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1. Introduction

Consider the imaging of an object with a thin lens of (zo, zi)-geometry satisfying the lens
equation z−1

o + z−1
i = f−1 where zo and zi are respective distances from the object plane and

image plane to the thin lens, and f is the focal length of the lens. In the Fresnel diffraction
theory, the image field with the object field Ψo(x) is given by

Ψ(x) =
eik(zo+zi)

−λ2zozi

e
ik
2zi

|x|2
∫

A

e
− ik

zi
x·x′
∫
e−

ik
zo

x′·x′′
Ψo(x

′′)dx′′dx′

with λ the wavelength and k the wave number, from which one can derive Abbe’s and
Rayleigh’s theory of resolution. This formula is equivalent to G? [IATG?Ψo] where ? stands
for convolution, G is the Green function (see below), the indicator function IA stands for
the truncation by the aperture A and T is the quadratic phase factor exp{−ik|x|2/(2f)}.2
What the lens does is to turn the diverging front into a converging front through the effect
of the quadratic phase factor, see Figure 1.

Another way of turning a divergent wave into a convergent wave is by using a time rever-
sal or phase-conjugate mirror (PCM),15 see Figure 2. A PCM replaces the incident complex
wave field with its time-reversed replica and therefore reverses the direction of propagation.
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Consequently the phase-conjugated field can be considered as anti-distorted field and when
it retraces its path through the phase-distorting medium, the distortion is undone and refo-
cusing on the source occurs. Mathematically the process can be expressed as G? [IAG

∗ ?Ψ∗
o]

where ∗ stands for conjugation. In this case, the image plane coincides with the object plane.
Both imaging processes can be written in the general form G ? [IAU(G ? Ψo)] where U

is some unitary operator representing the functionality of the imaging system: in the case
of thin convex lens, U is the multiplication by T ; in the case of PCM, U is the phase
conjugation. Both can be interpreted as coherent measurement at the lens/PCM followed
by repropagation in the free space which can be carried out in the physical space or the
computational space. The latter perspective is particularly useful as it permits extension of
the resolution theory for optical imaging to radio-wave imaging with an antenna array.

Ambiguity is, however, present in the conventional definitions of imaging resolution. In
the classical, more pessimistic Rayleigh criterion, the resolution is taken to be the radius of
the first Airy disk (0%-intensity level) while in the more optimistic Sparrow criterion, the
resolution is taken to be roughly the radius of the 50%-intensity level, corresponding to the
minimum separation for which the midpoint intensity is not higher than that at the equal
source points. Indeed, any criterion in between is an equally legitimate notion of resolution
and all are to a certain extent a measure of the size of the main lobe of the point-spread
function of the imaging system. On the other hand, if noise is absent and postprocessing of
the detected image is allowed, one can in principle achieve arbitrarily fine resolution from the
point-spread function of the imaging system. This is known as superresolution.1,3–6,9–11,13,14

Indeed, the frequency components of an input image of finite extent that have not been
transmitted through the band-limited imaging system may still be recovered by the technique
of analytic continuation or other postprocessing methods. However, it is well known that this
problem is ill-posed, i.e. small noise present in the data results in large error in the estimation.
Thus resolution is limited ultimately by channel uncertainty such as imprecise measurement,
due to noise, and imperfect knowledge of the imaging system. As a result the signal-to-noise
ratio (SNR) in image formation should be a fundamental factor in the objective notions of
resolution.7

More recently, the effect of noise on resolution has been revisited by Shahram and Milanfar
who constructed a maximum-likelihood estimator for the distance between two point sources
and demonstrated numerically that resolution below the diffraction limit is attainable for
sufficiently large SNR12 (see also references therein). The maximum-likelihood estimator is,
however, difficult to obtain in general (such as for imaging with broad bandwidth). Also, a
precise definition of resolution taking into account of SNR was not given.

We believe that a simple definition of resolution as performance yardstick for the imaging
systems of the kinds discussed above (direct imaging, instead of image reconstruction) in the
presence of noise will be useful, and in this work we present such a definition and pursue
some of its consequences. Roughly speaking, the new notion of resolution takes the form
of the deterioration of the detection probability, given the false alarm rate and SNR, and
therefore depends on the noise ensemble as well wavelength and aperture.

Just as in the conventional notions of resolution, the notions of resolution introduced
in the present work contain arbitrariness. But the qualitative features of these asymptotic
results are definitely unambiguous. Using the proposed definition of resolution we analyze
resolution-enhancement effect with broadband signals. A most striking effect of broadband

2



imaging is that the resulting resolution can be aperture-independent which is somewhat
counterintuitive but physically sensible, see Section 3.

