Outline

- Mismatch: gridding error
- Band exclusion
- Local optimization
- Numerical results
- Comparison
- Conclusion

Example: spectral estimation

Noisy signal:

$$y(t) = \sum_{j=1}^{s} c_j e^{-i2\pi\omega_j t} + n(t)$$

where ω_j are the frequencies, c_j are the amplitudes and n(t) is the external noise.

Main problem: the frequencies.

Vectorization: $\Phi x + e = y$

Set $\mathbf{y} = (y(t_k)) \in \mathbb{C}^N$ to be the data vector where $t_k, k = 1, ..., N$ are the sample times in the unit interval [0, 1].

 \Longrightarrow We can only hope to recover ω_j are separated by at least 1 (resolution)

Approximate ω_j by the closest subset of cardinality s of a regular grid $\mathcal{G} = \{p_1, \dots, p_M\}, M \gg s,.$

Write $\mathbf{x} = (x_j) \in \mathbb{C}^M$ where $x_j = c_j$ whenever the grid points are the *nearest* grid points to the frequencies and zero otherwise.

The measurement matrix

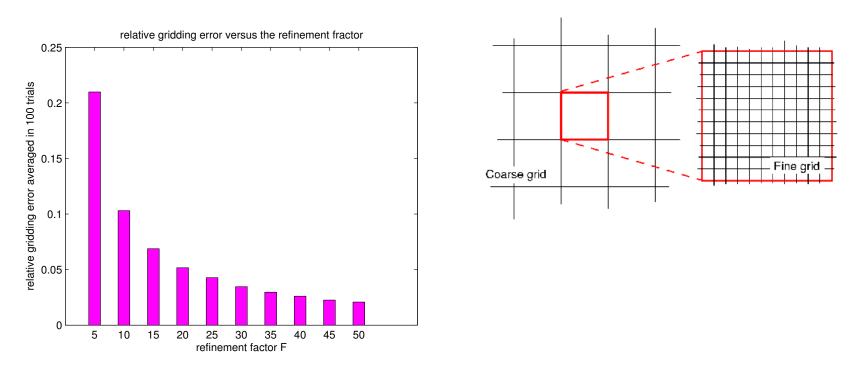
$$\boldsymbol{\Phi} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_M \end{bmatrix} \in \mathbb{C}^{N \times M}$$

with

$$\mathbf{a}_j = \frac{1}{\sqrt{N}} \left(e^{-i2\pi t_k p_j} \right) \in \mathbb{C}^N, \quad j = 1, ..., M$$

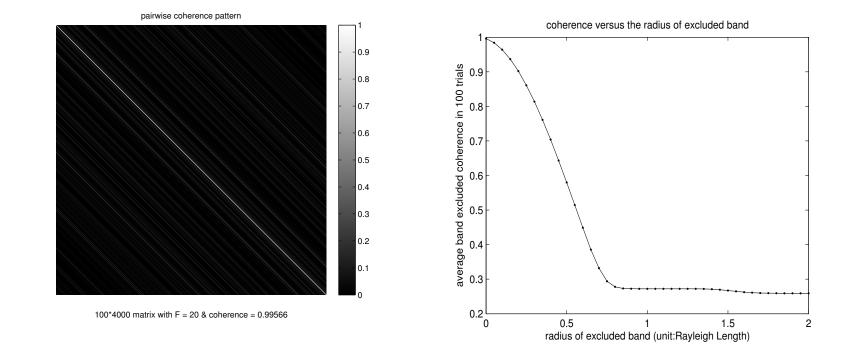
Errors:

e = n + d, n = external noise, d = gridding error.



Gridding error is inversely proportional to refinement factor ${\cal F}$

 $\mathcal{G} = \mathbb{Z}/F$



Coherence pattern $\Phi^*\Phi$ for 100×4000 matrix with F = 20 (left).

