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Example: spectral estimation

Noisy signal:

y(t) =
sX

j=1
c

j

e

�i2⇡!
j

t + n(t)

where !

j

are the frequencies, c

j

are the amplitudes and n(t) is the
external noise.

Main problem: the frequencies.

Vectorization: �x+ e = y

Set y = (y(t
k

)) 2 CN to be the data vector where t

k

, k = 1, ..., N are
the sample times in the unit interval [0,1].

=) We can only hope to recover !

j

are separated by at least 1
(resolution)



Approximate !

j

by the closest subset of cardinality s of a regular
grid G = {p1, . . . , p

M

},M � s,.

Write x = (x
j

) 2 CM where x

j

= c

j

whenever the grid points are the
nearest grid points to the frequencies and zero otherwise.

The measurement matrix

� =
h
a1 . . . a

M

i
2 CN⇥M

with

a

j

=
1p
N

⇣
e

�i2⇡t
k

p

j

⌘
2 CN

, j = 1, ...,M.

Errors:

e = n+ d, n = external noise, d = gridding error.
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Gridding error is inversely proportional to refinement factor F

G = Z/F

.



pairwise coherence pattern

100*4000 matrix with F = 20 & coherence = 0.99566
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Coherence pattern �⇤� for 100⇥ 4000 matrix with F = 20 (left).



Coherence band

Let ⌘ > 0. Define the ⌘-coherence band of the index k to be the set

B

⌘

(k) = {i | µ(i, k) > ⌘},

and the ⌘-coherence band of the index set S to be the set

B

⌘

(S) = [
k2SB⌘

(k).

Due to the symmetry µ(i, k) = µ(k, i), i 2 B

⌘

(k) if and only if k 2
B

⌘

(i).

Denote

B

(2)
⌘

(k) ⌘ B

⌘

(B
⌘

(k)) = [
j2B

⌘

(k)B⌘

(j)

B

(2)
⌘

(S) ⌘ B

⌘

(B
⌘

(S)) = [
k2SB

(2)
⌘

(k).



Band-excluded OMP

We make the following change to the matching step

imax = argmin
i

|
D
r

n�1
, a

i

E
|, i /2 B

(2)
⌘

(Sn�1)

meaning that the double ⌘-band of the estimated support in the
previous iteration is avoided in the current search. This is natural if
the sparsity pattern of the object is such that B

⌘

(j), j 2 supp(x) are
pairwise disjoint.

Algorithm 1. Band-Excluded Orthogonal Matching Pursuit (BOMP)
Input: �,y, ⌘ > 0
Initialization: x

0 = 0, r0 = y and S

0 = ;
Iteration: For n = 1, ..., s

1) imax = argmin
i

|
D
r

n�1
, a

i

E
|, i /2 B

(2)
⌘

(Sn�1)

2) S

n = S

n�1 [ {imax}
3) x

n = argmin
z

k�z� yk2 s.t. supp(z) 2 S

n

4) r

n = y ��xn
Output: x

s.



Two-dimensional case



Performance guarantee

Theorem 1 Let x be s-sparse. Let ⌘ > 0 be fixed. Suppose that

B

⌘

(i) \B

(2)
⌘

(j) = ;, 8i, j 2 supp(x)

and that

⌘(5s� 4)
xmax

xmin
+

5kek2
2xmin

< 1

where

xmax = max
k

|x
k

|, xmin = min
k

|x
k

|.

Let x̂ be the BOMP reconstruction. Then supp(x̂) ✓ B

⌘

(supp(x))
and moreover every nonzero component of x̂ is in the ⌘-coherence

band of a unique nonzero component of x.

BOMP can resolve 3 RLs. Numerical experiments indicates resolution

close to 1 RL when the dynamic range is close to 1 RL.



Local optimization

Algorithm 2. Local Optimization (LO)
Input:�,y, ⌘ > 0, S0 = {i1, . . . , i

k

}.
Iteration: For n = 1,2, ..., k.

1) x

n = arg min
z

k�z� yk2, supp(z) = (Sn�1\{i
n

}) [ {j
n

},
for some j

n

2 B

⌘

({i
n

}).
2) S

n = supp(xn).
Output: S

k.

Algorithm 3. BLOOMP
Input: �,y, ⌘ > 0
Initialization: x

0 = 0, r0 = y and S

0 = ;
Iteration: For n = 1, ..., s

1) imax = argmin
i

|
D
r

n�1
, a

i

E
|, i /2 B

(2)
⌘

(Sn�1)

2) S

n = LO(Sn�1 [ {imax}) where LO is the output of Algorithm 2.
3) x

n = argmin
z

k�z� yk2 s.t. supp(z) 2 S

n

4) r

n = y ��xn
Output: x

s.