The rest of the papers is organized as follows. In Section 2.A we introduce the setup of the
problem with an array of transducers and with an imbedded point source. Next, in Section
2.B we construct an imaging function and associated detection rule in the case with Gaussian
measurement noise. The lateral and range resolution derive from the detection rule and are
identified and analyzed in Sections 2.C, 2.D and 2.E. In Section 2.F we extend the analysis
to two-point resolution. In Section 2.G we present a simulated example. We apply the new
definition of resolution to imaging with multiple frequencies in Section 3 and then conclude
in Section 4.

2. Imaging of point source

We work primarily with the discrete set-up which is most convenient for our approach. The
discrete set-up is natural in array imaging with radio waves. In imaging with lens and PCM,
we consider the situation of extracting image on the image plane by, e.g. a CCD camera
which outputs a discrete array of data through the pixels. Consequently we adopt largely
the language of array imaging with the direct imaging systems described in the Introduction
in mind.

In particular, we draw on the PCM imaging system for analogy and we construct an
imaging function, I(x) which corresponds to time-reversing (phase-conjugating) and back-
propagating the received signals in the computational domain. Applying the techniques of
hypothesis testing in statistics, we then derive a strategy for deciding the presence/absence
of a point source based on the imaging function. The new notion of resolution is based on
the outcome of the test.

2.A. Array Imaging

The experimental setup with an active array is shown in Figure 3. The medium is located
in the halfspace z > 0 and the transmitters array at the surface z = 0. We consider an
array of N ×N receivers. The measurements at the N2 receivers for a point source at ~xs are
denoted G(~xs). This vector of observations is sometimes also referred to as the illumination
vector. We consider the case with scalar waves. The time harmonic version of the problem is
then characterized by the reduced wave equation with a constant index of refraction in the
situation when the background medium is homogeneous. If we let G0 be the free space Greens
function associated with the reduced wave equation, then we can express the illumination
vector when there is no measurement noise as

G(~xs) ≡ {G0(~xs, ~xi)}N2

i=1 ,

where ~x = (x, z) = (x1, x2, z) and the free space Green’s function is given by

G0(~x1, ~x2) =
eik|~x1−~x2|

4π|~x1 − ~x2|
, (1)

with k = ω/c0 the wave number for c0 the wave speed and ω the temporal frequency. In the
next section we discuss the case when we have additive measurement noise and use the noisy
illumination vector to detect the source.
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2.B. Optimal detection

We consider the additive white Gaussian noise (AWGN) as present in either the intermedi-
ate stage of ”coherent’” measurement by the antenna array/lens/PCM or the final stage of
image formation as explained in the Introduction. AWGN is perhaps the simplest model rep-
resenting measurement noise, ambient noise as well as model imperfections. As the difference
between the two scenarios of introducing noise is an unitary propagation (the convolution
with the free-space Green function), the final noise statistic is still the same (namely additive
white Gaussian) and therefore makes no difference to our analysis.

Therefore we assume the following model of noisy observations:

Y = τG(~xs) + σW ,

for the real source strength parameter being τ > 0 and W a complex, circularly symmetric
standard Gaussian random vector: W = (W r + iW i) with W r and W i having identically
independently distributed (i.i.d.) entries distributed according to the standard normal dis-
tribution. We seek to infer from these measurements the presence/absence of a point source
and the range of uncertainty of its location.

As in the standard statistical hypothesis testing,8 we postulate two hypotheses and derive
a decision rule for deciding between them based on the imaging function.

The null hypothesis H0: The point source is absent.
The alternate hypothesis H1: The point source is present.
Let α be the false alarm rate defined as

α = P [accept H1 | H0 true] , (2)

and 1− β the detection power or probability of detection:

1− β = P [accept H1 | H1 true] , (3)

with P representing probability. Given the data Y the decision rule for accepting H0 or not
can be derived from the Neyman-Pearson lemma which asserts that for a prescribed false
alarm rate α the most powerful test corresponds to accepting H1 for the likelihood ratio of
H1 to H0 exceeding a threshold T , determined by α.

First we choose as the test statistic the imaging functional

I(~x) = <
(
Y † ·G(~x)

)
‖G(~x)‖−1

HS , (4)

where < denotes the real part. The imaging functional is constructed by using the matched
filter which optimizes the signal-to-noise ratio.8 The choice of location ~x is completely arbi-
trary as long as it lies in the computational domain and the difference between ~x and the
source location ~xs is the mismatch of the “matched” filter which will be used to define the
notion of one-point resolution below. The complex inner product Y † · G(~x) can be inter-
preted as time-reversing and re-emitting the receptive field Y into the computation domain
with the Green’s function, thus the coinage time reversal detection which is particularly
appropriate in the case of broadband signals (see Section 3).