Coherence band

Let $\eta > 0$. Define the η -coherence band of the index k to be the set

$$B_{\eta}(k) = \{i \mid \mu(i,k) > \eta\},\$$

and the $\eta\text{-coherence}$ band of the index set S to be the set

$$B_{\eta}(S) = \cup_{k \in S} B_{\eta}(k).$$

Due to the symmetry $\mu(i,k) = \mu(k,i)$, $i \in B_{\eta}(k)$ if and only if $k \in B_{\eta}(i)$.

Denote

$$B_{\eta}^{(2)}(k) \equiv B_{\eta}(B_{\eta}(k)) = \bigcup_{j \in B_{\eta}(k)} B_{\eta}(j)$$
$$B_{\eta}^{(2)}(S) \equiv B_{\eta}(B_{\eta}(S)) = \bigcup_{k \in S} B_{\eta}^{(2)}(k).$$

Band-excluded OMP

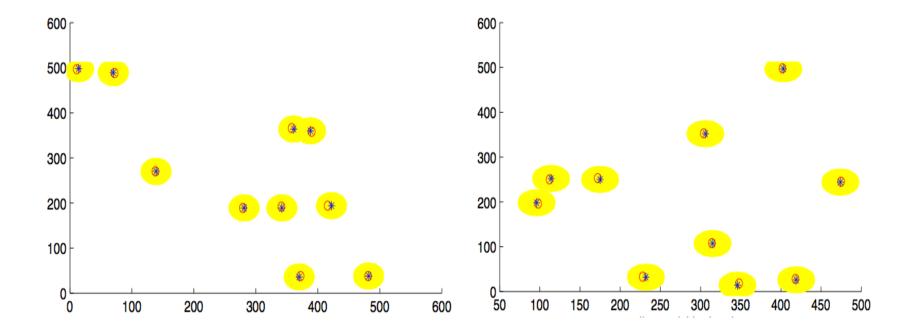
We make the following change to the matching step

$$i_{\max} = \arg\min_{i} |\langle \mathbf{r}^{n-1}, \mathbf{a}_{i} \rangle|, \quad i \notin B_{\eta}^{(2)}(S^{n-1})$$

meaning that the double η -band of the estimated support in the previous iteration is avoided in the current search. This is natural if the sparsity pattern of the object is such that $B_{\eta}(j), j \in \text{supp}(\mathbf{x})$ are pairwise disjoint.

Algorithm 1. Band-Excluded Orthogonal Matching Pursuit (BOMP)

Input: $\Phi, \mathbf{y}, \eta > 0$ Initialization: $\mathbf{x}^0 = 0, \mathbf{r}^0 = \mathbf{y}$ and $S^0 = \emptyset$ Iteration: For n = 1, ..., s1) $i_{\text{max}} = \arg\min_i |\langle \mathbf{r}^{n-1}, \mathbf{a}_i \rangle|, i \notin B_{\eta}^{(2)}(S^{n-1})$ 2) $S^n = S^{n-1} \cup \{i_{\text{max}}\}$ 3) $\mathbf{x}^n = \arg\min_\mathbf{z} ||\Phi\mathbf{z} - \mathbf{y}||_2$ s.t. $\operatorname{supp}(\mathbf{z}) \in S^n$ 4) $\mathbf{r}^n = \mathbf{y} - \Phi \mathbf{x}^n$ Output: \mathbf{x}^s .



Two-dimensional case

Performance guarantee

Theorem 1 Let x be s-sparse. Let $\eta > 0$ be fixed. Suppose that $B_{\eta}(i) \cap B_{\eta}^{(2)}(j) = \emptyset, \quad \forall i, j \in \text{supp}(\mathbf{x})$

and that

$$\eta(5s-4)\frac{x_{\max}}{x_{\min}} + \frac{5\|\mathbf{e}\|_2}{2x_{\min}} < 1$$

where

$$x_{\max} = \max_k |x_k|, \quad x_{\min} = \min_k |x_k|.$$

Let $\hat{\mathbf{x}}$ be the BOMP reconstruction. Then $supp(\hat{\mathbf{x}}) \subseteq B_{\eta}(supp(\mathbf{x}))$ and moreover every nonzero component of $\hat{\mathbf{x}}$ is in the η -coherence band of a unique nonzero component of \mathbf{x} .