BLOOMP: performance guarantee

Theorem 2 Let ⌘ > 0 and let x be a s-sparse well-separated vector.

Let S

0 and S

k be the input and output, respectively, of the LO

algorithm.

If

xmin > ("+2(s� 1)⌘)

 
1

1� ⌘

+

s
1

(1� ⌘)2
+

1

1� ⌘

2

!

and each element of S

0 is in the ⌘-coherence band of a unique

nonzero component of x, then each element of S

k remains in the

⌘-coherence band of a unique nonzero component of x.
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Figure 2: Reconstruction of the real part of 20 widely separated spikes (R = 1, minimum distance 3⇢) with
F = 50, ✏ = 5% by (a) OMP (b) BLOOMP (c) BPDN (d) BPDN-BLOT.
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Band-Excluded Thresholding (BET)

Two variants: Band-excluded Matched Thresholding (BMT) and
Band-excluded Locally Optimized (BLOT).

Algorithm 4. BMT
Input: �,y, ⌘ > 0.
Initialization: S

0 = ;.
Iteration: For k = 1, ..., s,

1) i

k

= argmax
j

|
D
y, a

j

E
|, 8j /2 B

(2)
⌘

(Sk�1).

2) S

k = S

k�1 [ {i
k

}
Output x̂ = argmin

z

k�z� yk2 s.t. supp(z) ✓ S

s

Algorithm 5. BLOT
Input: x = (x1, . . . , x

M

), �,y, ⌘ > 0.
Initialization: S

0 = ;.
Iteration: For n = 1,2, ..., s.

1) i

n

= arg min
j

|x
j

|, j 62 B

(2)
⌘

(Sn�1).
2) S

n = S

n�1 [ {i
n

}.
Output: x̂ = argmin k�z� yk2, supp(z) ✓ LO(Ss).
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Corollary 1. Let x̂ be the output of BLOOMP. Under the assumptions of Theorems 1 and 2,
supp(x̂) ⊆ Bη(supp(x)), and, moreover, every nonzero component of x̂ is in the η-coherence
band of a unique nonzero component of x.

Even though we cannot improve the performance guarantee for BLOOMP, in practice the
LO technique greatly enhances the success probability of recovery that BLOOMP has the best
performance among all the algorithms tested with respect to noise stability and dynamic range
(see section 5). In particular, the LO step greatly enhances the performance of BOMP with
respect to dynamic range. Moreover, whenever Corollary 1 holds, for all practical purposes
we have the residual bound for the BLOOMP reconstruction x̂

‖b−Ax̂‖2 ≤ c‖e‖2, c ∼ 1.(26)

On the other hand, it is difficult to obtain bounds for the reconstruction error since ‖x− x̂‖2
is not a meaningful error metric without exact recovery of an overwhelming majority of the
object support.

4. Band-Excluded Thresholding (BET). The BE technique can be extended and applied
to selecting s objects all at once in what is called the Band-Excluded Thresholding (BET).

We consider two forms of BET. The first is the Band-excluded Matched Thresholding
(BMT), which is the band exclusion version of the One-Step Thresholding (OST) recently
shown to possess CS capability under incoherence conditions [1].

For the purpose of comparison with BOMP, we give a performance guarantee for BMT
under similar but weaker conditions than (15)–(16).

Algorithm 4. Band-excluded Matched Thresholding (BMT).

Input: A,b, η > 0
Initialization: S0 = ∅
Iteration: For k = 1, . . . , s

1. ik = argmaxj | 〈b,aj〉 |, j /∈ B(2)
η (Sk−1).

2. Sk = Sk−1 ∪ {ik}.
Output x̂ = argminz ‖Az− b‖2 s.t. supp(z) ⊆ Ss.

Theorem 3. Let x be s-sparse. Let η > 0 be fixed. Suppose that

Bη(i) ∩Bη(j) = ∅ ∀i, j ∈ supp(x)(27)

and that

η(2s − 1)
xmax

xmin
+

2‖e‖2
xmin

< 1,(28)

where
xmax = max

k
|xk|, xmin = min

k
|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)), and, moreover, every nonzero
component of x̂ is in the η-coherence band of a unique nonzero component of x.