Now observe that under the null hypothesis I(~x) ∼ N (0, σ2) while under the alternate
hypothesis

I(~x) ∼ N (µ(~x), σ2), µ(~x) = τ<
[
G†(~xs) ·G(~x)

]
‖G(~x)‖−1

2 ,
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with N (µ, σ2) denoting the normal distribution with mean µ and standard deviation σ. As
mentioned the Neyman-Pearson lemma corresponds to accepting H1 for the likelihood ratio
exceeding a specific threshold T . Here, the likelihood ratio is the ratio of the two probability
densities of the imaging function I that corresponds to H1 and H2 respectively and when
evaluated at the observation I(~x). Using the expression for the normal density we find that
the likelihood ratio is given by

Λ(~x) = C exp
(
<
[
Y † ·G(~x)

]
‖G(~x)‖−1

2 µ(~x)σ−2
)
,

where C is a constant depending only on G.
By the Neyman-Pearson lemma the decision rule of accepting H1 iff I(~x) > T maximizes

the probability of detection for a given false alarm rate α with the threshold T

T = σΦ−1(1− α) , (5)

where Φ is the (Gauss) error function. Indeed, since the imaging functional is Gaussian with
standard deviation σ under H0 this definition of T means that the probability of accepting
H1 given that H0 is true is α as specified in (2).

2.C. One-point resolution

We now discuss the notion of one-point resolution or uncertainty of location as another
performance criterion. This is introduced as the mismatch of the “matched” filter resulting
in certain prescribed degree of performance deterioration.

First, let us derive a duality relation between the false alarm rate α and the miss probability
β. For simplicity of notation we consider the point source located at ~xs = (0, L). If the source
is present the imaging functional is Gaussian with mean µ(~x) and standard deviation σ. From
this we find the power of the test, 1− β(~x), to be

1− β(~x) = 1− Φ((T − µ(~x))/σ) , (6)

which can be expressed in terms of the SNR

SNR(~x) =
E2[I(~x)]

V ar[I(~x)]
=

µ(~x)2

σ2
, (7)

and (5) as

1− β(~x) = 1− Φ

(
Φ−1(1− α)− µ(~x)

σ

)
= Φ

(√
SNR(~x)− Φ−1(1− α)

)
,

where we used the relation Φ(x) = 1− Φ(−x). We thus arrive at the following performance
duality relations:

1− α = Φ
(√

SNR(~x)− Φ−1(1− β(~x))
)
, (8)

1− β(~x) = Φ
(√

SNR(~x)− Φ−1(1− α)
)
. (9)

5



Note that µ(~x) and SNR(~x) achieve the maximum at ~x = ~xs with

SNR(~xs) = τ 2N2/(σ4πL)2. (10)

Thus the detection power 1 − β(~x) also achieves the maximum at ~x = ~xs. Figure 4 shows
the maximal detection power 1− β(~xs) as function of false alarm rate α at various levels of
SNR. We see a tradeoff between detection power and the false alarm rate. Figure 5 shows the
detection power 1− β(~x) as function of the relative offset parameter ‖~x‖A/(λL) for α = .05
and λL/A2 = 10 and SNR(0) = 2, 4, 6, 8, 10. For large offsets the detection power approaches
α since then the point source has little effect on the measurements. For small offset a large
SNR gives a higher detection power as this corresponds to a relatively small additive noise
in the measurements. We have used the paraxial approximation (13) for ploting Figure 5
and here λ is wavelength, A is the aperture of the mirror and λL/A the Rayleigh cross-range
resolution.

2.D. Cross-range resolution

Let us consider the imaging functional I(~x) at ~x = (x, L) with the offset x = (x1, x2) and
ask the following question:

How far ”off-axis” must the test point ~x be moved in order to increase the probability of
failed detection over the minimal β0 = β(~xs) by a specific factor f > 1?

That is, fβ0 = β(ρc) where ρc is the cross-range resolution ρc for the given factor f > 1
and β(ρc) is the probability of failed detection with the offset ρc. The number of this criterion
is, however, generally more than one and we define the resolution to be the largest root. The
cross-range resolution can be interpreted as the uncertainty of the source location due to the
presence of noise and the sensitivity of the detection scheme characterized by f .

The factor f > 1 is somewhat arbitrary. A reasonable choice is such that fβ0 is exactly
the mid-point between the minimum β0, at the target location, and the maximum at infinity.
At infinity, SNR is zero and hence β(∞) is 1− α by (9). With this choice,

f =
1

2
+

1− α

2β0

. (11)

Other choices of f are fine as long as they satisfy the following constraint:

1 < f ≤ 1− α

β0

. (12)

From (11) or (12) we see that for a fixed false alarm rate f must decrease as SNR decreases
since β0 would increase in this case. In fact, this notion of resolution can be thought of as
a generalized Sparrow resolution in the presence of noise in the sense that with f = 2 the
miss probability at the mid-point of two incoherent point sources separated by ρc is roughly
equal to that at either source point.