BOMP can resolve **3** RLs. Numerical experiments indicates resolution close to 1 RL when the dynamic range is close to **1** RL.

Local optimization

Algorithm 2. Local Optimization (LO) Input: $\Phi, \mathbf{y}, \eta > 0, S^0 = \{i_1, \dots, i_k\}$. Iteration: For $n = 1, 2, \dots, k$. 1) $\mathbf{x}^n = \arg \min_{\mathbf{z}} ||\Phi \mathbf{z} - \mathbf{y}||_2$, supp $(\mathbf{z}) = (S^{n-1} \setminus \{i_n\}) \cup \{j_n\}$, for some $j_n \in B_\eta(\{i_n\})$. 2) $S^n = \operatorname{supp}(\mathbf{x}^n)$. Output: S^k .

Algorithm 3. BLOOMP

Input: $\Phi, \mathbf{y}, \eta > 0$ Initialization: $\mathbf{x}^0 = 0, \mathbf{r}^0 = \mathbf{y}$ and $S^0 = \emptyset$ Iteration: For n = 1, ..., s1) $i_{\text{max}} = \arg\min_i |\langle \mathbf{r}^{n-1}, \mathbf{a}_i \rangle|, i \notin B_{\eta}^{(2)}(S^{n-1})$ 2) $S^n = \text{LO}(S^{n-1} \cup \{i_{\text{max}}\})$ where LO is the output of Algorithm 2. 3) $\mathbf{x}^n = \arg\min_\mathbf{z} ||\Phi\mathbf{z} - \mathbf{y}||_2$ s.t. $\text{supp}(\mathbf{z}) \in S^n$ 4) $\mathbf{r}^n = \mathbf{y} - \Phi \mathbf{x}^n$ Output: \mathbf{x}^s .

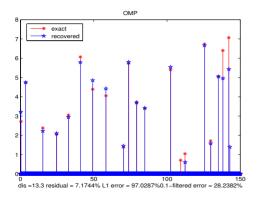
BLOOMP: performance guarantee

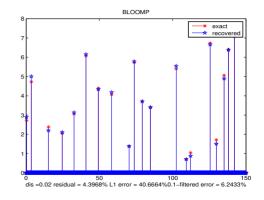
Theorem 2 Let $\eta > 0$ and let \mathbf{x} be a *s*-sparse well-separated vector. Let S^0 and S^k be the input and output, respectively, of the LO algorithm.

If

$$x_{\min} > (\varepsilon + 2(s-1)\eta) \left(\frac{1}{1-\eta} + \sqrt{\frac{1}{(1-\eta)^2} + \frac{1}{1-\eta^2}} \right)$$

and each element of S^0 is in the η -coherence band of a unique nonzero component of \mathbf{x} , then each element of S^k remains in the η -coherence band of a unique nonzero component of \mathbf{x} .





(a)

(b)

Band-Excluded Thresholding (BET)

Two variants: Band-excluded Matched Thresholding (BMT) and Band-excluded Locally Optimized (BLOT).

Algorithm 4.BMTInput: $\Phi, \mathbf{y}, \eta > 0.$ Initialization: $S^0 = \emptyset.$ Iteration: For k = 1, ..., s,1) $i_k = \arg \max_j |\langle \mathbf{y}, \mathbf{a}_j \rangle|, \forall j \notin B_{\eta}^{(2)}(S^{k-1}).$ 2) $S^k = S^{k-1} \cup \{i_k\}$ Output $\hat{\mathbf{x}} = \arg \min_{\mathbf{z}} ||\Phi \mathbf{z} - \mathbf{y}||_2$ s.t. $\operatorname{supp}(\mathbf{z}) \subseteq S^s$