BLO-based algorithms

BLO Subspace Pursuit (BLOSP)

BLO Iterative Hard Thresholding (BLOIHT)

Algorithm 6. BLOSP
Input: �,y, ⌘ > 0.
Initialization: x

0 = 0, r0 = y

Iteration: For n = 1,2, ...,
1) S̃

n = supp(xn�1) [ supp(BMT(rn�1))
2) x̃

n = argmin k�z� yk2 s.t. supp(z) ✓ S̃

n.
3) S

n = supp(BLOT(x̃n))
4) r

n = min
z

k�z� yk2, supp(z) ✓ S

n.
5) If krn�1k2  ✏ or krnk2 � krn�1k2,

then quit and set S = S

n�1; otherwise continue iteration.
Output: x̂ = argmin

z

k�z� yk2 s.t. supp(z) ✓ S.



Algorithm 7. BLOIHT
Input: �,y, ⌘ > 0.
Initialization: x̂

0 = 0, r0 = y.
Iteration: For n = 1,2, ...,

1) x

n = BLOT(xn�1 +�

⇤
r

n�1).
2) If krn�1k2  ✏ or krnk2 � krn�1k2,

then quit and set S = S

n�1; otherwise continue iteration.
Output: x̂.

In addition, the technique BLOT can be used to enhance the recov-
ery capability with unresolved grids of the L

1-minimization principles,
Basis Pursuit (BP)

min
z

kzk1, subject to y = �z.

and the Lasso

min
z

1

2
ky ��zk22 + ��kzk1,

where � is the standard deviation of the each noise component and
� is the regularization parameter.



Numerical results

For two subsets A and B in Rd of the same cardinality, the Bottleneck
distance d

B

(A,B) is defined as

d

B

(A,B) = min
f2M

max
a2A

|a� f(a)|

where M is the collection of all one-to-one mappings from A to B.
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For dynamic range greater than 3, BOMP has the best
performance.
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Figure 4: Success rate versus number of measurements (left, dynamic range 5, zero noise) and dynamic range
(right, 1% noise) for OMP, BOMP and BLOOMP.

For the rest of simulations, we show the percentage of successes in 100 independent trials. A reconstruction
is counted as a success if every reconstructed object is within 1 !R of the object support. This is equivalent
to the criterion that the Bottleneck distance between the true support and the reconstructed support is less
than 1 !R. The result is shown in Figure 4. With 10 objects of dynamic range 5, BLOOMP requires the least
number of measurements, followed by BOMP and then OMP, which does not achieve high success rate even
with 100 measurements (left panel). With 100 measurements (N = 100) and 1% noise, BLOOMP can handle
dynamic range up to 120 while BOMP and OMP can handle dynamic range about 5 and 1, respectively.

For the second example (11)-(12), we test, in addition to our algorithms, the method proposed by Duarte
and Baraniuk5 and the analysis approach of frame-adapted Basis Pursuit2,6.

The algorithm, Spectral Iterative Hard Thresholding (SIHT)5, assumes the model-based RIP which, in
spirit, is equivalent to the assumption of well separated support in the synthesis coefficients and therefore
resembles closely to our approach.

While SIHT is a synthesis method like BOMP and BLOOMP, the frame-adapted BP

min‖Ψ!z‖1 s.t ‖Φz− b‖2 ≤ ‖e‖2, (19)

is the analysis approach6. Candès et al.2 have established a performance guarantee for (19) provided that
the measurement matrix Φ satisfies the frame-adapted RIP:

(1− δ)‖Ψz‖2 ≤ ‖ΦΨz‖2 ≤ (1 + δ)‖Ψz‖2, ‖z‖0 ≤ 2s (20)

for a tight frameΨ and a sufficiently small δ and that the analysis coefficientsΨ∗y are sparse or compressible.
Instead of the synthesis coefficients x, however, the quantities of interest are y. Accordingly we measure

the performance by the relative error ‖ŷ− y‖2/‖y‖2 averaged over 100 independent trials. In each trial, 10
randomly phased and located objects (i.e. x) of dynamic range 10 and i.i.d. Gaussian Φ are generated. We
set N = 100, R = 200, F = 20 for test of noise stability and vary N for test of measurement compression.

As shown in Figure 5, BLOOMP is the best performer in noise stability (left panel) and measurement com-
pression (right panel). BLOOMP requires about 40 measurements to achieve nearly perfect reconstruction
while the other methods require more than 200 measurements. Despite the powerful error bound established
in [2], the analysis approach (19) needs more than 200 measurements for accurate recovery because the
analysis coefficients Ψ∗y are typically not sparse. Here redundancy F = 20 produces about 2F = 40 highly
coherent columns around each synthesis coefficient and hence Ψ∗y has about 400 significant components. In
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Spectral CS

Duarte-Baraniuk 2010: Spectral Iterated Hard Thresholding (SIHT)

y = �x+ e = � ↵+ e

where � is i.i.d. Gaussian matrix and  is an oversampled, redundant
DFT frame.