For simplicity we now consider the paraxial approximation of the Green’s function (1)

G0((x1, x2, 0), (ρ, 0, L)) ≈ 1

4πL
exp

[
ik

(
L+

|x1 − ρ|2 + |x2|2

2L

)]
, (13)
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provided that

ρ� L, A� L. (14)

It then follows from (4) and (7) that

√
SNR(ρ) ≈ τ

4πLσ
<

(
e−ikρ2/(2L)

N∑
j=1

eikxjρ/L

)
, (15)

where the square-array elements xij = (xi, xj) are assumed to be equally spaced with x1 =
−A/2 · · ·xN = A/2. We further assume the number of elements is sufficiently large so that

ρ/N � Rc (16)

where Rc = λL/A, λ = 2π/k, is Abbe’s (or Rayleigh’s) cross-range resolution. Then we have
using (15)

√
SNR(ρ) ≈ τ

σ(4πL)
cos

(
πρ2

λL

)
N

A

∫ A/2

−A/2

e−ikyρ/L dy

=
√

SNR(0) cos

(
πρ2

λL

)
sinc

(
πρ

Rc

)
. (17)

Recall that √
SNR(ρc) = Φ−1(1− α) + Φ−1(1− fβ0) , (18)√
SNR(0) = Φ−1(1− α) + Φ−1(1− β0) , (19)

and we deduce the equation determining the cross-range resolution√
SNR(ρc)

SNR(0)
= cos

(
πρ2

c

λL

)
sinc

(πρc

Rc

)
=

1

F (α, β0)
, (20)

with

F (α, β0) =
Φ−1(1− α) + Φ−1(1− β0)

Φ−1(1− α) + Φ−1(1− fβ0)
. (21)

We define the resolution gain by gc = Rc/ρc. The condition (16) then becomes gc � 1/N .
Since the resolution is defined as the largest root of eq. (20), the cos-factor in (20) can be
neglected.

Figure 6 shows the cross-range resolution gain gc as function of SNR and for α =
0.001, 0.005, 0.01, 0.02, 0.05. For each value of α in the plot the lower cutoff in the SNR
value corresponds to the constraint (12). The resolution gain increases with SNR and is
always greater than one. For a fixed SNR, the resolution gain increases with the false alarm
rate which reflects the tradeoff between detection power and false alarm rate seen in Figure
4. Figure 7 shows the cross-range resolution gain gc as function of the detection power 1−β0

with f = 2 and for α = 0.001, 0.005, 0.01, 0.02, 0.05. The resolution gain increases with the
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detection probability. For a fixed detection probability, the resolution gain decreases with
the false alarm rate since this corresponds to a decreased SNR.

To understand how SNR affects the detection resolution, let us derive an asymptotic
formula for the cross-range resolution as SNR(~xs) tends to infinity. In this regime, β0 → 0
and

1

F
≈ Φ−1(1− fβ0)

Φ−1(1− β0)
≈

√
1 +

ln f

ln β0

, (22)

following from the asymptotic

1− Φ(t) ∼ 1

t
√

2π
e−t2/2, t� 1.

Comparing the Taylor expansions of sinc(πρc/Rc) and the RHS of (22) we obtain

ρc ∼
L

Ak

√
12 ln f

− ln β0

∼ L

Ak

√
24 ln f

SNR(0)
,

and, equivalently,

gc ∼ π

√
SNR(0)

6 ln f
. (23)

We see that the resolution gain increases like square-root of SNR and therefore superresolu-
tion (i.e. gc > 1) can be achieved with sufficiently high SNR for any given f > 1.

2.E. Range resolution

The notion of resolution can be extended to the offset along the axis between the array
and the source point. Analogous to the cross-range resolution the range resolution ρr is
determined by the equation fβ(0) = β(ρr) , with some prescribed f > 1.

In the paraxial regime we have using (7) and (13)√
SNR(ρr)

SNR(0)
=

1

N2
<

(
e−ikρr

N∑
l,m=1

e−ikρr
(x2

l +x2
m)

2L2

)
.

