel number
.

3.C. Error reduction (ER)

ER algorithm [17] is based on the Gerchberg-Saxton algorithm [18] and is the most basic

phasing algorithm. ER is the plain version of the alternated projection method:

fk+1 = PoPffk (8)

which can be conveniently represented by the following diagram

ER enjoys the error-decreasing property following the same argument in [17].

Proposition 2. Let Γ be a closed convex subset of C(N ). Let Φ and Λ be unitary matrices.

Then the array {fk} produced in (8) satisfies

εf(fk+1) ≤ εf(fk). (9)

The equality holds if and only if fk+1 = fk.

7

Oversampling method (Miao et al.)
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cameraman
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• When Γ is the set of complex-valued images with nonnegative real and imaginary parts,

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (14)

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (15)

3.E. Algorithms with two illuminations

Let λ1 and λ2 be two arrays representing two illuminating fields. Two sets of Fourier mag-

nitude data Y1 = |ΦΛ1f | and Y1 = |ΦΛ2f | are collected, each with an OR σ. Let T1 and T2

be the intensity fitting operators corresponding to Y1 and Y2, respectively, as in (5). Thus

the projections onto the set of images satisfying the Fourier magnitude data Y1 and Y2 are,

respectively,

P1 = Λ−1
1 Φ−1T1ΦΛ1

and

P2 = Λ−1
2 Φ−1T2ΦΛ2.

The corresponding ER algorithm with two sets of Fourier magnitude data Y1 and Y2 is

given by

fk+1 = PoP2P1fk. (16)

The corresponding HIO is obtained by replacing Po in (16) by (10)-(15).

4. Numerical Simulations

In this section, we perform numerical phasing from the Fourier intensity measurement with

UI or RPI.

Our test images are the 256× 256 Cameraman and the 138× 184 Phantom. We surround

both images by dark (i.e. zero-valued) border to create images of loose support. Images of

loose support are typically more challenging to reconstruct. For Cameraman the border is

13 pixel wide in each dimension and the resulting image has 269 × 269 pixels in total. For

Phantom the dark margin is such that the resulting image has 200× 200 pixels.

For the oversampling ratio σ, we zero pad the images to generate a 269
√
σ × 269

√
σ

Cameraman and 200
√
σ × 200

√
σ Phantom. We synthesize the Fourier magnitude data by

applying the FFT to the array.

10
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Error Reduction (Gerchberg-Saxton)
144 SOLIJTIONS OF LINEAR EQUATIONS

Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance

CONVERGENCE ANALYSIS

between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set
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(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =⇒ convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?
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not true [19]. When a fixed point fails to be a phasing solution, it is called a trap and can

plague the reconstruction procedure (cf. Figure 3(a), 4(a) and 4(c)).

Below, we answer this question in the affirmative under certain assumptions for the case

of RPI. The difficulty is ER may converge to a fixed point of PoPθ
f which fails to satisfy the

Fourier magnitude data. In other words, the limiting point h may not be a fixed point of Pθ
f .

In the following main theoretical result of the paper, we prove that if Pθ
f h satisfies the

zero-padding condition, then it must be the phasing solution.

Theorem 4. Let f ∈ C(N ) be an array with f(0) �= 0 and rank ≥ 2. Let λ(n) be i.i.d.

continuous random variables on S1. Let the Fourier magnitude be sampled on L. Let h be a

fixed point of PoPθ
f such that Pθ

f h satisfies the zero-padding condition.

(a) If f is real-valued, h = ±f with probability one,

(b) If f satisfies the sector condition of Theorem 2, then h = eiνf , for some ν, and satisfies

the same sector constraint with probability at least 1− |N |(β − α)�S/2�(2π)−�S/2�.

3.D. HIO

The hybrid input-output (HIO) algorithm is a widely used, better-performing phasing

method than ER’s [17]. HIO differs from ER in how to update the image in the object

domain in order to avoid the trapping and stagnation.

Below we present a modified version of Fienup’s HIO which performs better than the

original version. We refer to Figure 1 for the notation. In HIO, the last step Po of ER

iteration is replaced by the following.