Algorithm 5. BLOT

Input:
$$\mathbf{x} = (x_1, \dots, x_M), \ \Phi, \mathbf{y}, \eta > 0.$$

Initialization: $S^0 = \emptyset$.
Iteration: For $n = 1, 2, \dots, s.$
1) $i_n = \arg \min_j |x_j|, j \notin B_{\eta}^{(2)}(S^{n-1}).$
2) $S^n = S^{n-1} \cup \{i_n\}.$
Output: $\hat{\mathbf{x}} = \arg \min \|\Phi \mathbf{z} - \mathbf{y}\|_2$, $\operatorname{supp}(\mathbf{z}) \subseteq \operatorname{LO}(S^s).$

Theorem 3. Let \mathbf{x} be s-sparse. Let $\eta > 0$ be fixed. Suppose that

(27)
$$B_{\eta}(i) \cap B_{\eta}(j) = \emptyset \quad \forall i, j \in \operatorname{supp}(\mathbf{x})$$

and that

(28)
$$\eta(2s-1)\frac{x_{\max}}{x_{\min}} + \frac{2\|\mathbf{e}\|_2}{x_{\min}} < 1,$$

where

$$x_{\max} = \max_{k} |x_k|, \quad x_{\min} = \min_{k} |x_k|.$$

Let $\hat{\mathbf{x}}$ be the BMT reconstruction. Then $\operatorname{supp}(\hat{\mathbf{x}}) \subseteq B_{\eta}(\operatorname{supp}(\mathbf{x}))$, and, moreover, every nonzero component of $\hat{\mathbf{x}}$ is in the η -coherence band of a unique nonzero component of \mathbf{x} .

BLO-based algorithms

BLO Subspace Pursuit (BLOSP)

BLO Iterative Hard Thresholding (BLOIHT)

Algorithm 6. BLOSP Input: $\Phi, y, \eta > 0$. Initialization: $\mathbf{x}^0 = 0, \mathbf{r}^0 = \mathbf{y}$ Iteration: For n = 1, 2, ...,1) $\tilde{S}^n = \operatorname{supp}(\mathbf{x}^{n-1}) \cup \operatorname{supp}(\mathsf{BMT}(\mathbf{r}^{n-1}))$ 2) $\tilde{\mathbf{x}}^n = \arg\min ||\Phi \mathbf{z} - \mathbf{y}||_2$ s.t. $\operatorname{supp}(\mathbf{z}) \subseteq \tilde{S}^n$. 3) $S^n = \operatorname{supp}(\mathsf{BLOT}(\tilde{\mathbf{x}}^n))$ 4) $\mathbf{r}^n = \min_{\mathbf{z}} ||\Phi \mathbf{z} - \mathbf{y}||_2$, $\operatorname{supp}(\mathbf{z}) \subseteq S^n$. 5) If $||\mathbf{r}^{n-1}||_2 \le \epsilon$ or $||\mathbf{r}^n||_2 \ge ||\mathbf{r}^{n-1}||_2$, then quit and set $S = S^{n-1}$; otherwise continue iteration. Output: $\hat{\mathbf{x}} = \arg\min_{\mathbf{z}} ||\Phi \mathbf{z} - \mathbf{y}||_2$ s.t. $\operatorname{supp}(\mathbf{z}) \subseteq S$.