In the absence of noise the Rayleigh criterion for range resolution is Rr = λL2/A2. The range
resolution gain gr = Rr/ρr is determined by the following analogue of (20)√

SNR(ρr)

SNR(0)
≈ cos (kRr/gr)

(∫ 1/2

−1/2
cos (πx2/gr) dx

)2

≈ 1

F (α, β0)
. (24)

The asymptotic for the range resolution gain gr at high SNR can now be derived as before:

gr ∼ π

√
SNR(0)

80 ln f
for SNR(0) →∞.
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Figure 8 shows the range resolution gain as function of SNR and the false alarm rate for
α = 0.001, 0.005, 0.01, 0.02, 0.05. In contrast to the cross-range resolution the range resolution
gain may go below one as SNR decreases. This is an important observation which also
illustrates how incorporating a notion of noise provides additional perspectives on classical
resolution measures. In the range direction single frequency imaging gives poor resolution,
and in fact with strong noise, even the ”pessimistic” Rayleigh criterion for resolution may
be too optimistic. In section 3 we shall see that this picture changes in the broadband case.

2.F. Two-point resolution

In this section, we analyze the resolution of two incoherent point sources in the presence of
noise. In the absence of noise, the classical Sparrow criterion says that two point sources of
equal intensity can not be resolved if and only if the midpoint intensity does not dip. This
criterion is not longer appropriate in the presence of noise since the noise may significantly
enhance the midpoint intensity above the intensity at the locations of the sources at the
separation of the Sparrow criterion.

Let us consider the following signal model for two incoherent point sources of identical
intensity:

Y = τ(e−iπθG1 + eiπθG2) + σW

where θ is the random phase uniformly distributed in [−1/2, 1/2] and G1, G2 are the illu-
mination vectors from the 1-st, 2-nd source points, respectively:

G1 ≡ {G0(~xs1 , ~xi)}N2

i=1 , G2 ≡ {G0(~xs2 , ~xi)}N2

i=1 ,

for ~xs1 , ~xs2 the location of the two sources. We assume that the noise W and the random
phase variable θ are independent. We further assume that the two point sources are located
at ~xs1 = (−ρ, 0, L), ~xs2 = (ρ, 0, L) for the discussion of cross-range resolution and ~xs1 =
(0, 0, L − ρ), ~xs2 = (0, 0, L + ρ) for the discussion of range resolution. For simplicity of
presentation we again restrict ourselves to the paraxial approximation.

We consider an imaging function of the same form as before I(~x) = <
[
Y † ·G(~x)

]
‖G(~x)‖−1

2

which has mean with respect to the noise W : τ<
[
eiπθG†

1 ·G(~x)+ e−iπθG†
2 ·G(~x)

]
‖G(~x)‖−1

2 .
Following the classical Sparrow resolution criterion in the noiseless case we consider the
imaging function I(~x0) at the midpoint ~x0 = (0, 0, L) of the two point sources as well as at
the source points ~xs1 , ~xs2 . We write G0 = G(0, 0, L).

We consider the cross range resolution. In the paraxial approximation the imaging function
at the midpoint

I(~x0) ≈
Nτ

4πL
2 cos (πθ) cos

(πρ2

λL

)
sinc

(πρ
Rc

)
+ σ<

[
W † ·G0

]
‖G0‖−1

2 (25)

has the mean

EI(~x0) ≈ Nτ

π2L
Fc(ρ), Fc(ρ) ≡ cos

(πρ2

λL

)
sinc

(πρ
Rc

)
. (26)

The imaging function at the source points ~xsi
, i = 1, 2,

I(~xsi
) ≈ Nτ

4πL
cos (πθ)

(
1 + Fc(2ρ)

)
+ σ<

[
W † ·Gi

]
‖Gi‖−1

2 ,
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has the mean

EI(~xi) ≈
τN

2π2L

(
1 + Fc(2ρ)

)
, i = 1, 2.

Note that the random variable x = cos (πθ) has the Chebyshev density

h(x) =
2

π
√

1− x2
, x ∈ (0, 1) .

with the mean 2/π and the variance (π2−8)/(2π2). Thus the fluctuation of I(~xsi
), i = 0, 1, 2

has the probability density function (pdf) ψ given by the convolution of the Gaussian and
the centered Chebyshev pdfs after proper normalization.

In the noiseless case the classical Sparrow resolution ρs can be reformulated as EI(~x0) =
EI(~xsi

), i = 1, 2, i.e.
1 + Fc(2ρ) = 2Fc(ρ) .

In the presence of noise, we need to consider fluctuation and noise as well as the mean.
For the noisy case we need to consider the signal-to-fluctuation-ratio (SFR) at the test

points ~x0, ~xsi
, i = 1, 2, defined as

SFR(~xsi
) =

∣∣EI(~xsi
)
∣∣2

Var(I(~xsi
))

=
4
π2

1
2
− 4

π2 + (SNR(~xsi
))−1

.

