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Abstract. Random phase or amplitude illumination is proposed to remove at once all
types of ambiguity, trivial or nontrivial, at once from phase retrieval and enforce absolute
uniqueness. Almost sure irreducibility is proved for any complex-valued object of suffi-
ciently high sparsity or of convex support whose dimensional is greater than one. While
the new irreducibility result can be viewed as a probabilistic version of the classical result
by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for
phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for
complex-valued objects under general two-point conditions. Under a tight sector constraint
absolute uniqueness is proved to hold with probability exponentially close to unity as the
object sparsity increases. Under a magnitude constraint with random amplitude illumina-
tion, uniqueness modulo global phase is proved to hold with probability exponentially close
to unity as object sparsity increases. For general complex-valued objects without any con-
straint, almost sure uniqueness up to global phase is established for the Fourier magnitude
measurement with two independent illuminations. Numerical examples show that phasing
with random illumination drastically reduces the number of data, iterations and the error
in reconstruction.

1. Introduction

Phase retrieval is a fundamental problem in many areas of physical sciences such as X-ray
crystallography, astronomy, electron microscopy, coherent light microscopy, quantum state
tomography and remote sensing. Because of loss of the phase information a central question
of phase retrieval is the uniqueness of solution which is the focus of the present work.

Researchers in phase retrieval, however, have long settled with the notion of relative
uniqueness (i.e. irreducibility) for almost all objects, without a practical means for de-
ciding the reducibility of the underlying object, and searched for various ad hoc strategies to
circumvent problems with stagnation and error in reconstruction. The stagnation problem
may be due to the possibility of the iterative process to approach the object and its twin or
shifted image, the support not tight enough or the boundary not sharp enough [11, 12, 16].
Besides the uniqueness issue, phase retrieval is also inherently nonconvex and consequently
many have believed the lack of convexity in the Fourier magnitude constraint to be a main,
if not the dominant, source of numerical problems with the standard phasing algorithms
[3, 17, 25]. While there have been dazzling advances in applications of phase retrieval in the
past decades [18], we still do not know just how much of the error and stagnation problems
is attributable to to the lack of uniqueness or convexity.

We propose here to refocus on the issue of uniqueness as uniqueness is undoubtedly the
first foundational issue of any inverse problem, including phase retrieval. Specifically we
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diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.
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Figure 1. Illumination of a transparent object (the blue oval) with a deter-
ministic (a) or random field λ created by a diffuser (b) followed by an intensity
measurement of the diffraction pattern. In the case of wave front reconstruc-
tion, the random modulator is placed at the exit pupil instead of the entrance
pupil as in (b).

will first establish uniqueness in the absolute sense with random illumination under general,
physically reasonable constraints (Figure 1) and secondly demonstrate that even though
the convexity issue remains unresolved, phasing with random illumination can drastically
improve the quality of reconstruction and reduce the numbers of Fourier magnitude data
and numerical iterations.

To fix the idea, consider the discrete version of the phase retrieval problem: Let n =
(n1, · · · , nd) ∈ Zd and z = (z1, · · · , zd) ∈ Cd. Define the multi-index notation zn =
zn1
1 z

n2
2 · · · z

nd
d . Let f(n) be a finite complex-valued function defined on Zd vanishing out-

side the finite lattice

N =
{
0 ≤ n ≤ N

}
for N = (N1, · · · , Nd) ∈ Nd. We use the notation m ≤ n for mj ≤ nj,∀j. The z-transform
of a finite sequence f(n) is given by

F (z) =
∑
n

f(n)z−n.

The Fourier transform can be obtained from the z-transform as

F (w) = F (ei2πw1 , · · · , ei2πwd) =
∑
n

f(n)e−i2πn·w, w = (w1, · · · , wd) ∈ [0, 1]d

by some abuse of notation. The discrete phase retrieval problem is to determine f(n) from
the knowledge of the Fourier magnitude |F (w)|, ∀w ∈ [0, 1]d.

The question of uniqueness was partially answered in [4, 14, 15] which says that in dimen-
sion two or higher and with the exception of a measure zero set of finite sequences phase
retrieval has a unique solution up to the equivalence class of “trivial associates” (i.e. relative
uniqueness). These trivial, but omnipresent, ambiguities include constant global phase,

f(n) −→ eiθf(n), for some θ ∈ [0, 2π],
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spatial translation

f(n) −→ f(n⊕m), for some m ∈ Zd,

where n⊕m = n + m(mod(N1 + 1, · · · , Nd + 1)), and conjugate inversion

f(n) −→ f ∗(N− n).

