Phase Retrieval with Random Illumination

Albert Fannjiang, UC Davis

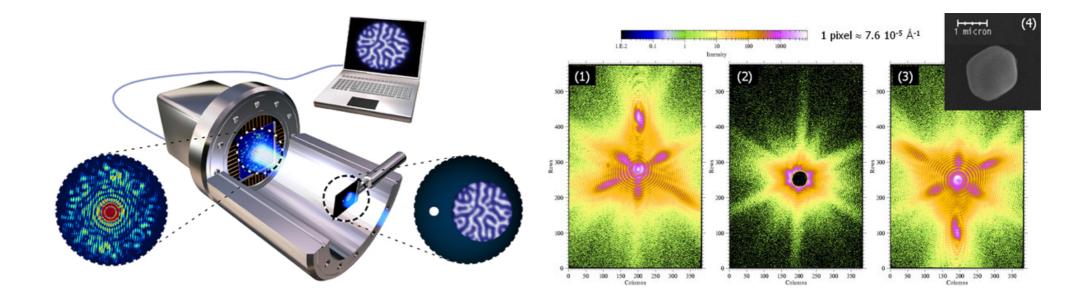
Collaborator: Wenjing Liao

July 2012

Problem

Reconstruct the object f from the Fourier magnitude $|\Phi f|.$

Why do we care?



X-ray crystallography, single-molecule imaging, astronomy etc.

1985 Nobel Prize in Chemistry for Hauptman and Karle: partial solution of phasing problem. $_{2}$

Phasing problem formulation

Discrete finite objects

Let $\mathbf{n} = (n_1, n_2) \in \mathbb{Z}^2$ and $\mathbf{z} = (z_1, z_2) \in \mathbb{C}^2$.

multi-index : $\mathbf{z}^{\mathbf{n}} = z_1^{n_1} z_2^{n_2}$

Let the *object* be represented by $f(n), n \leq N = (N, N)$.

Binary objects: white = 1, black = 0.