In the relatively noisy case with

SNR � 2π2

π2 − 8
≈ 17.3, (27)

we have SFR ≈ 4× SNR/π2. Under such conditions, the measurement noise dominates over
the incoherent fluctuation of the source and we may assume the distributon of the imaging
functional is Gaussian. Here we are deciding between two alternatives:

The null hypothesis H1: The source is one point of strength 2τ at zero offset.
The alternate hypothesis H2: The source is two points of equal strength τ .
We use the imaging function I(~x0) as the basis for our decision. UnderH1 we have I(~x0) ∼

N (µ1, σ) while under H2, I(~x0) ∼ N (µ2, σ) with

µ1 =
Nτ

π2L
, (28)

µ2 =
Nτ

π2L
Fc(ρ) . (29)

Let α be the probability of accepting H2 while H1 is correct and β be the probability of
accepting H1 while H2 is correct. Note that α is independent of ρ but β is clearly a function
of ρ. Since τ > 0, µi ≥ 0 and for a given α, the decision rule is to accept H2 when I goes
below a certain threshold and vice versa. The threshold is determined by

T = µ1 + σΦ−1(α) ,

which is independent of ρ. This is important as the detection rule can then be used even
when the parameter ρ is unknown.

10



The detection probability for a 2-point source is then given by

1− β(ρ) = Φ

(
T − µ2(ρ)

σ

)
= Φ

(
Φ−1(α) +

µ1 − µ2(ρ)

σ

)
or equivalently

Φ−1(1− β(ρ)) = Φ−1(α) +
µ1 − µ2(ρ)

σ
.

According to the Neyman-Pearson lemma, the detector is the most powerful in the sense
that it produces the highest detection probability for all values of the unknown parameter ρ
and a given false alarm rate.

We may define the detection resolution as the offset that gives a 50% (or any value between
β0 and 99%) chance of detecting the presence of two source points, that is, β(ρc) = 1/2. This
then gives

µ2(ρc) = µ1 + σΦ−1(α) , (30)

which we write in the form

cos
(πρ2

c

λL

)
sinc

(πρc

Rc

)
= 1 +

σΦ−1(α)

Nτ/(π2L)
≡ 1 +

πΦ−1(α)

4
√

SNR(0)
. (31)

As commented before, the cos-factor in the above equation can be dropped and the reso-
lution gain gc = Rc/ρc can be determined from the equation

sinc
( π
gc

)
= 1 +

πΦ−1(α)

4
√

SNR(0)
. (32)

Figure 9 shows the resolution gain as a function of the signal to noise ratio
√

SNR(0) and
for α = 0.001, 0.005, 0.01, 0.02, 0.05. For a fixed SNR the resolution gain again increases with
the false alarm rate

Considering the regime where |Φ−1(α)| �
√

SNR(0) and expanding the left-hand-side of
the equation in the Taylor series we obtain

gc ≈
√

2π

3

SNR(0)1/4

|Φ−1(α)|1/2
. (33)

The two-point resolution gain depends on SNR in a different way from the one-point resolu-
tion gain (23), with uncertainty about two rather than one location the relative enhancement
in resolution as function of SNR becomes weaker. The validity of (33) is constrained by (27).
In the high SNR limit the random phase difference dominates the SFR (≈ 7) and is the
ultimate limitation to two-point resolution with the measurement noise playing no role.

We finish this section by briefly commenting on the two point range resolution. The null
and alternative hypotheses are as above with now ~xs1 = (0, 0, L− ρ) and ~xs2 = (0, 0, L+ ρ).
We can then repeat the analysis presented above in the cross-range resolution case. The only
modification in our analysis arises in the computation of µ2 in (29) and corresponds to

Fc(ρ) 7→ Fr(ρ) = cos(kρ)

(∫ 1/2

−1/2

cos(πx2ρ/Rr) dx

)2

.

11



Thus, in view of the calculation leading to (24) the range resolution is now determined by
the following modification of (32)(∫ 1/2

−1/2

cos(πx2/gr) dx

)2

= 1 +
πΦ−1(α)

4
√

SNR(0)

with gr = Rr/ρ. Thus the two point resolution scales with the Rayleigh range resolution Rr.
Considering the regime where |Φ−1(α)| �

√
SNR(0) and expanding again in Taylor series

we obtain the asymptotics

gr ≈
√

π

20

SNR(0)1/4

|Φ−1(α)|1/2
. (34)

2.G. Ilustration of one point resolution

In this section we consider a simple example using the detection rule

I(~x) > T , (35)

to create an image. The point source is located at the origin and we use the parameters:
L = 100, A = 10, τ = 100, σ = 1, N = 12, k = 2, α = .05. Note that in this case SNR ≈ 4. For
the simulation we use the exact Green’s function, rather than its parabolic approximation,
and the Monte-Carlo method. The performance as function of relative offset is shown in
Figure 10. Comparing with Figure 5 we find slightly better performance in Figure 10 than
the theoretical prediction in Figure 5 by using the paraxial approximation. With the same
parameters as in Figure 10, Figure 11 depicts the profile of the detection probability as
function of both range and cross-range offsets. The scales are in the units the Rayleigh cross-
and range-resolutions.