Conjugate inversion produces the so-called twin image.
This landmark uniqueness result, however, has two caveats. First, many sequences with

hidden symmetries belong to this unknown set of ambiguous sequences which challenges the
validity of the widely held assumption that relative uniqueness holds true in most of the
practical problems. Furthermore, there is no way of knowing a priori whether the under-
lying object is uniquely determined even in the relative sense from the Fourier magnitude
measurement. Secondly, although the trivial associates share the same object information,
they nevertheless can seriously stagnate and impede the iterative reconstruction process
[11, 12, 20, 25].

In this paper, we study the notation of absolute uniqueness: if two finite objects f and
g give rise to the same Fourier magnitude data, then f = g unequivocally. More impor-
tantly, we present the approach of random (phase or amplitude) illumination to the absolute
uniqueness of phase retrieval. The idea of random illumination is related to coded-aperture
imaging whose utility in other imaging contexts than phase retrieval has been established
experimentally [1, 13, 26, 27, 28] as well as mathematically [7, 23].

Our basic tool is a probabilistic version (Theorem 2 and 3) of the irreducibility result of
[14, 15] with, however, a different perspective and important practical implications. The
advantage of our probabilistic approach lies in that the measure is endowed in the ensemble
of random illumination, thus avoiding the ambiguity with the measure zero set of exceptional
objects.

On the basis of almost sure irreducibility, the mere assumption that the phases or magni-
tudes of the object at two arbitrary points lie in a countable set enforces uniqueness, up to a
global phase, in phase retrieval with a single random illumination (Theorem 4). The absolute
uniqueness can be enforced then by imposing the positivity constraint (Corollary 1). For
objects satisfying a tight sector condition, absolute uniqueness is valid with high probability
depending on the object sparsity for either phase or amplitude illumination (Theorem 5).
For complex-valued objects under a magnitude constraint, uniqueness up to a global phase
is valid with high probability (Theorem 6). For general complex-valued objects, almost sure
uniqueness, up to global phase, is proved for phasing with two independent illuminations
(Theorem 7).

The paper is organized as follows. In Section 2 we discuss various sources of ambiguity. In
Section 3 we prove the almost sure irreducibility (Theorem 2 and 3). In Section 4 we derive
the uniqueness results (Theorem 4, 5, 6, 7 and Corollary 1). We demonstrate numerical
phasing with random illumination in Section 5. We conclude in Section 6.

2. Sources of ambiguity

As commented before the phase retrieval problem does not have a unique solution. Nev-
ertheless, the possible solutions are constrained as stated in the following theorem [14, 22].
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Theorem 1. Let the z-transform F (z) of a finite complex-valued sequence {f(n)} be given
by

F (z) = αz−m
p∏

k=1

Fk(z), m ∈ Nd, α ∈ C(1)

where Fk, k = 1, ..., p are nontrivial irreducible polynomials. Let G(z) be the z-transform of
another finite sequence g(n). Suppose |F (w)| = |G(w)|,∀w ∈ [0, 1]d. Then G(z) must have
the form

G(z) = |α|eiθz−p
(∏
k∈I

Fk(z)

)(∏
k∈Ic

F ∗k (1/z∗)

)
, p ∈ Nd, θ ∈ R

where I is a subset of {1, 2, ..., p}.

To prove the theorem, it is convenient to write

|F (w)|2 =
N∑

n=−N

∑
m+n∈N

f(m + n)f ∗(m)e−i2πn·w

=
N∑

n=−N

Cf (n)e−i2πn·w(2)

where

Cf (n) =
∑
m∈N

f(m + n)f ∗(m)(3)

is the autocorrelation function of f . Note the symmetry C∗f (n) = Cf (−n).
The theorem then follows straightforwardly from the equality between the autocorrelation

functions of f and g, because F (w)F ∗(w) = G(w)G∗(w), and the unique factorization of
polynomials (see [22] for more details).

Remark 1. If the finite array f(n) is known a priori to vanish outside the lattice N , then
by Shannon’s sampling theorem for band-limited functions the sampling domain for w can
be limited to the finite regular grid

M =
{

(k1, · · · , kd) : ∀j = 1, · · · , d & kj = 0,
1

2Nj + 1
,

2

2Nj + 1
, · · · , 2Nj

2Nj + 1
.
}

(4)

since |F (w)|2 is band-limited to the set −N ≤ n ≤ N.

There are three sources of ambiguity. First, the linear phase term z−m in (1) remain
undetermined because the autocorrelation operation destroys information about spatial shift.
The unspecified constant phase θ is another source of ambiguity.