Assumption: ↵ is widely separated.

Performance metric:
k (↵� ↵̂)k

k ↵k
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Frame-adapted BP: synthesis approach

Candes et al 2010:

min
z

k ⇤
zk1, k�z� yk2  "

Assumption:  ⇤
z is sparse.
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Figure 5: Relative errors versus relative noise (left) and number of measurements (right, zero noise) for
dynamic range 10.

general, the sparsity of the analysis coefficients is at least 2sF where s is the sparsity of the widely separated
synthesis coefficients and F is the redundancy. Thus according to the error bound of [2] the performance of
the analysis approach (19) would degrade with the redundancy of the dictionary.

To understand the superior performance of BLOOMP in this set-up let us give an error bound using (18)
and (20)

‖Ψ(x− x̂)‖2 ≤ 1

1− δ
‖A(x− x̂)‖2 ≤ 1

1− δ
‖b− e−Ax̂‖2 ≤ 1 + c

1− δ
‖e‖2 (21)

where x̂ is the output of BLOOMP. This implies that the reconstruction error of BLOOMP is essentially
determined by the external noise, consistent with the left and right panels of Figure 5, and is independent
of the dictionary redundancy if Corollary 1 holds. In comparison, the BOMP result appears to approach an
asymptote of nonzero (∼ 10%) error. This demonstrates the effect of local optimization technique in reducing
error. The advantage of BLOOMP over BOMP, however, disappears in the presence of large external noise
(left panel).

5. CONCLUSION

We have proposed algorithms, BOMP and BLOOMP, for sparse recovery with highly coherent, redun-
dant sensing matrices and have established performance guarantee that is redundancy independent. These
algorithms have a sparsity constraint and computational cost similar to OMP’s. Our work is inspired by
the redundancy-independent performance guarantee recently established for the MUSIC algorithm for array
processing.7

Our algorithms are based on variants of OMP enhanced by two novel techniques: band exclusion and local
optimization. We have extended these techniques to various CS algorithms, including Lasso, and performed
systematic tests elsewhere8.

Numerical results demonstrate the superiority of BLO-based algorithms for reconstruction of sparse ob-
jects separated by above the Rayleigh threshold.
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Band-Excluded Thresholding (BET)

Two variants: Band-excluded Matched Thresholding (BMT) and
Band-excluded Locally Optimized (BLOT).

Algorithm 4. BMT
Input: �,y, ⌘ > 0.
Initialization: S

0 = ;.
Iteration: For k = 1, ..., s,

1) i

k

= argmax
j

|
D
y, a

j

E
|, 8j /2 B

(2)
⌘

(Sk�1).

2) S

k = S

k�1 [ {i
k

}
Output x̂ = argmin

z

k�z� yk2 s.t. supp(z) ✓ S

s

Algorithm 5. BLOT
Input: x = (x1, . . . , x

M

), �,y, ⌘ > 0.
Initialization: S

0 = ;.
Iteration: For n = 1,2, ..., s.

1) i

n

= arg min
j

|x
j

|, j 62 B

(2)
⌘

(Sn�1).
2) S

n = S

n�1 [ {i
n

}.
Output: x̂ = argmin k�z� yk2, supp(z) ✓ LO(Ss).



Algorithm 7. BLOIHT
Input: �,y, ⌘ > 0.
Initialization: x̂

0 = 0, r0 = y.
Iteration: For n = 1,2, ...,

1) x

n = BLOT(xn�1 +�

⇤
r

n�1).
2) If krn�1k2  ✏ or krnk2 � krn�1k2,

then quit and set S = S

n�1; otherwise continue iteration.
Output: x̂.

In addition, the technique BLOT can be used to enhance the recov-
ery capability with unresolved grids of the L

1-minimization principles,
Basis Pursuit (BP)

min
z

kzk1, subject to y = �z.

and the Lasso

min
z

1

2
ky ��zk22 + ��kzk1,

where � is the standard deviation of the each noise component and
� is the regularization parameter.
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Figure 2: Reconstruction of the real part of 20 widely separated spikes (R = 1, minimum distance 3⇢) with

F = 50, ✏ = 5% by (a) OMP (b) BLOOMP (c) BPDN (d) BPDN-BLOT.
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(f)

Figure 3: Relative error with noise level ✏ = 1% (top) 5% (middle) and 10% (bottom) and filter width � = 0
(left) and 0.05 (right).
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Figure 1: Reconstruction of closely spaced spikes (R = 3, minimum distance 0.2⇢) with F = 100, ✏ = 5% by
(a) OMP, (b) BLOOMP, (c) BPDN, (d) BPDN-BLOT.

3


