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Abstract. The problem of imaging periodic structure (source or scatterer) is formulated
in the framework of compressed sensing with special attention on subwavelength resolution.
It is shown that in this formulation the subwavelength resolution in the presence of noise
can not be achieved by compressed sensing techniques alone. Additional techniques such
as near-field measurement or illumination are required and the resolution limit is derived,
which says that the smallest stably resolvable scale is about either half the wavelength or
the distance of the sensors to the target, whichever is smaller. Numerical simulations are
consistent with the theoretical prediction.

1. Introduction

The Compressed Sensing paradigm has supplied a fresh perspective on the imaging prob-
lems, including source inversion and inverse scattering (see the extensive literature in [6]).

This brief note is to (i) formulate the imaging problem of inverse source and scattering of
periodic structures in the framework of compressed sensing and analyze it by the fundamental
results of Candès, Romberg and Tao [2, 3, 4, 5] and Rudelson and Vershynin [13] on Fourier
measurement; (ii) use the solution thus obtained as a premise to investigate the problem
of subwavelength resolution in the presence of noise. In particular, we discuss the idea of
extracting subwavelength information by near-field measurement and illumination, common
in nano-optics [12].

Finally we present numerical results confirming the theoretical predictions and conclude
with a few remarks.

2. Source inversion

First we consider imaging of an extended source (the target) in two dimensional (x, z)-
plane. We assume that the target is located in the line z = z0.

The target is represented by the variable source amplitude σ(x) which is assumed to be
periodic with period L and admits the Fourier expansion

σ(x) =
∞∑

k=−∞

σ̂ke
i2πkx/L.(1)

We consider the class of band-limited functions with σ̂k = 0 except for

k ∈ [−(m− 1)/2, (m− 1)/2](2)

in (1) where m is an odd integer so that there are at most m relevant Fourier modes.
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The wave propagation in the free space is governed by the Helmholtz equation

∆u+ ω2u = 0.

where ω = 2π/λ is the frequency assuming the wave speed is unity. In two dimensions, the
Green function G(r) is

G(r) =
−i
4
H

(1)
0 (ω|r|), r = (x, z)

where H
(1)
0 is the zeroth order Hankel function of the first kind. G can be expressed by the

Sommerfeld integral representation

G(r) =
−i
4π

∫
eiω(|z|β(α)+xα) dα

β(α)
,(3)

where

β(α) =

{ √
1− α2, |α| < 1

i
√
α2 − 1, |α| > 1

(4)

[1]. The integrand in (3) with real-valued β (i.e. |α| < 1) corresponds to the homoge-
neous wave and that with imaginary-valued β (i.e. |α| > 1) corresponds to the evanescent

(inhomogeneous) wave which has an exponential-decay factor e−ω|z|
√
α−1.

The present framework can be easily extended to three dimensions by using the plane-wave
representation

eiω|r|

|r|
=
iω

2π

∫
dαdβ

γ
exp [iω(αx+ βy + γ|z|)], r = (x, y, z)(5)

where

γ =
√

1− α2 − β2, α2 + β2 ≤ 1

γ = i
√
α2 + β2 − 1, α2 + β2 > 1

for the Green function [1]. For simplicity of the presentation, we stick with the two dimen-
sional setting throughout.

The signal arriving at the sensor located at (0, ξ) is given by∫
G(z0, x− ξ)σ(x)dx = − i

2ω

∑
k

σ̂k
βk
eiωz0βkeiωαkξ(6)

by (3) where

αk =
kλ

L
, βk = β(αk).(7)

By (7), the subwavelength structure of the target is encoded in σ̂k with |k|λ > L and carried
by the evanescent wave.
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Let ai = (0, ξi), i = 1, ..., n be the coordinates of the n sensors in the line z = 0. To set
the problem in the framework of compressed sensing we define the n received signals by the
sensors as the measurement vector Y and set the target vector X = (Xk) ∈ Cm as

Xk = −i
√
neiωz0βk

2ωβk
σ̂k.(8)

This leads to the form

Y = AX(9)

where the sensing matrix A = [Ajk] ∈ Cn×m has unit columns with entries

Ajk =
1√
n
ei2πkξj/L, j = 1, ..., n, k = −m− 1

2
, ...,

m− 1

2
.(10)

Note that the formulation is exact and no approximation is made. To avoid a vanishing
denominator in (8), we must set L/λ 6∈ N so that βk 6= 0.

The main thrust of compressive sensing is that under suitable conditions the inversion can
be achieved as the `1-minimization

min‖X‖1, subject to Y = AX

which also goes by the name of Basis Pursuit (BP) and can be solved by linear programming.
BP was first introduced empirically in seismology by Claerbout and Muir and later studied
mathematically by Donoho and others [7, 9].