• When Γ is the set of real-valued images,

�(fk+1(n)) = �(f �
k(n)) (10)

�(fk+1(n)) = �(fk(n))− β · �(f �
k(n)), (11)

If, in addition, the nonnegativity constraint is assumed, then

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
, (12)

�(fk+1(n)) = �(fk(n))− β · �(f �
k(n)). (13)

9
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not true [19]. When a fixed point fails to be a phasing solution, it is called a trap and can

plague the reconstruction procedure (cf. Figure 3(a), 4(a) and 4(c)).
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original version. We refer to Figure 1 for the notation. In HIO, the last step Po of ER

iteration is replaced by the following.

• When Γ is the set of real-valued images,

�(fk+1(n)) = �(f �
k(n)) (10)

�(fk+1(n)) = �(fk(n))− β · �(f �
k(n)), (11)

If, in addition, the nonnegativity constraint is assumed, then

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
, (12)

�(fk+1(n)) = �(fk(n))− β · �(f �
k(n)). (13)
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Proof.

εf(fk) = �fk − f �
k�

≥ �fk+1 − f �
k�

= �Gk+1 −G�
k�

≥ �Gk+1 −G�
k+1�

= �fk+1 − f �
k+1�

= εf(fk+1).

The equality holds only if �fk − f �
k� = �fk+1 − f �

k�, where fk+1 = Po{f �
k}. Since Γ is a closed

convex subset, fk+1 = fk according to Proposition 1.

Remark 1. Proposition 2 holds for the fk+1 = PoPθ
f fk with arbitrary θ(ω).

Proposition 2 shows that the error εf(fk) decreases strictly until it reaches a fixed point

of PoPf , implying that the ER iteration converges to a fixed point.

Proposition 3. Let fk+1 = PoPffk. Let Γ be a closed convex subset of C(N ) and Φ,Λ be

unitary matrices. Then every convergent subsequence of {fk} converges to some h such that

1. if ΦΛh(ω) �= 0, ∀ω ∈ L, h is a fixed point of PoPf .

2. if ΦΛh(ω) = 0 for some ω ∈ L, h is a fixed point of PoPθ
f for some θ.

The proof of Proposition 3 is given in the Appendix. The question is, Is a fixed point of

ER necessarily a phasing solution? With the uniform illumination, however, this is generally
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(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for
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Figure 1. (a)recovered “cameraman”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.002%, ε̃f (f5000) ≈ 5.47%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “cameraman”by 1000 HIO +50 ER with one
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.03%, ε̃f (f1050) ≈ 0.93%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “cameraman”by 2000 ER iter-
ations with single low resolution(block size: 40 × 40) random phase illumination when
ρ = 2. ||f2000 − f1999||/||f1999|| ≈ 0.005%, ε̃f (f2000) ≈ 0.63%. (f)normalized error ε̃(fk)
at each iteration. (g)recovered “cameraman”by 30 HIO +10 ER with single low resolu-
tion(block size: 40×40) random phase illumination when ρ = 2. ||f40−f39||/||f39|| ≈ 0.03%,
ε̃f (f40) ≈ 0.1%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “cameraman”by
6000 ER iterations with one high resolution random phase illumination when ρ = 1.
||f6000 − f5999||/||f5999|| ≈ 7 × 10−6, ε̃f (f6000) ≈ 0.01%. (j) normalized error ε̃(fk) at
each iteration. (k)recovered “cameraman”by 60 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f60 − f59||/||f59|| ≈ 0.08%, ε̃f (f60) ≈ 0.42%. (l)
normalized error ε̃(fk) at each iteration.

Without noise, ρ = 1.2 produces an error near 0. With noise, higher sampling ratio always produces better
reconstruction, but when ρ ≥ 2, increasing sampling ratio doesn’t make a significant difference.

Then, we test the sampling ratio required to recover “phantom”with a random phase between 0 and π/2,
a complex-valued image with nonnegative real and imaginary parts. Figure 3(b) shows the average relative
error in 5 trials versus sampling ratio. It’s noted that a good reconstruction is obtained in the case of
undersampling. When ρ = 0.9, there are more free variables than measurement data.