$$f_L = \text{Lena}$$

$$F_L(\mathbf{w}) = |F_L(\mathbf{w})|e^{\mathbf{i}\theta_L(\mathbf{w})}$$

$$F_1(\mathbf{w}) = |F_B(\mathbf{w})|e^{\mathbf{i}\theta_L(\mathbf{w})}$$

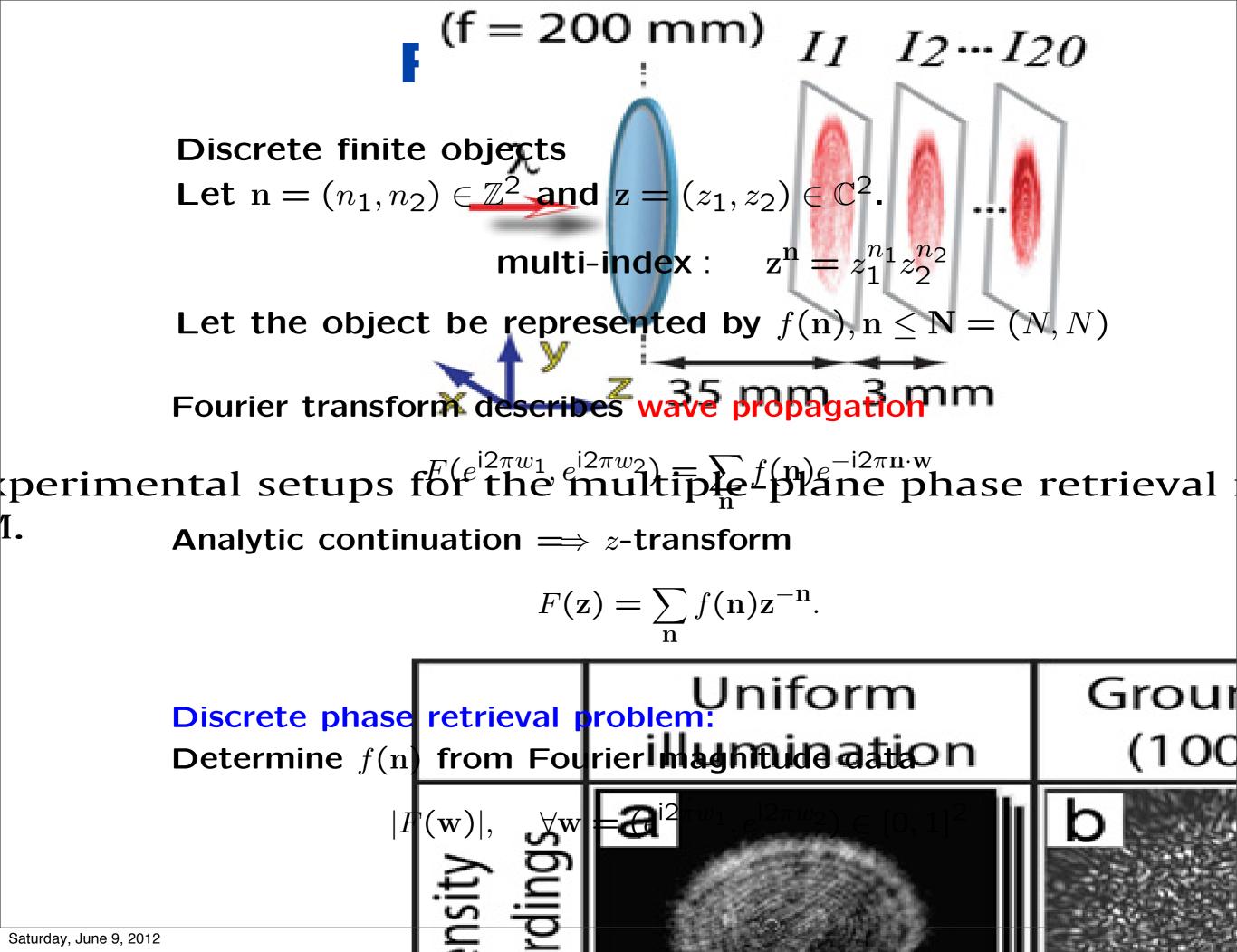
$$f_1 = |\Phi^*F_1|$$

$$f_B = \text{Barbara}$$
$$F_B(\mathbf{w}) = |F_B(\mathbf{w})|e^{\mathbf{i}\theta_B(\mathbf{w})}$$
$$F_2(\mathbf{w}) = |F_L(\mathbf{w})|e^{\mathbf{i}\theta_B(\mathbf{w})}$$
$$f_2 = |\Phi^*F_2|$$

$$F_1(\mathbf{w}) = |F_B(\mathbf{w})| e^{\mathbf{i}\theta_L(\mathbf{w})}$$
$$f_1 = |\Phi^* F_1|$$

$$F_{2}(\mathbf{w}) = |F_{L}(\mathbf{w})|e^{\mathbf{i}\theta_{B}(\mathbf{w})}$$
$$f_{2} = |\Phi^{*}F_{2}|$$

5



Fourier magnitude data:

$$|F(\mathbf{w})|^2 = \sum_{\mathbf{n}=-\mathbf{N}}^{\mathbf{N}} \sum_{\mathbf{m}} f(\mathbf{m}+\mathbf{n}) f^*(\mathbf{m}) e^{-i2\pi \mathbf{n} \cdot \mathbf{w}}$$
$$= \sum_{\mathbf{n}=-\mathbf{N}}^{\mathbf{N}} C_f(\mathbf{n}) e^{-i2\pi \mathbf{n} \cdot \mathbf{w}}$$

where

$$\mathcal{C}_f(\mathbf{n}) = \sum_{\mathbf{m}} f(\mathbf{m} + \mathbf{n}) f^*(\mathbf{m})$$

is the autocorrelation function of f.

Fourier magnitude data contain complete information about autocorrelation function.

Sampling Theorem:

 $supp(C_f) \subset [-N,N]^2 \Longrightarrow [0,1]^2$ is reduced to the Nyquist grid

$$\mathcal{M} = \left\{ (k_1, k_2) : k_j = 0, \frac{1}{2N+1}, \frac{2}{2N+1}, \cdots, \frac{2N}{2N+1} \right\}$$

Oversampling ratio

$$\sigma = \frac{\text{Fourier magnitude data number}}{\text{unknown image pixel number}}$$

Standard ratio: $\sigma = 2^d$

Compressed sensing: $\sigma < 2^d$

Trivial ambiguities

Autocorrelation:

$$C_f(\mathbf{n}) = \sum_{\mathbf{m}+\mathbf{n}\in\mathcal{N}} f(\mathbf{m}+\mathbf{n})f^*(\mathbf{m})$$

Invariant under:

(i) global phase,

 $f(\mathbf{n}) \longrightarrow e^{\mathbf{i}\theta} f(\mathbf{n}), \quad \text{ for some } \theta \in [0, 2\pi],$

(ii) spatial translation

 $f(n) \rightarrow f(n \oplus m), n \oplus m = n + m \mod(N), \text{ some } m \in \mathbb{Z}^2$ (iii) conjugate inversion (twin image)

 $f(\mathbf{n}) \longrightarrow f^*(\mathbf{N} - \mathbf{n}).$

Nontrivial ambiguity

THEOREM (Hayes 82, Pitts-Greenleaf 03)

Let the *z*-transform F(z) of a finite complex-valued sequence $\{f(n)\}$ be given by

$$F(\mathbf{z}) = \alpha \mathbf{z}^{-\mathbf{m}} \prod_{k=1}^{p} F_k(\mathbf{z}), \quad \mathbf{m} \in \mathbb{N}^2, \alpha \in \mathbb{C}$$

where $F_k, k = 1, ..., p$ are nontrivial irreducible polynomials. Let G(z) be the z-transform of another finite sequence g(n). Suppose $|F(w)| = |G(w)|, \forall w \in [0, 1]^2$. Then G(z) must have the form

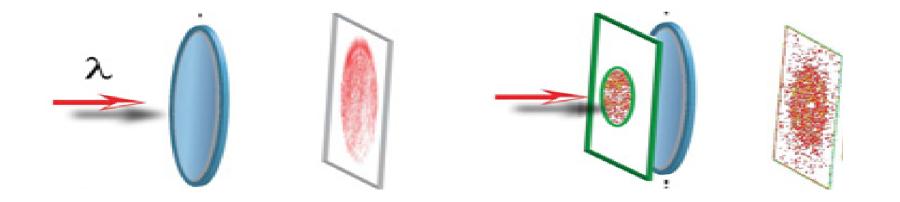
$$G(\mathbf{z}) = |\alpha| e^{\mathbf{i}\theta} \mathbf{z}^{-\mathbf{p}} \left(\prod_{k \in I} F_k(\mathbf{z}) \right) \left(\prod_{k \in I^c} F_k^*(1/\mathbf{z}^*) \right), \quad \mathbf{p} \in \mathbb{N}^2, \theta \in \mathbb{R}$$

where I is a subset of $\{1, 2, ..., p\}$.