A fundamental notion in compressed sensing under which BP yields the unique exact
solution is the restrictive isometry property due to Candès and Tao [4]. Precisely, let the
sparsity s of the target vector be the number of nonzero components of X and define the
restricted isometry constant δs to be the smallest positive number such that the inequality

(1− δs)‖Z‖22 ≤ ‖AZ‖22 ≤ (1 + δs)‖Z‖22
holds for all Z ∈ Cm of sparsity at most s.

To realize the restrictive isometry property for our matrix A, we follow [2] and let
I1, I2, ..., Im be independent Bernoulli random variables taking the value 1 with probabil-
ity n̄/m, n̄� m. Let

ξj = ηjL/m(11)

where ηj belongs to the random set

Ω = {q ∈ {0, ...,m− 1}|Iq = 1}.(12)

We have E|Ω| = n̄ and indeed by Bernstein’s inequality n = |Ω| is close to n̄ with high
probability.

Now we state two fundamental results essential for our problem.

Theorem 1. [4] Suppose the true target vector X has the sparsity at most s. Suppose the
restricted isometry constant of A satisfies the inequality

δ3s + 3δ4s < 2.(13)

Then X is the unique solution of BP.
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Remark 1. Greedy algorithms have significantly lower computational complexity than linear
programming and have provable performance under various conditions. For example under
the condition δ3s < 0.06 the Subspace Pursuit (SP) algorithm is guaranteed to exactly recover
X via a finite number of iterations [10].

Theorem 2. [13] For any τ > 1 and any m, s > 2, a random set Ω of average cardinality

n̄ = (Cτs logm) log (Cτs logm) log2 s(14)

gives rise to a sensing matrix A which satisfies the restricted isometry condition (13) with
probability at least 1− 5e−cτ . Here c and C are some absolute constants.

As a consequence of Theorem 1 and 2, the target vector X can be determined by BP
and the source amplitude σ(x) can be reconstructed exactly from (8), including all the
subwavelength structures corresponding to |αk| > 1. In other words, in the absence of noise
there is essentially no limitation to the resolving power of the compressed sensing technique,
subwavelength or not, as long as sufficient number of measurements are made.

When noise is present, however, the performance of the above approach may be severely
limited, especially in the recoverability of subwavelength information. Consider the standard
model of additive noise

Y ε = AX + E(15)

where ‖E‖2 = ε > 0 is the size of the noise and the associated relaxation scheme

min‖X‖1, subject to ‖Y ε −AX‖2 ≤ ε.(16)

Theorem 3. [3] Let Xε be the solution to (16). If ‖X‖0 ≤ s and (13) is true, then

‖Xε −X‖2 ≤ Csε

where Cs depends only on and behaves reasonably with δ4s.

See also [8, 14] for stability result under the condition of incoherence.
Inverting the relationship (8) with small error in the target vector X produces a control-

lable error for those σ̂k such that

|eiωz0βk | ≥ e−2π(17)

but exponentially amplified error otherwise. The stably resolvable scales include those cor-
responding to |αk| ≤ 1 as well as |αk| > 1 such that

|βk|z0 ≤ λ.(18)

A simple scheme to regularize the reconstruction is to set the unstable modes to be zero.
The choice of the stability threshold e2π for the noise amplification factor is convenient but
arbitrary; any constant less than one will lead to similar conclusions.

Condition (18) leads to the inequality

αk =
kλ

L
≤

√
1 +

(
λ

z0

)2

(19)
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and hence the smallest stably resolvable scale for the target profile σ is(
1

λ2
+

1

z2
0

)−1/2

.(20)

One way of overcoming this difficulty is to reduce the distance z0 between the sensor
array and the target. When z0 < λ then the above discussion implies that the smallest
stably resolvable scale is about z0. This is the near-field imaging and is the idea behind the
scanning microscopy.

Next let us discuss a different mechanism of superresolution available in the context of
inverse scattering.

3. Inverse scattering

Consider a periodic scatterer with scattering amplitude σ admitting the representation
(1). For simplicity, we use the Born scattering model [1] under which the scattered field at
z = 0 is given by

us(0, ξ) =

∫
G(z0, x− ξ)σ(x)ui(z0, x)dx(21)

where ui(z, x) is the incident field. Now with the normally incident plane wave ui(z, x) = eiωz,
eq. (21) is essentially reduced to (6).

Consider the obliquely incident plane wave ui(z, x) = eiω(αx+β|z−z1|) where β is related to
α as in (7) and z1, assumed larger than z0. Set

α =
qλ

L
, q ∈ R.

In the standard setting the illumination field is a homogeneous wave with |α| < 1. The
evanescent illumination |α| > 1 will also be considered here. In such case, z1 is the z-
coordinate of the illumination source.

The same calculation as before now leads to

us(0, ξ) = − i

2ω
√
m

∑
k

σ̂k
βk
eiωz0βkeiω(z1−z0)βeiωαkξ

where instead of (7) we have

αk =
(k + q)λ

L
, βk = β(αk).