3. Broadband imaging

Performance of imaging and detection in presence of noise may be strongly enhanced by
using signals at multiple frequencies. First, the multiple frequencies provide travel time
information and improves particularly the range resolution. Second, the different frequencies
may be weakly correlated and therefore provide independent information about the taget. Let
us analyze the performance of multifrequency imaging using the new definition of resolution.

We assume the following model of noisy measurement at wavenumber kj

Y (kj) = τG(kj) + σW j , j ∈ {1, · · · ,W}

with W j a complex (independ) Gaussian noise vector. We consider the imaging functional

I(x) =
∑

j

<
(
Y (kj)

† ·G(~x; kj)
)
‖G(~x; kj)‖−1

2 . (36)

The most powerful test for a given false alarm rate α corresponds to rejectingH0 iff I(~x) > T
with the threshold T = σΦ−1(1− α) as before.
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For simplicity we assume that the discrete wavenumbers are evenly spaced in the interval
{k̄ − ∆k/2, k̄ + ∆k/2} with the spacing δk = ∆k/(W − 1). Note first that the detection
power achieves the maximum 1− β0 at the location ~x = ~xs

1− β0 = Φ
(√

W SNR(~xs)− Φ−1(1− α)
)

with the same SNR(~xs) as in (10). Therefore, the multiple frequencies enhance the detection
performance via higher SNR.

3.A. Cross-range resolution

As before we analyze the multifrequency cross-range resolution in the paraxial approxima-
tion. The offset dependent SNR in (15) now becomes√

SNR(ρ) =
τ

σ
√
W4πL

W∑
j=1

<

(
e−ikjρ2/(2L)

N∑
l=1

eikjxlρ/L

)
.

The cross-range resolution ρf,k in the multifrequency case is determined by the equation

1

F (α, β0)
=

√
SNR(ρ)

SNR(0)
=

1

WN

W∑
j=1

N∑
l=1

cos
(
− ikj

ρ2 − 2ρxl

2L

)
(37)

=
1

N

N∑
l=1

<

[
e−ik1yl

1− e−iWδkyl

W (1− e−iδkyl)

]
with

yl =
ρ2 − 2ρxl

2L
.

To understand explicitly how multiple frequencies can enhance resolution, we analyze two
particular regimes. First let us consider the narrow-band regime:

∆k(ρ2 + ρA)/L� 1 (38)

which turns to be equivalent to the conventional definition ∆k � k̄. Under the narrow-band
condition, we obtain from (37) that√

SNR(ρ)

SNR(0)
≈ 1

N

N∑
l=1

cos
[ k̄(ρ2 − 2ρxl)

2L

]
≈ cos

( k̄ρ2

2L

)
sinc

( k̄Aρ
2L

)
.

In other word, the narrow-band case is approximately the same as the one-frequency case.
Consider next the broad-band case k̄ ∼ ∆k or equivalently

∆kρ2/L = O(1)

with a small aperture A� ρ. This implies that yl ≈ ρ2/(2L). Then as δk → 0 and W →∞
we obtain from (37) that

1

F (α, β0)
≈ 2L

ρ2∆k
<

[
ie−i ρ2

2L
(k̄+∆k/2) − ie−i ρ2

2L
(k̄−∆k/2)

]

= cos
(πρ2

λ̄L

)
sinc

(ρ2∆k

4L

)
, λ̄ =

2π

k̄

13



which leads to the multifrequency cross-range resolution determined by

1

F (α, β0)
= cos

(
2π
λB

λ̄

(
ρ√

2λBL

)2
)

sinc

(
π

(
ρ√

2λBL

)2
)
, (39)

with the modulation wavelength λB = 2π/∆k. Therefore, ρ = O(
√
λBL) and can be ar-

bitrarily small in the high SNR limit. Note that this result is independent of the aperture
A. Thus, we have compensated a small aperture with bandwidth so that the cross-range
resolution is on the scale of the Fresnel length

√
λBL of the modulation.

3.B. Range resolution

Again we consider the paraxial regime with A� L so that

1

F (α, β0)
=

√
SNR(ρr)

SNR(0)
=

1

WN2
<

(
W∑

j=1

N∑
l,m=1

e−ikjρre−ikjρr
(x2

l +x2
m)

2L2

)

≈ 1

W
<

(
W∑

j=1

e−ikjρr

)

which determines the range resolution ρr. Equivalently we have

1

F (α, β0)
= cos

(
2πλBρr

λ̄λB

)
sinc

(
πρr

λB

)
, (40)

for λB = 2π/∆k. Therefore, ρr = O(λB) and can be reduced indefinitely in the high SNR
limit. This result is again independent of the aperture.