Nontrivial ambiguity: Partial conjugate inversion on factors.

Random illumination

Coded aperture imaging



Diffuser generated speckle pattern: Garcia-Zalevsky-Fixler 05

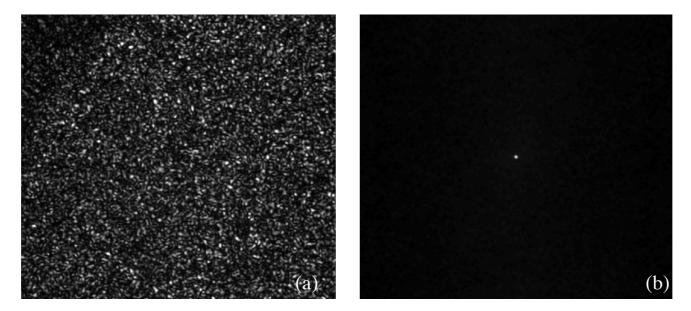
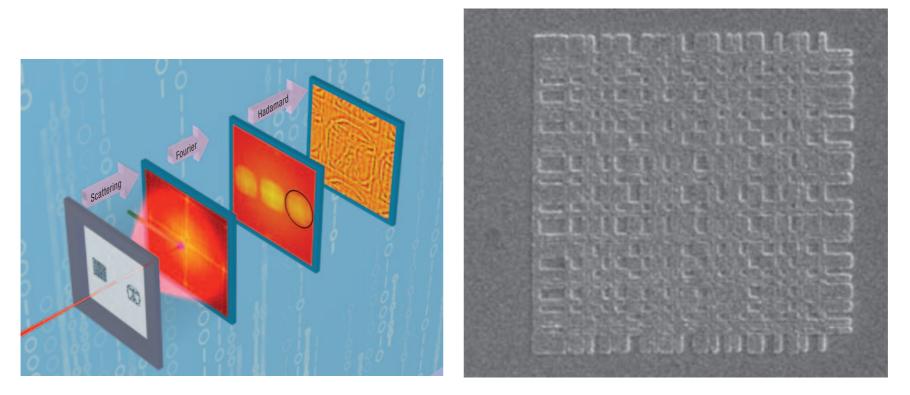


Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern.



X-ray holograhy with URA (Marchesini et al. 08).

Coherent X-ray imaging will be a key technique for developing nanoscience and nanotechnology.

One shot imaging: Bright and ultrashort X-ray pulse vaporizes the sample right after the pulse passes the sample.

Random illumination amounts to replacing the original object $f(\mathbf{n})$ by

 $\tilde{f}(\mathbf{n}) = f(\mathbf{n})\lambda(\mathbf{n})$ (illuminated object)

Random illumination

 $\tilde{f}(n) = f(n)\lambda(n)$ (illuminated object)

 $\lambda(n)$, representing the illumination field, is a known sequence of samples of random variables.

Let $\lambda(n)$ be continuous random variables with respect to the Lebesque measure on \mathbb{S}^1 (the unit circle), \mathbb{R} or \mathbb{C} .

Case of \mathbb{S}^1 can be facilitated by a random phase modulator with

$$\lambda(\mathbf{n}) = e^{\mathbf{i}\phi(\mathbf{n})}$$

where $\phi(n)$ are continuous random variables on $[0, 2\pi]$. Case of \mathbb{R} : random amplitude modulator. Case of \mathbb{C} : both phase and amplitude modulations.

Irreducibility

THEOREM. Suppose that the support of the object $\{f(n)\}$ has rank ≥ 2 . Then the the *z*-transform of the illuminated object $f(n)\lambda(n)$ is irreducible with probability one.

False for rank | objects: fundamental thm of algebra

 $\sigma = \frac{\text{Fourier magnitude data number}}{\text{unknown image pixel number}}$

 $= 2^{d}$

Absolute uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then, with probability one, f is determined absolutely uniquely by the Fourier magnitude measurement on the lattice \mathcal{L} .

Sector constraint

THEOREM Suppose the phases of the object belong to $[a, b] \subset [0, 2\pi]$. Then the solution to the Fourier phasing problem has a unique solution with probability exponentially close to unity (depending on the sparsity and the phase range |b - a|.)

Complex objects w/o constraint

THEOREM. Suppose that $\{\lambda_1(n)\}\$ are i.i.d. continuous random variables with respect to the Lebesgue measure on \mathbb{S}^1 , \mathbb{R} or \mathbb{C} and in addition either one of the following conditions is true.