Algorithm 7. BLOIHT

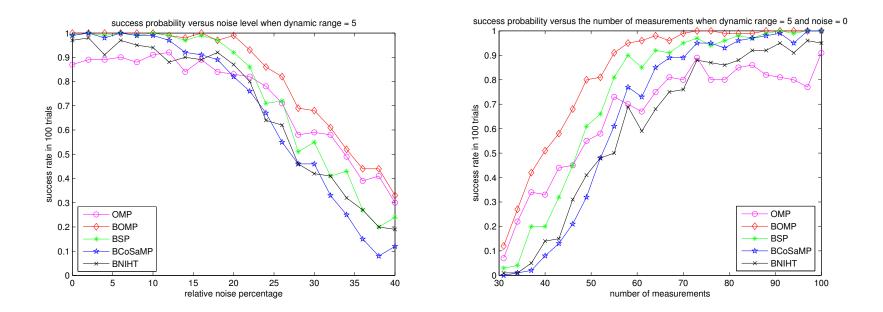
Input: Φ , y, $\eta > 0$. Initialization: $\hat{\mathbf{x}}^0 = 0, \mathbf{r}^0 = \mathbf{y}$. Iteration: For n = 1, 2, ...,1) $\mathbf{x}^n = \mathsf{BLOT}(\mathbf{x}^{n-1} + \Phi^* \mathbf{r}^{n-1}).$ 2) If $\|\mathbf{r}^{n-1}\|_2 < \epsilon$ or $\|\mathbf{r}^n\|_2 > \|\mathbf{r}^{n-1}\|_2$, then quit and set $S = S^{n-1}$; otherwise continue iteration. Output: $\hat{\mathbf{x}}$.

Numerical results

For two subsets A and B in \mathbb{R}^d of the same cardinality, the Bottleneck distance $d_B(A, B)$ is defined as

 $d_B(A,B) = \min_{f \in \mathcal{M}} \max_{a \in A} |a - f(a)|$

where \mathcal{M} is the collection of all one-to-one mappings from A to B.



For dynamic range greater than 3, BOMP has the best performance.

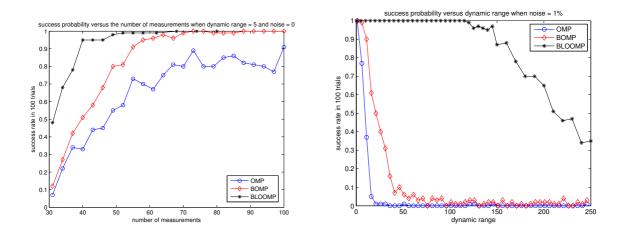
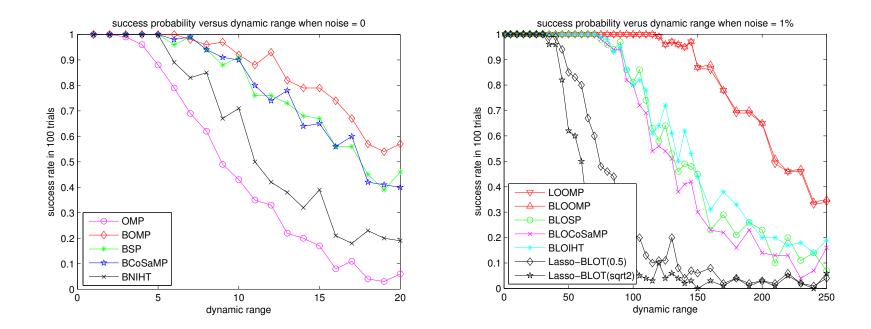


Figure 4: Success rate versus number of measurements (left, dynamic range 5, zero noise) and dynamic range (right, 1% noise) for OMP, BOMP and BLOOMP.



LO dramatically improves the performance w.r.t. dynamic range

Spectral CS

Duarte-Baraniuk 2010: Spectral Iterated Hard Thresholding (SIHT)

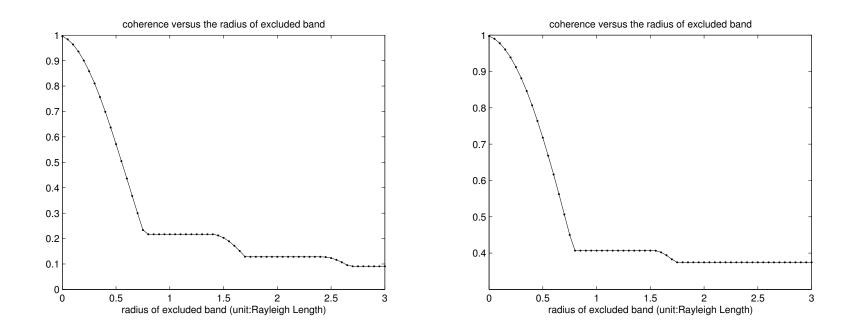
$$\mathbf{y} = \Phi \mathbf{x} + \mathbf{e} = \Phi \Psi \alpha + \mathbf{e}$$

where Φ is i.i.d. Gaussian matrix and Ψ is an oversampled, redundant DFT frame.