To understand the physical meaning of the operation

F (z) −→ z−NF ∗(1/z∗)

consider the case d = 1

z−NF ∗(1/z∗) = f ∗(0)z−N + f ∗(1)z1−N + · · ·+ f ∗(N)
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which is the z-transform of the conjugate space-inversed array {f ∗(N), f ∗(N−1), · · · , f ∗(0)}.
The same is true in multi-dimensions.

The subtlest form of ambiguity is caused by partial conjugate inversion on some, but not
all, factors of a factorable object, with reducible z-transform, without which the conjugate
inversion, like spatial shift and global phase, is global in nature and considered “trivial” in
the literature (even though the twin image may have an opposite orientation). In numerical
reconstruction, the trivial ambiguities have to be eliminated by assuming favorable a priori
knowledge such as support constraints and positivity.

In this paper, we consider both types, trivial and nontrivial, of ambiguity, as they both
can degrade the performance of phasing schemes. Our main purpose is to show by rigorous
analysis that with random illumination it is possible to eliminate all ambiguities at once.

3. Irreducibility

Nearly independent random illumination can be produced by a diffuser placed near the
object [1, 13], cf. Figure 1. Random illumination amounts to replacing the original object
f(n) by

f̃(n) = f(n)λ(n)(5)

where λ(n), representing the incident field, is a known array of samples of random variables.
The idea is to first modify the object by the encoding array λ(n) so that phase retrieval has
unique solution and then use the knowledge of λ to recover f .

Let λ(n) be continuous random variables with respect to the Lebesgue measure on S1 (the
unit circle), R or C. The case of S1 can be facilitated by a random phase modulator (phase
diffuser) with

λ(n) = eiφ(n)(6)

where φ(n) are continuous random variables on [0, 2π] while the case of R can be facilitated
by a random amplitude modulator. The case of C involves simultaneously both phase and
amplitude modulations.

For simplicity of notation, we shall consider the case of d = 2 for the following result. The
argument can be extended to higher dimensions with more complicated lower bound for the
sparsity.

Theorem 2. Let N1, N2 ≥ 1. Let {f(n)} be a finite complex-valued array of sparsity

S > |N | −min{N1, N2}.(7)

Let {λ(n)} be continuous random variables on S1,R or C with an absolutely continuous joint
distribution with respect to the product measure. Then, up to a power of z, the z-transform
of f̃(n) = f(n)λ(n) is irreducible with probability one.

Proof. The proof relies on counting of dimensions.
Suppose that {f(n)} vanishes outside N and has exactly S nonzero elements. Then

{f̃(n) = f(n)λ(n)} are continuous random variables on a manifold of S real (the case of S1

or R) or complex (the case of C) dimensions. Let F̃ be the polynomial associated with the

array f̃ and let MF̃ be the manifold of the polynomials associated with the z-transforms of

f̃ . Clearly, MF̃ has a dimension S.
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Let p = (p1, p2) ∈ N2,q = (q1, q2) ∈ N2 be two integer-valued vectors with p1 + q1 ≤
N1, p2 + q2 ≤ N2. Let g(n) and h(n) be the finite arrays vanishing outside N and let their
associated polynomials G(z) and H(z) have degrees p and q, respectively, such that GH
has a degree at most N and exactly S nonzero coefficients. Let MGH be the submanifold in
C2(N1+1)(N2+1) of the product polynomials GH of degree at most N having exactly S nonzero
coefficients where G and H have a degree p and q respectively.

The manifold MGH is contained in the affine space A defined by the coordinate constraints

g(n) = 0, n 6∈ {0 ≤m ≤ p}, 0 ≤ n ≤ N(8)

h(n) = 0, n 6∈ {0 ≤m ≤ q}, 0 ≤ n ≤ N(9)

h(0, 0) = const. 6= 0.(10)

Equations (8) and (9) are due to the fact that deg(G) = p and deg(H) = q. Equation (10)
is to eliminate the redundant degree of freedom due to expressing a polynomial as product
of two polynomials and can be substituted by g(0, 0) = const. 6= 0.

The dimension of A is

(p1 + 1)(p2 + 1) + (q1 + 1)(q2 + 1)− 1 = |N | − p1q2 − p2q1.

p1q2 − p2q1 is positive unless p1 = q1 = 0 or p2 = q2 = 0 or p = 0 or q = 0. The last
two cases are ruled out by the factorability assumption. The first two cases correspond to
1-dimensional images with f̃ = f̃(n2) or f̃(n1) which has zero probability because {f̃(n)}
has an absolutely continuous joint distribution with respect to the product measure.