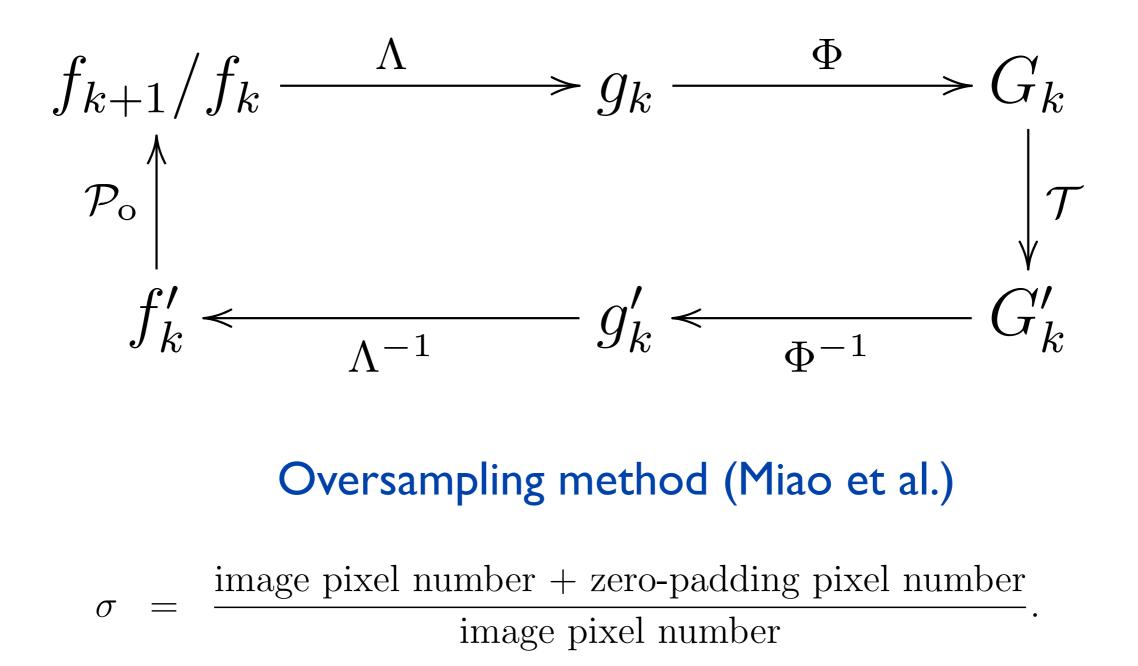
(i) $\{\lambda_2(n)\}\$ are i.i.d. continuous random variables with respect to the Lebesgue measure on \mathbb{S}^1 , \mathbb{R} or \mathbb{C} and $\{\lambda_2(n)\}\$ are independent of $\{\lambda_1(n)\}$.

(ii) $\{\lambda_2(n)\}$ are deterministic.

Then with probability one f(n) is uniquely determined, up to a constant phase factor, by the Fourier magnitude measurements with two illuminations λ_1 and λ_2 .

Alternated projections

Gerchberg-Saxton; Error Reduction (Fienup)



Zero-padding

cameraman

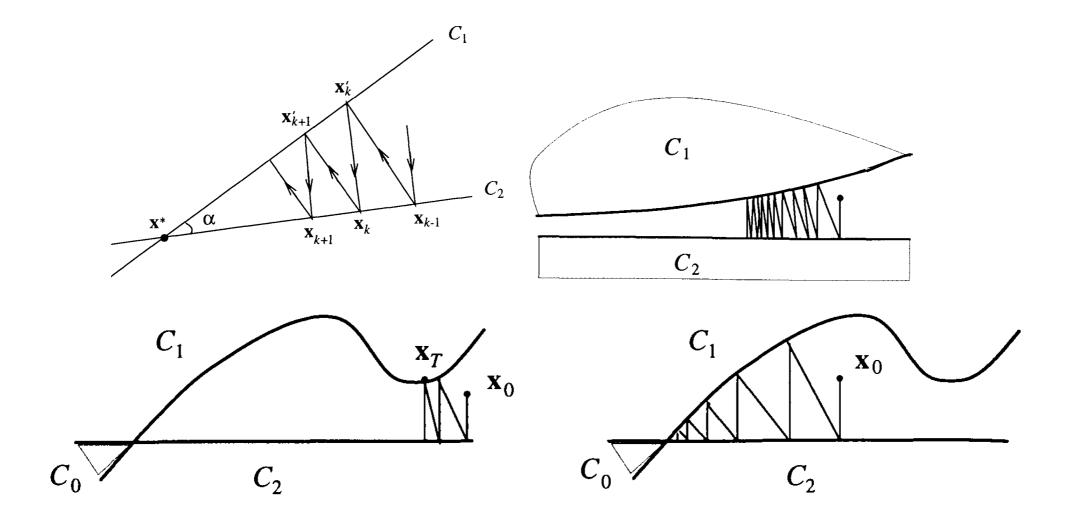
Multiple illuminations

$$\mathcal{P}_1 = \Lambda_1^{-1} \Phi^{-1} \mathcal{T}_1 \Phi \Lambda_1$$

$$\mathcal{P}_2 = \Lambda_2^{-1} \Phi^{-1} \mathcal{T}_2 \Phi \Lambda_2.$$

$$f_{k+1} = \mathcal{P}_{0}\mathcal{P}_{2}\mathcal{P}_{1}f_{k}.$$

Error Reduction (Gerchberg-Saxton)



Bregman 65: convex constraints \implies convergence to a feasible solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?