Assumption: α is widely separated.

Performance metric:

$$\frac{\|\boldsymbol{\Psi}(\alpha-\widehat{\alpha})\|}{\|\boldsymbol{\Psi}\alpha\|}$$



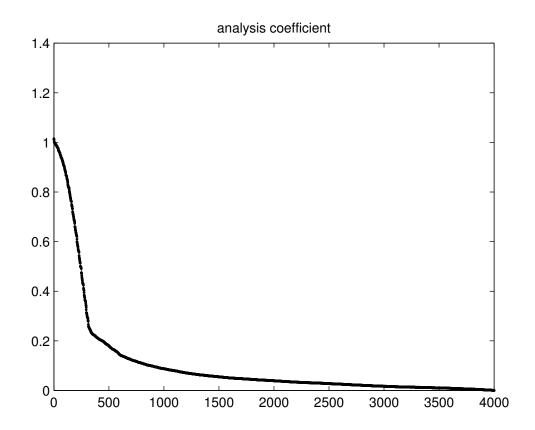
Coherence bands of the DFT frame Ψ (left) and $\Phi=\Phi\Psi$ (right).

Frame-adapted BP: synthesis approach

Candes et al 2010:

$$\min_{\mathbf{z}} \|\Psi^* \mathbf{z}\|_1, \quad \|\Phi \mathbf{z} - \mathbf{y}\|_2 \le \varepsilon$$

Assumption: Ψ^*z is sparse.



Analysis coefficients Ψ^*z reorganized according to magnitudes.

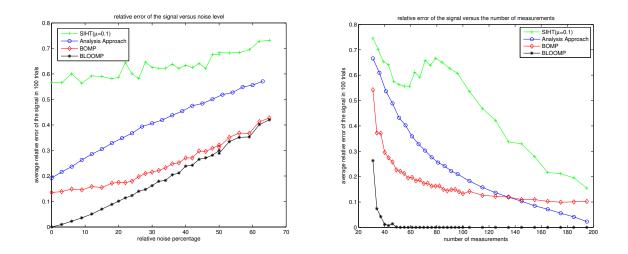


Figure 5: Relative errors versus relative noise (left) and number of measurements (right, zero noise) for dynamic range 10.

Algorithm 5. BLOT
Input:
$$\mathbf{x} = (x_1, \dots, x_M), \ \Phi, \mathbf{y}, \eta > 0.$$

Initialization: $S^0 = \emptyset.$
Iteration: For $n = 1, 2, \dots, s.$
1) $i_n = \arg \min_j |x_j|, j \notin B_{\eta}^{(2)}(S^{n-1}).$
2) $S^n = S^{n-1} \cup \{i_n\}.$
Output: $\hat{\mathbf{x}} = \arg \min ||\Phi \mathbf{z} - \mathbf{y}||_2$, $\operatorname{supp}(\mathbf{z}) \subseteq \operatorname{LO}(S^s).$

In addition, the technique BLOT can be used to enhance the recovery capability with unresolved grids of the L^1 -minimization principles, Basis Pursuit (BP)

$$\min_{\mathbf{z}} \|\mathbf{z}\|_1, \quad \text{subject to} \quad \mathbf{y} = \Phi \mathbf{z}.$$

and the Lasso

$$\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi}\mathbf{z}\|_2^2 + \lambda \sigma \|\mathbf{z}\|_1,$$

where σ is the standard deviation of the each noise component and λ is the regularization parameter.