Now if

S > max
p+q≤N
p,q 6=0

(p1 + 1)(p2 + 1) + (q1 + 1)(q2 + 1)− 1

= max
p+q=N
p,q 6=0

(p1 + 1)(p2 + 1) + (q1 + 1)(q2 + 1)− 1

= |N | − min
p+q=N
p,q6=0

(p1q2 + p2q1)

= |N | −min{N1, N2}

then S = dim(MF̃ ) > dim(MGH).

For a given array f̃ with exactly S nonzero elements, MF̃ ' (S1)S,RS or CS with a
probability distribution absolutely continuous with respect to the Lebesgue measure on the
respective space. Since the manifold of degree N reducible polynomials with exactly S
nonzero coefficients has a dimension less than S, it has a probability measure zero. The
proof is complete.

�

This theorem has the same flavor as the results in [14, 15] which says that the set of
the reducible polynomials has measure zero in the space of polynomials of two complex
variables with real-valued coefficients. While the transition from real-valued to complex-
valued coefficients is minor, it is of both theoretical and practical importance that Theorem
2 places the probability measure on the ensemble of random illumination, which we can
control, instead of the space of finite objects, which we can not control.
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The theorem, however, does not hold for low S. For example, let p(z) be any monomial
and consider

F (z) =
∑
j

cjp
j(z)(11)

which is reducible for any cj ∈ C, except when F is a monomial, by the fundamental
theorem of algebra (of one variable). Another example is the homogeneous polynomials of a
sum degree N ≤ min{N1, N2}, i.e.

F (z) =
∑
i+j=N

cijz
i
1z
j
2(12)

which is factorable by the fundamental theorem of algebra. The highest possible sparsity for
both examples is 1 + min{N1, N2}.

Almost sure irreducibility can be extended in another direction to avoid the examples such
as (11) and (12) by imposing convexity and full dimensionality on the object.

First let us define some notation and definitions. The support of a polynomial F (z),
denoted by supp(F ), is the set of exponent vectors in Nd with nonzero coefficients. The
Newton polytope of F , denoted by Newt(F ), is the convex hull of its support in Rd, denoted
by conv(supp(F )).

Ostrowski’s theorem [21] says that if F (z) = G(z)H(z) where G and H are two polyno-
mials, then

Newt(F ) = Newt(G) + Newt(H)

where the right hand side is the Minkowski sum. The Minkowski sum of A ⊆ Rd and B ⊆ Rd

is the set whose elements are the sums of the elements of the two sets:

A+ B = {a + b : a ∈ A,b ∈ B}.
The dimension of a finite subset A ⊆ Zd, denoted by dim(A), is the lowest dimension of

the hyperspace containing A in Rd. A finite subset A ⊆ Zd is said to be convex if

A = Zd ∩ conv(A).

The above examples (11) and (12) correspond to one-dimensional supports.
Recall the cardinality inequality for the Minkowski sum of two finite sets A,B [24]

|A+ B| ≥ |A|+ |B| − 1(13)

where the equality holds if and only if A and B are arithmetic progressions of the same
difference vector, i.e. conv(A) and conv(B) are parallel line segments.

Theorem 3. Let {f(n)} be a finite complex-valued array whose support is convex and has
dimension greater than one. Let {λ(n)} be continuous random variables on S1,R or C with
an absolutely continuous joint distribution with respect to the product measure. Then, up to
a power of z, the z-transform of f̃(n) = f(n)λ(n) is irreducible with probability one.

Proof. We shall adopt the notation of Theorem 2 and its proof.

With probability one, supp(F̃ ) = supp(f) and |supp(F̃ )| equals the dimension of MF̃ . On
the other hand, the dimension of MGH is at most

|supp(G)|+ |supp(H)| − 1
7



where −1 is due to the normalization (10).
By Ostrowski’s theorem,

Newt(F̃ ) = Newt(G) + Newt(H)

which is equivalent to

Zd ∩ Newt(F̃ ) = (Zd ∩ Newt(G)) + (Zd ∩ Newt(H)).

Since the object support has dimension greater than one, Newt(F̃ ) has dimension greater
than one and thus Newt(G) and Newt(H) can not be two parallel line segments. By the
strict inequality of (13) we have

|Zd ∩ Newt(F̃ )| ≥ |Zd ∩ Newt(G)|+ |Zd ∩ Newt(H)|
and therefore

|supp(F̃ )| = |Zd ∩ Newt(F̃ )| > |supp(G)|+ |supp(H)| − 1

i.e. the dimension of MF̃ is strictly greater than that of MGH .
The desired conclusion follows from the rest of the argument in the proof of Theorem 1.