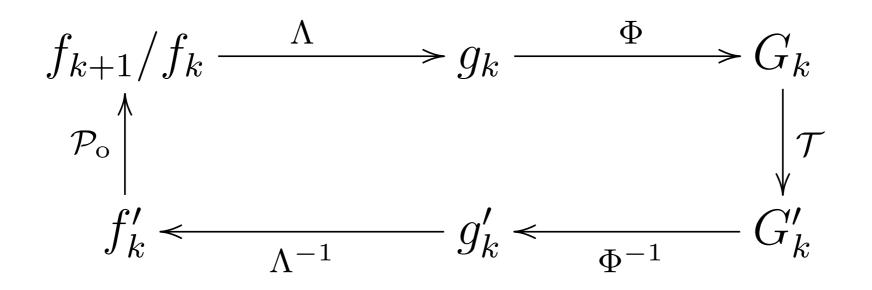
Convergence

Theorem 4. Let $f \in \mathcal{C}(\mathcal{N})$ be an array with $f(\mathbf{0}) \neq 0$ and rank ≥ 2 . Let $\lambda(\mathbf{n})$ be i.i.d. continuous random variables on \mathbb{S}^1 . Let the Fourier magnitude be sampled on \mathcal{L} . Let h be a fixed point of $\mathcal{P}_o \mathcal{P}_f^{\theta}$ such that $\mathcal{P}_f^{\theta} h$ satisfies the zero-padding condition.

(a) If f is real-valued, $h = \pm f$ with probability one,

(b) If f satisfies the sector condition of Theorem 2, then $h = e^{i\nu} f$, for some ν , and satisfies the same sector constraint with probability at least $1 - |\mathcal{N}|(\beta - \alpha)^{\lfloor S/2 \rfloor}(2\pi)^{-\lfloor S/2 \rfloor}$.

Hybrid-Input-Output (HIO)



$$\Re(f_{k+1}(\mathbf{n})) = \Re(f'_k(\mathbf{n}))$$

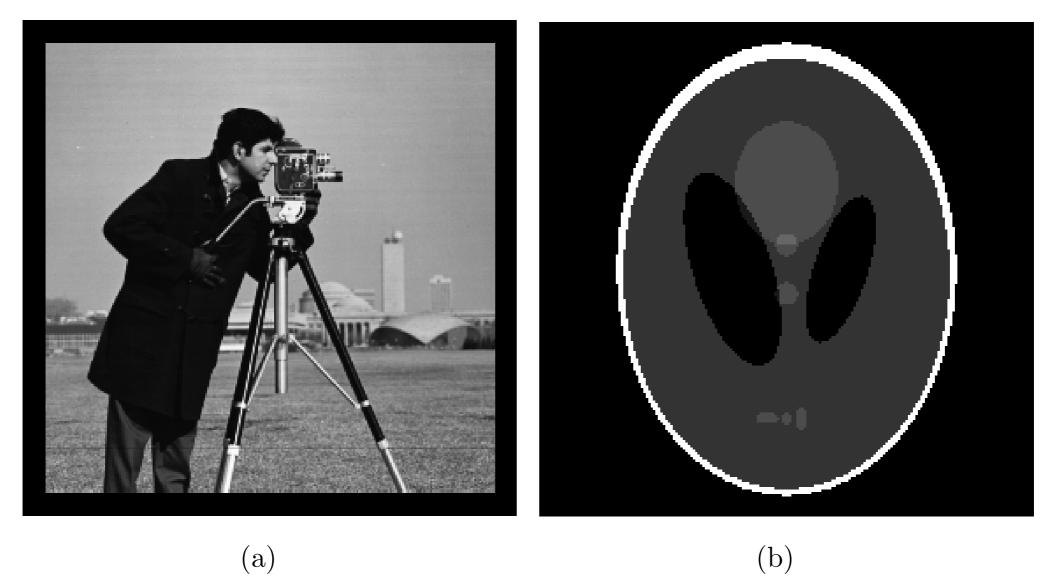
$$\Im(f_{k+1}(\mathbf{n})) = \Im(f_k(\mathbf{n})) - \beta \cdot \Im(f'_k(\mathbf{n})),$$