3.C. Two-point resolution

We can easily generalize the two point resolution analysis of Section 2.F to the multifrequency
case. The derivation of the gain is completely analogous modulo two replacements as we
describe next. The only modifications in the analysis arise in the computation of µ1 and µ2

in (28) and (29), the modifications arise since the imaging function now is given by (36)
with W > 1. We consider the relatively noisy broad band case with small aperture A � ρ
as discussed above for the single frequency case. The computation leading to (39) and (40)
then show that the generalization to the multifrequency case follows from the replacements:
(i) τ 7→

√
Wτ , reflecting an enhanced SNR, (ii) Fc(ρ) 7→ Fc,k(ρ) and Fr(ρ) 7→ Fr,k(ρ),

respectively, for cross-range and range resolution where

Fc,k(ρ) = cos

(
2π
λB

λ̄

(
ρ√

2λBL

)2
)

sinc

(
π

(
ρ√

2λBL

)2
)

;

Fr,k(ρ) = cos

(
2π
λB

λ̄

(
ρr

λB

))
sinc

(
π

(
ρr

λB

))
cf. (39) and (40).
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4. Conclusions

We have presented the performance analysis for direct imaging in the presence of noise
by introducing a simple notion of resolution. We have analyzed one-point and two-point
resolution in the framework of statistical hypothesis testing.

For a fixed false alarm rate, the resolution gain increases with SNR and bandwidth. In
the case with high SNR or large bandwidth the resolution is typically much better than the
Abbe (or Rayleigh) resolution. We have demonstrated a striking effect of broadband imaging,
namely the aperture-independent superresolution.

We plan to extend our approach to the case of broadband imaging in a random medium
which amounts to multiplicative noise.
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List of captions:
Figure 1 Imaging with a lens
Figure 2 Imaging with a phase conjugate mirror (PCM)
Figure 3 The experimental setup with a passive transducer array that we consider in this

paper. A source emits a signal that is recorded at the array. The two-dimensional array is
located in the plane z = 0. The cross-range space coordinates are labeled x1 and x2.

Figure 4 The detection power as function of α for
√

SNR(0) ∈ {1/2, 1, 2, 3, 4}. For a
small value of α, corresponding to a small false alarm rate, the test also has a relatively
small power 1−β. This follows since for small α the test must be conservative and conclude
that the point source is present only for relatively large values of the imaging functional, see
(5) and (6). For a fixed false alarm rate the power increases with the signal to noise ratio
since this corresponds to an increase in the signal received from the source relative to the
noise.

Figure 5 The detection power as function of offset and signal to noise ratio. Here λ is
wavelength, L is distance to target and A is the aperture of the mirror. As the offset increases,
corresponding to increased error in the cross-range specification, the probability of detecting
the source decreases.

Figure 6 The cross-range resolution gain gc as function of SNR(0) and α with f = 2.
Figure 7 The cross-range resolution gain gc as function of the detection power 1− β0 and

α with f = 2.
Figure 8 The range resolution gain gr as function of SNR(0) and α with f = 2.
Figure 9 Two point cross-range resolution gain gc.
Figure 10 Simulated detection probability as function of cross-range offset.
Figure 11 Simulated detection probability.
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Fig. 1. Imaging with a lens
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Fig. 2. Imaging with a phase conjugate mirror (PCM)
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Fig. 3. The experimental setup with a passive transducer array that we con-
sider in this paper. A source emits a signal that is recorded at the array. The
two-dimensional array is located in the plane z = 0. The cross-range space
coordinates are labeled x1 and x2.

20



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

1−
β

SNR=1/2
SNR=1
SNR=2
SNR=3
SNR=4

Fig. 4. The detection power as function of α for
√

SNR(0) ∈ {1/2, 1, 2, 3, 4}.
For a small value of α, corresponding to a small false alarm rate, the test also
has a relatively small power 1−β. This follows since for small α the test must
be conservative and conclude that the point source is present only for relatively
large values of the imaging functional, see (5) and (6). For a fixed false alarm
rate the power increases with the signal to noise ratio since this corresponds
to an increase in the signal received from the source relative to the noise.
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As the offset increases, the detection probability decreases.
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Fig. 6. The cross-range resolution gain gc as function of SNR(0) and α with
f = 2.
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Fig. 7. The cross-range resolution gain gc as function of the detection power
1− β0 and α with f = 2.
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Fig. 8. The range resolution gain gr as function of SNR(0) and α with f = 2.
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Fig. 9. Two point cross-range resolution gain gc.
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Fig. 10. Simulated detection probability as function of cross-range offset.
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