Set the target vector X(q) = (X
(q)
k ) ∈ Cm as

X
(q)
k = −ie

iωz0βkeiω(z1−z0)β

2ωβk
σ̂k(22)

and proceed as before. To avoid a vanishing denominator we require

(k + q)λ

L
6= 1, ∀k.(23)
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Theorem 1 and 2 are applicable to the shifted Fourier matrix A(q) with entries

A
(q)
jk =

1√
m
eiω(k+q)λξj/L

where ξj is given by (11) and the target vector X(q) can be recovered exactly in the absence
of noise.

The discussion of Section 2 implies that for σ̂k to be resolvable in Born scattering inversion
in the presence of small noise

|αk| =
|k + q|λ

L
≤

√
1 +

λ2

z2
0

.(24)

For each q, the stably resolvable modes satisfy

−q −

√
L2

λ2
+
L2

z2
0

≤ k ≤ −q +

√
L2

λ2
+
L2

z2
0

(25)

and the smallest stably resolvable scale is about(
|q|
L

+

√
1

λ2
+

1

z2
0

)−1

.(26)

Minimizing (26) under the constraint |eiω(z1−z0)β| > e−2π then yields the resolution limit of
the method.

Consider two different illuminations: homogeneous and evanescent wave sources. If the
target is illuminated by an incident homogeneous wave, then |q|/L < λ−1 and the smallest
resolvable scale is about (

1

λ
+

√
1

λ2
+

1

z2
0

)−1

.(27)

In far-field measurement (z0 � λ), the resolution limit (27) is about λ/2.
On the other hand, if the incident wave is evanescent and subject to the constraint
|eiω(z1−z0)β| > e−2π, which implies

|q| <

√
L2

λ2
+

L2

(z1 − z0)2
,(28)

then the smallest stably resolvable scale according to (26) is about(√
1

λ2
+

1

(z1 − z0)2
+

√
1

λ2
+

1

z2
0

)−1

(29)

which for near-field illumination (|z1−z0| � λ) but far-field measurement (z0 � λ) becomes
O(z1 − z0).

To achieve the resolution limit set by (29) we pick q∗ > 0 sufficiently close to the right hand
side of (28) and satisfying (23) and illuminate the target by a few evanescent waves with
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Figure 1. In source inversion with far-field measurement (left, z0 = 1, n =
81), the two subwavelength modes k = ±11 cause significant errors. With
near-field measurement (right, z0 = 0.1, n = 87) the reconstruction is nearly
perfect for target with 20 subwavelength modes. The green-circled curve is
the original profile and the blue-solid curve is the reconstructed profile.
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Figure 2. Two independent runs (left with n = 70 right with n = 82) with
far-field measurement (z0 = 1) and near-field illumination (z1 − z0 = 0.01).
The red curve is the original profile and the blue curve is the reconstructed
profile. Except for a few spots, they coincide with each other.

q ∈ [−q∗, q∗]. The union of their respective stably resolvable modes (25) is the total stably
resolvable modes. Evanescent illumination can be produced physically by, for example, the
total internal reflection in optics [12].

4. Numerical results

In our numerical simulations, L = 1, λ = π/30, m = 1001 so the subwavelength mode
cutoff is at about |k| = 10. The roundoff error is the main source of noise in our simulations.
We regularize the reconstruction by setting the unstable modes to zero.
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Figure 1 shows the numerical results for source inversion using the Subspace Pursuit for
the compressed sensing step. First we image a periodic source with 23 modes, including two
subwavelength modes k = ±11 using far-field measurement z0 = 1. We can see in the left
plot of Figure 1 that the recovery of the subwavelength modes is not accurate. Reducing the
distance between the target and the sensors (z0 = 0.1) enables accurate reconstruction of a
profile with 41 modes (right plot in Figure 1).

Figure 2 shows the results for inverse Born scattering by the far-field measurement (z0 = 1)
and the near-field illumination (z1 − z0 = 0.01). In this case it suffices to run the procedure
for two incident modes with q = ±90. With similar number of sensors, the method can
accurately recovers about 205 modes.

5. Conclusion

In this note, we have analyzed the problem of imaging periodic structures in the perspec-
tive of Compressed Sensing which provides assurance of stable reconstruction of a target
composed of sparse Fourier modes with the similar number of measurements, modulo a
poly-logarithmic factor, in the presence of noise.

However, Compressed Sensing alone does not achieve subwavelength resolution as the
additional step required to recover the true target amplitude may amplify the noise expo-
nentially.

We have discussed the imaging techniques of near-field measurement and illumination
and derived the resolution limit, which says that the smallest stably resolvable scale is about
either half the wavelength or the distance of the sensors to the target, whichever is smaller.

Finally we note that the compressive imaging theory in the remote sensing regime for
discrete point targets has been recently developed in [11].
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