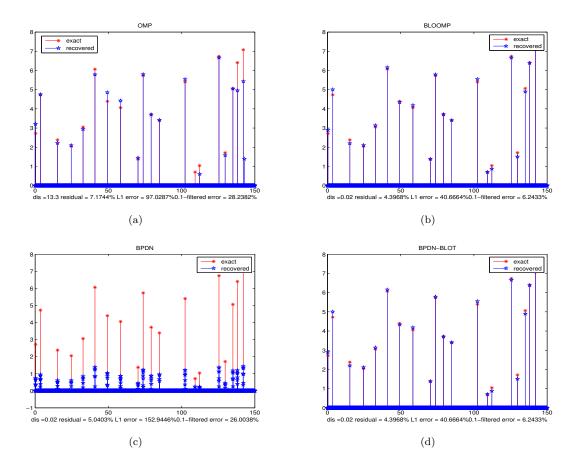


Figure 2: Reconstruction of the real part of 20 widely separated spikes (R = 1, minimum distance 3ρ) with $F = 50, \epsilon = 5\%$ by (a) OMP (b) BLOOMP (c) BPDN (d) BPDN-BLOT.

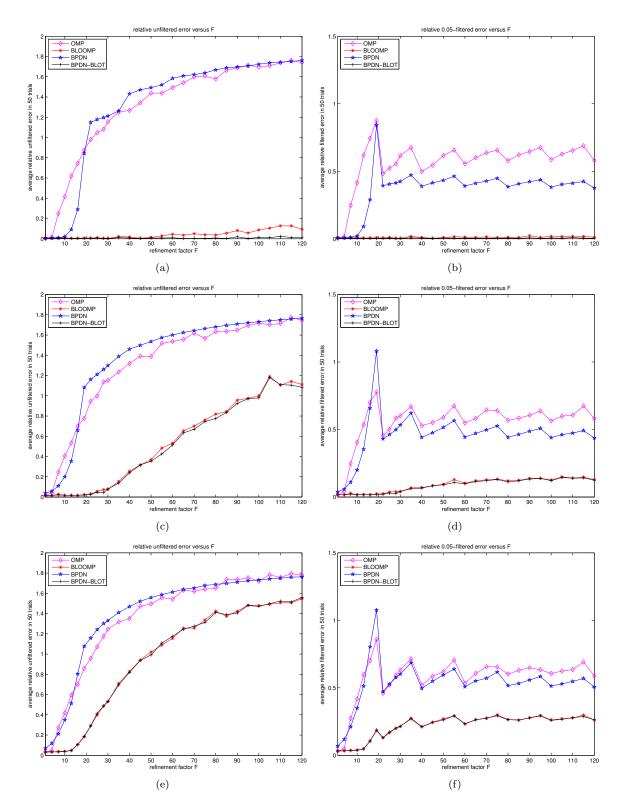


Figure 3: Relative error with noise level $\epsilon = 1\%$ (top) 5% (middle) and 10% (bottom) and filter width $\delta = 0$ (left) and 0.05 (right).

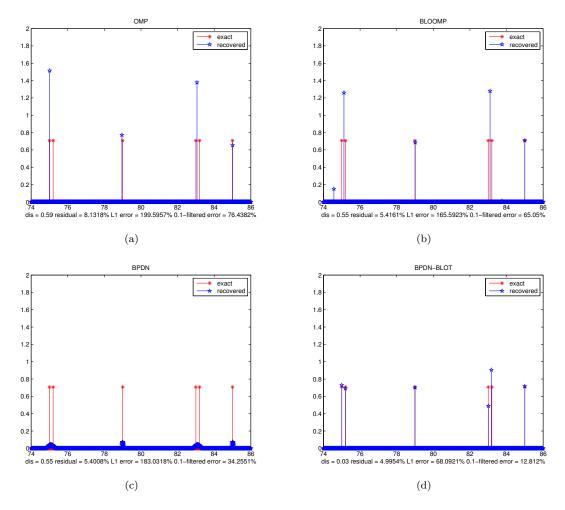


Figure 1: Reconstruction of closely spaced spikes (R = 3, minimum distance 0.2ρ) with $F = 100, \epsilon = 5\%$ by (a) OMP, (b) BLOOMP, (c) BPDN, (d) BPDN-BLOT.