Finally, we test the sampling ratio required to recover “phantom”with a random phase between 0 and 2π,
a complex-valued image without any positivity constraint. Figure 3(c) shows the average relative error in 5

7

(e)-(h) Low resolution 40 x 40 block illumination with OR=2
                    (i)-(l)  High resolution illumination with OR=1
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Figure 2. (a)recovered “phantom”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.006%, ε̃f (f5000) ≈ 14.7%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “phantom”by 1000 HIO +50 ER with single
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.07%, ε̃f (f1050) ≈ 3.95%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “phantom”by 500 ER iterations
with single low resolution(block size: 40 × 40) random phase illumination when ρ = 2.
||f500 − f499||/||f499|| ≈ 0.01%, ε̃f (f500) ≈ 0.05%. (f)normalized error ε̃(fk) at each
iteration. (g)recovered “phantom”by 30 HIO +10 ER with single low resolution(block
size: 40 × 40) random phase illumination when ρ = 2. ||f40 − f39||/||f39|| ≈ 0.07%,
ε̃f (f40) ≈ 0.22%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “phantom”by
1200 ER iterations with one high resolution random phase illumination when ρ = 1.
||f1200 − f1199||/||f1199|| ≈ 4 × 10−6, ε̃f (f1200) ≈ 3 × 10−5. (j) normalized error ε̃(fk)
at each iteration. (k)recovered “phantom”by 30 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f40 − f39||/||f39|| ≈ 0.07%, ε̃f (f40) ≈ 0.26%. (l)
normalized error ε̃(fk) at each iteration.

trials versus sampling ratio. A good recovery is obtained as ρ ≥ 1.7. Further increasing the sampling ratio
helps, but doesn’t make a big difference.

We use ρ = 2 in Figure 6(a), (b) and (c).

5.3. Stability Test. Figure 6(a) and (b) show the average relative error in 5 trials versus the noise level for
“phantom”and “phantom”with a random phase between 0 and π/2 respectively with single random phase
illumination. Recovery error increases almost linearly with respect to the noise percentage. Gaussian noise
and Illuminator noise are more difficult to deal with than poisson noise. Both high resolution and low

8

(e) - (h) Low resolution 40 x 40 block illumination with OR=2
                   (i) - (l)  High resolution illumination with OR=1
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Fig. 6. Phasing with σ = 2 and one high resolution RPI: (a) Recovery by 18

HIO +10 ER with 5% Gaussian noise; (b) r(fk) versus k with r(f̂) ≈ 2.62%

and e(f̂) ≈ 4.20%; (c) Recovery by 19 HIO +10 ER with 5% Gaussian noise.

(d) r(fk) versus k with r(f̂) ≈ 2.85% and e(f̂) ≈ 3.51%; (e) Recovery by 16

HIO +10 ER with 5% Poisson noise; (f) r(fk) versus k with r(f̂) ≈ 3.71% and

e(f̂) ≈ 5.89%; (g) Recovery by 17 HIO +10 ER with 5% Poisson noise; (h)

r(fk) versus k with r(f̂) ≈ 4.05% and e(f̂) ≈ 4.84%; (i) Recovery by 14 HIO

+10 ER with 5% illuminator noise; (j) r(fk) versus k with r(f̂) ≈ 5.28% and

e(f̂) ≈ 7.75%; (k) Recovery by 16 HIO +10 ER with 5% illuminator noise; (l)