Real-valued objects

Error metrics

Relative error e(

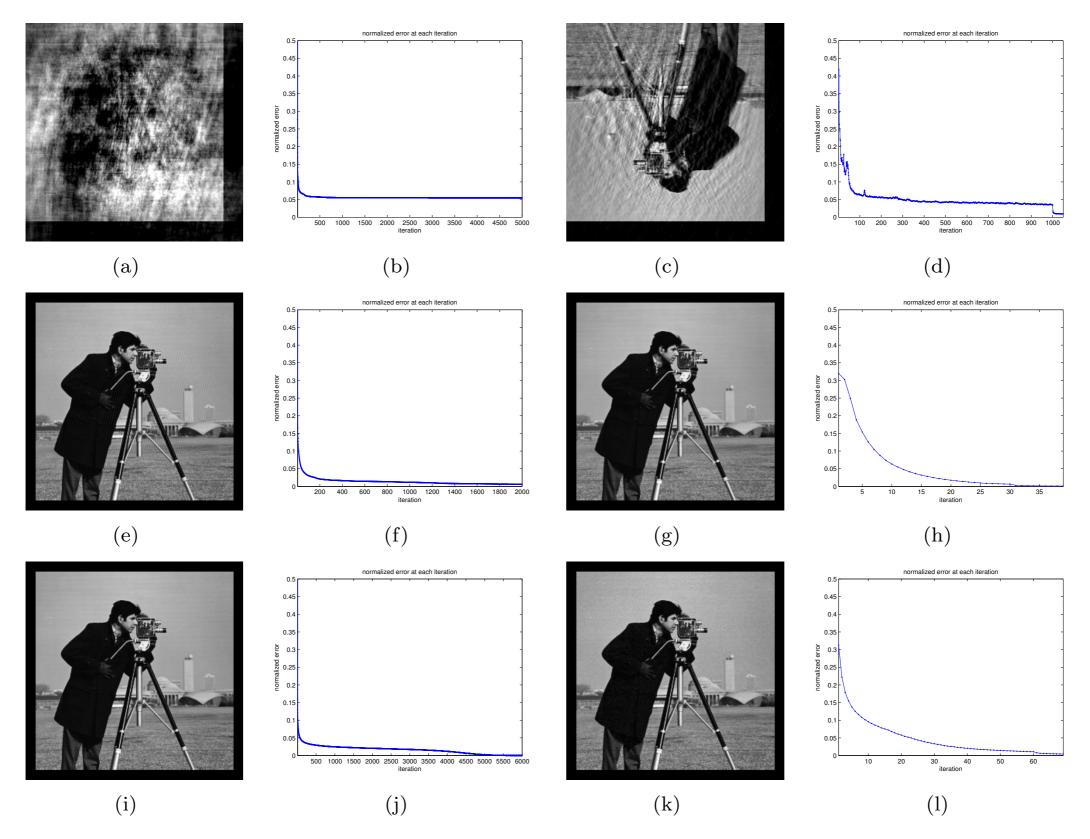
$$\hat{f}(\hat{f}) = \begin{cases} \|f - \hat{f}\| / \|f\| \\ \min_{\nu \in [0, 2\pi)} \|f - e^{i\nu} \hat{f}\| / \|f\| \end{cases}$$



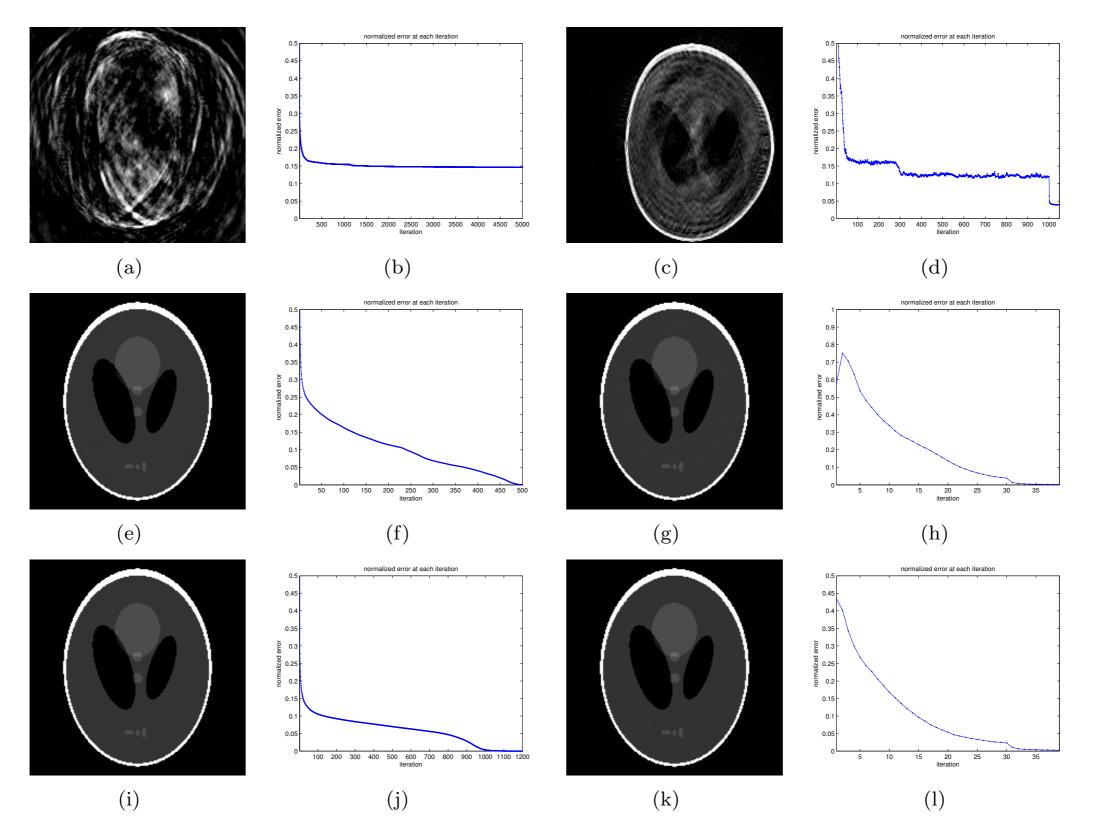
(a)

269 x 269

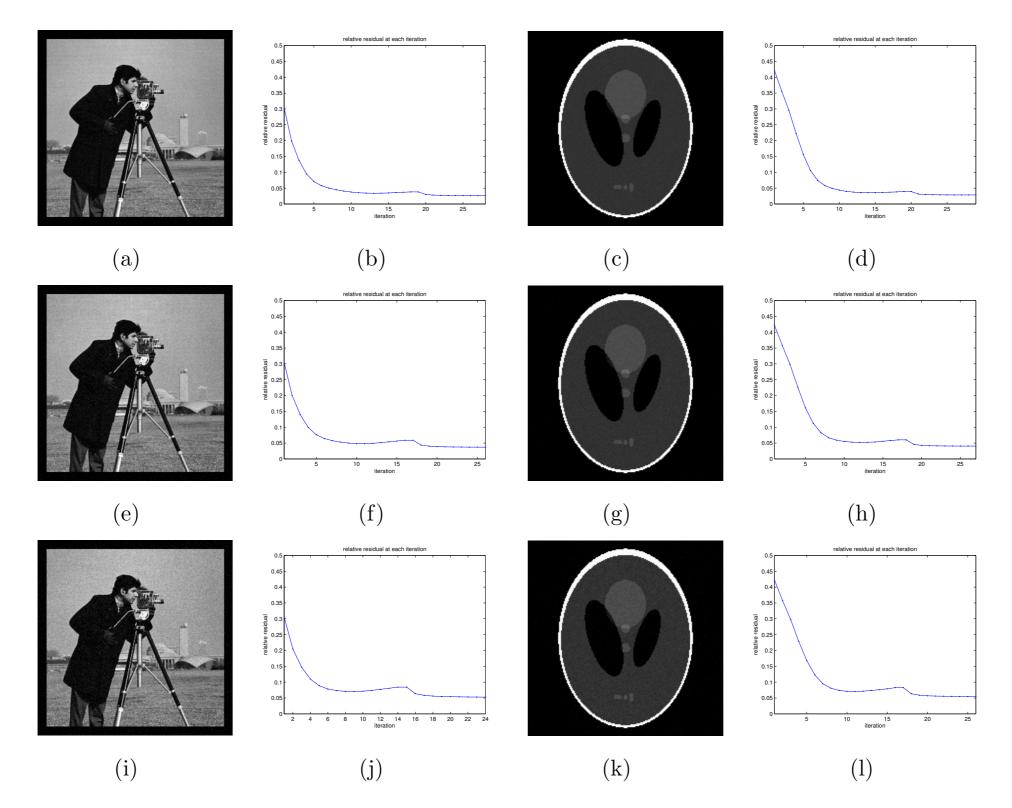
200 x 200



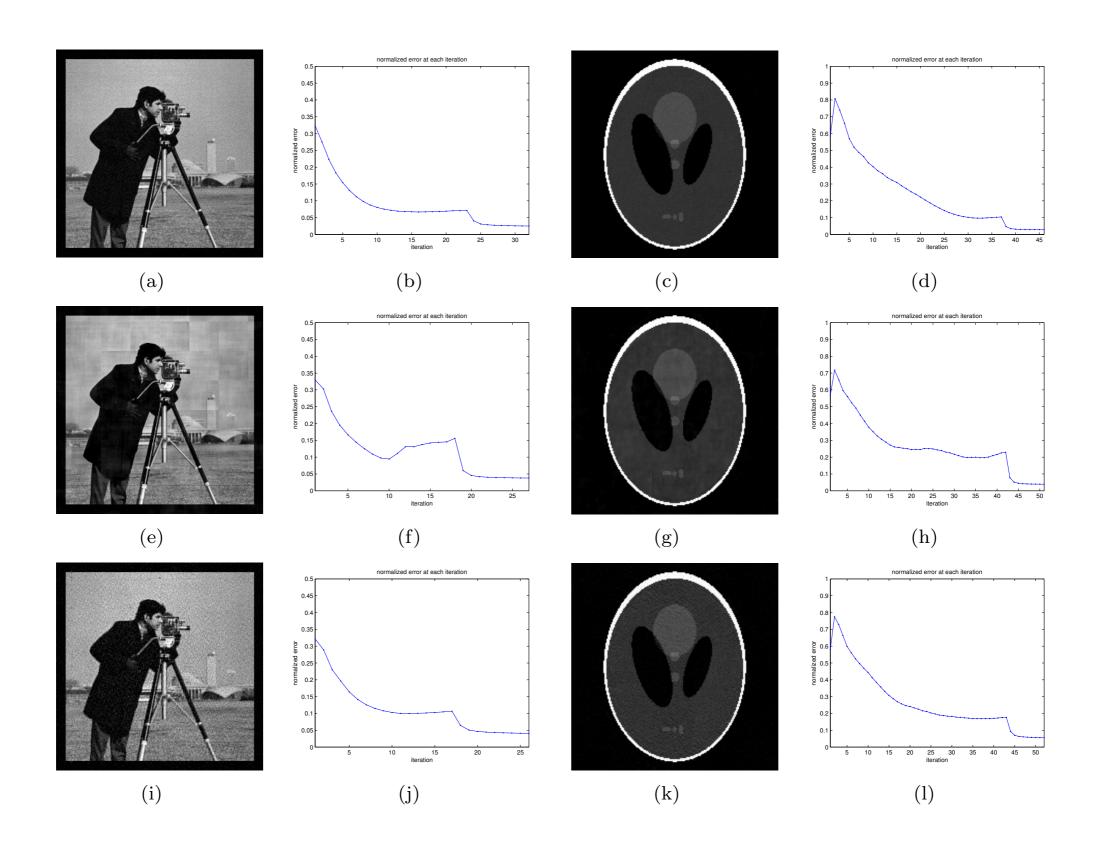
(e)-(h) Low resolution 40 x 40 block illumination with OR=2 (i)-(l) High resolution illumination with OR=1