r(fk) versus k with r(f̂) ≈ 5.48% and e(f̂) ≈ 6.35%.
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Figure 5. (a)recovered “cameraman”by adaptive HIO +10 ER with single low resolu-
tion(block size:40 × 40) random phase illumination and 5% gaussian noise when ρ = 2.
Reconstruction error ||f − f̂ ||/||f || ≈ 7.4% and residual ≈ 2.49%. (b)normalized error ε̃(fk)
at each iteration. (c)recovered “phantom”by adaptive HIO +10 ER with single low resolu-
tion(block size:40×40) random phase illumination and 5% gaussian noise when ρ = 2. Error
≈ 4.26% and residual ≈ 2.85%. (d)normalized error ε̃(fk) at each iteration. (e)recovered
“cameraman”by adaptive HIO +10 ER with single low resolution(block size:40 × 40) ran-
dom phase illumination and 5% poisson noise when ρ = 2. Error ≈ 6.38% and residual
≈ 3.78%. (f)normalized error ε̃(fk) at each iteration. (g)recovered “phantom”by adaptive
HIO +10 ER with single low resolution(block size:40× 40) random phase illumination and
5% poisson noise when ρ = 2. Error ≈ 4.86% and residual ≈ 3.9%. (h)normalized error
ε̃(fk) at each iteration. (i)recovered “cameraman”by adaptive HIO +10 ER with single low
resolution(block size:40 × 40) random phase illumination and 5% illuminator noise when
ρ = 2. Error ≈ 12.83% and residual ≈ 4.05%. (j)normalized error ε̃(fk) at each itera-
tion. (k)recovered “phantom”by adaptive HIO +10 ER with single low resolution(block
size:40 × 40) random phase illumination and 5% illuminator noise when ρ = 2. Error
|| ≈ 12.46% and residual ≈ 5.53%. (l)normalized error ε̃(fk) at each iteration.

[17] J. Miao and D. Sayre and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic

objects,” J. Opt. Soc. Am. A vol. 15, pp. 1662–1669, 1998.

[18] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instr. vol. 78, pp.

011301, 2007.

[19] A. Levi and H. Stark ,“Image restoration by the method of generalized projections with application to restoration from

magnitude,” J. Opt. Soc. Am. A vol. 1, pp. 932-943, 1984.

[20] H. Stark, Image Recovery: Theory and Applications. New York: Academic Press, 1987.
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Figure 3

Figure 4. (a)average relative error by adaptive HIO + adaptive ER in 5 trials versus
oversampling rate for “phantom”with one random phase illumination. (b)average relative
error by adaptive HIO + adaptive ER in 5 trials versus oversampling rate for “phantom”with
random phases between 0 and π/2 with one random phase illumination. (c)average relative
error by 200 HIO +300 ER in 5 trials versus oversampling rate for “phantom”with random
phases between 0 and 2π with one uniform illumination and one random phase illumination.

resolution random phase illuminations yield stability to noise. Low resolution random phase illumination
produces a larger error, but its performance is acceptable.

Figure 6(c) shows the average relative error in 5 trials versus the noise level for “phantom”with a random
phase between 0 and 2π with one uniform illumination and one random phase illumination. The instability
for large gaussian noise is observed. When 14% or higher gaussian noise is added, the error increases
dramatically.

References

[1] P. F. Almoro, G. Pedrine, P. N. Gundu, W. Osten and S. G. Hansom, “Enhanced wavefront reconstruction by random
phase modulation with a phasediffuser,” Opt. Laser Eng. vol. 49, pp. 253-257, 2011.

[2] J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imag. Sci. vol. 2, pp. 1098-1128, 2009.
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Figure 6

Figure 7. (a)average relative error by adaptive HIO + adaptive ER in 5 trials versus noise
level for “phantom”with one random phase illumination when ρ = 4. (b)average relative
error by adaptive HIO + adaptive ER in 5 trials versus noise level for “phantom”with random
phases between 0 and π/2 with one random phase illumination when ρ = 4. (c)average
relative error by 200 HIO +300 ER in 5 trials versus noise level for “phantom”with random
phases between 0 and 2π with one uniform illumination and one random phase illumination
when ρ = 3.
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Conclusions

• Random illumination as enabling tool for phase 
retrieval.

• Absolute uniqueness

• Fast convergence

• OR =1 (real)  or 2 (complex)

• Proof of convergence: HIO?

• References: 

• A. Fannjiang Absolute uniqueness in phase retrieval with random illumination Inverse 
Problems 2012 ( arXiv:1110.5097)

• A. Fannjiang and W. Liao Phase retrieval with random phase illumination arXiv:1206.1001
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