(e) - (h) Low resolution 40 x 40 block illumination with OR=2
(i) - (l) High resolution illumination with OR=1

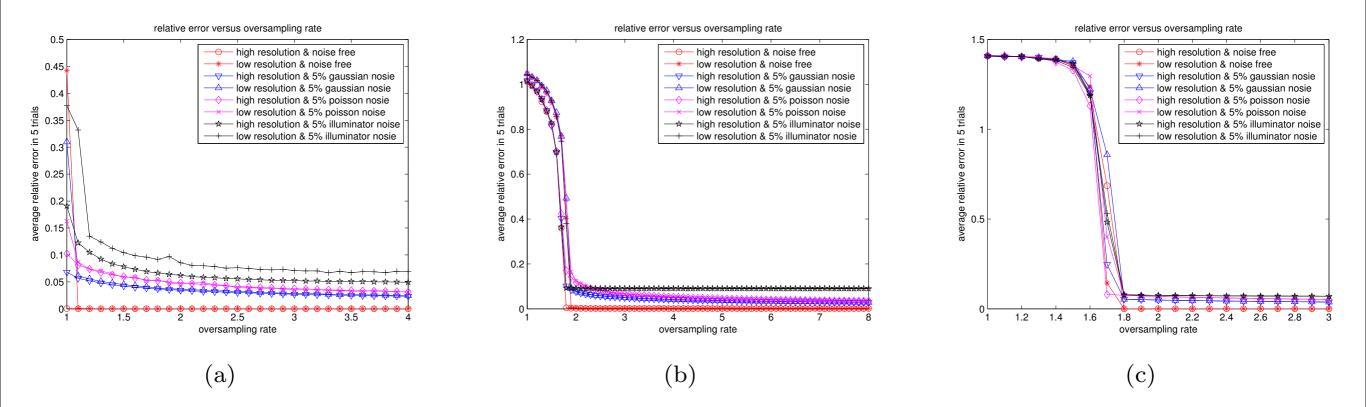


High resolution illumination with 5% Gaussian, Poisson and illuminator errors



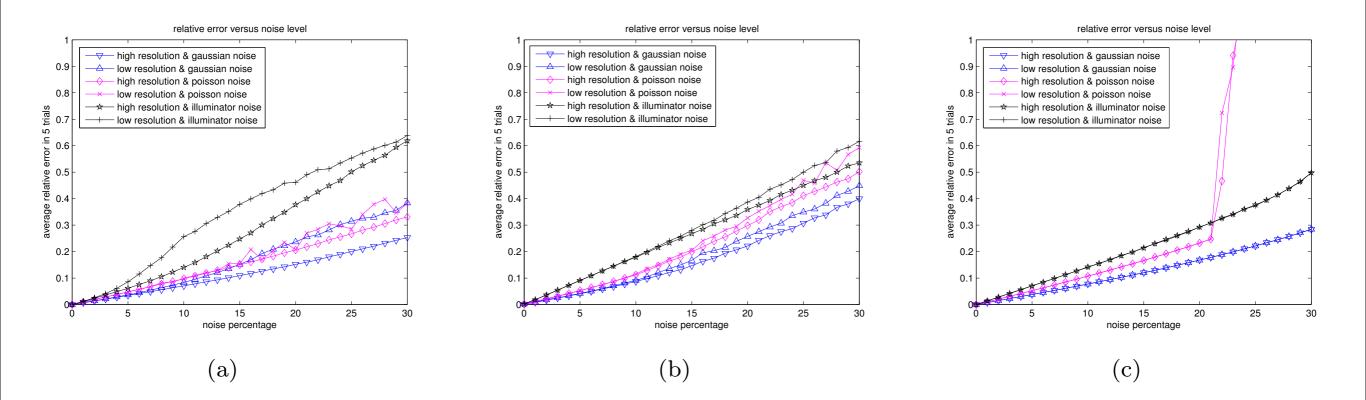
Low resolution illumination with 5% Gaussian, Poisson and illuminator errors

Compressed measurement



(a) real-valued(b) positive real & imaginary parts(c) no constraint

Noise stability



(a) real-valued objects(b) positive real & imaginary parts(c) no constraint

Conclusions

- Random illumination as enabling tool for phase retrieval.
- Absolute uniqueness
- Fast convergence
- OR = I (real) or 2 (complex)
- Proof of convergence: HIO?
- References:
- A. Fannjiang <u>Absolute uniqueness in phase retrieval with random illumination</u> Inverse Problems 2012 (arXiv:1110.5097)
- A. Fannjiang and W. Liao Phase retrieval with random phase illumination arXiv:1206.1001

Saturday, June 9, 2012