�

4. Uniqueness

Without additional a priori knowledge on the object Theorem 2, however, does not pre-
clude the trivial ambiguities such as global phase, spatial shift and conjugate inversion. For
example, we can produce another finite array {g(n)} vanishing outside 0 ≤ n ≤ N that
would yield the same measurement data by setting

g(n) = eiθf(n⊕m)λ(n⊕m)/λ(n)(14)

or

g(n) = eiθf ∗(N− n⊕m)λ∗(N− n⊕m)/λ(n)(15)

for θ ∈ [0, 2π] and m ∈ Z2 where n ⊕m = n + m (mod(N1 + 1, N2 + 1)). Expression (14)
and (15) consist the remaining ambiguities to be addressed.

4.1. Two-point constraint. One important exception is the case of real-valued objects
when the illumination is complex-valued (the case of S1 or C). In this case, on the one hand
(14) produces a complex-valued array with probability one unless m = 0, θ = 0, π and, on
the other hand, (15) is complex-valued with probability one regardless of m. In this case,
none of the trivial ambiguities can arise. Indeed, a stronger result is true depending on the
nature of random illumination.

Theorem 4. Suppose either of the following cases holds:

(i) The phases of the object {f(n)} at two points, where f does not vanish, belong to a
known countable subset of [0, 2π], {λ(n)} are independent continuous random variables on
S1 or C;

(ii) The amplitudes of the object {f(n)} at two points, where f does not vanish, belong
to a known measure zero subset of R and that {λ(n)} are independent continuous random
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variables on R or C.

If the resulting z-transform is almost surely irreducible then, with probability one, f is
determined uniquely, up to a global phase, by the Fourier magnitude measurement on the
lattice M.

Remark 2. For the two-point constraint in case (i) to be convex, it is necessary for the
constraint set to be a singleton, namely the phases of the object at two nonzero points must
take on a single known value. On the other hand, the amplitude constraint in case (ii) can
never be convex.

Proof. We prove the theorem case by case.

Case (i): Suppose the phases of f(n1) and f(n2) belong to the coutable set Θ ⊂ [0, 2π]. Let
us show the probability that the phase of g(n) as given by (14) with m 6= 0 takes on a value
in Θ for any point n is zero.

Since λ(n + m),m 6= 0, and λ(n) are independent and continuously distributed w.r.t. to
the Lebesgue measure on S1 or C, the phase of g(n),∀n, is continuously distributed on [0, 2π]
for all θ.

Now suppose the phase of g(n0) for some n0 lies in the set Θ. This implies that θ must
belong to the countable set Θ′ which is Θ shifted by the negative phase of f(n0 +m)λ(n0⊕
m)/λ(n0). The phase of g(n) at a different location n 6= n0, however, almost surely does not
take on any value in the set Θ for any fixed θ ∈ Θ′ unless m = 0. Since a countable union
of measure-zero sets has zero measure, the probability that the phases of g at two points lie
in Θ is zero if m 6= 0.

Likewise, λ∗(N− n⊕m)/λ(n),∀m, has a random phase that is continuously distributed
on [0, 2π] and by the same argument the probability that the phases of g as given by (15)
at two points lie in Θ is zero.

Case (ii): Suppose the amplitudes of f(n1) and f(n2) belong to the measure zero set A.
Since λ(n + m),m 6= 0, and λ(n) are independent and continuously distributed on R or
C, the amplitude of g(n) as given by (14) is continuously distributed on R and hence the
probability that the amplitude of g(n) as given by (14) belongs to A at any n is zero.

Now consider g(n) given by (15). Suppose that the amplitude of g(n0) belongs to A at
some n0. This is possible only for n0 = (N + m)/2 in which case g(n0) = eiθf ∗(n0). The
amplitude of g(n),n 6= n0, has a continuous distribution on R and zero probability to lie in
A.

The global phase θ, however, can not be determined uniquely in either case.
�

The global phase factor can be determined uniquely by additional constraint on the values
of the object. For example, the following result follows immediately from Theorem 4 (i).

Corollary 1. Suppose that {f(n)} is real and nonnegative and that {λ(n)} are indepen-
dent continuous random variables on S1 or C. If the resulting z-transform is almost surely
irreducible, then {f(n)} can be determined absolutely uniquely.
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Proof. With a real, positive object, the countable set for phase is the singleton {0} and the
global phase is uniquely fixed. �

4.2. Sector constraint. More generally, we consider the sector constraint that the phases
of {f(n)} belong to [a, b] ⊂ [0, 2π]. For example, the class of complex-valued objects relevant
to X-ray diffraction typically have nonnegative real and imaginary parts where the real part
is the effective number of electrons coherently diffracting photons, and the imaginary part
represents the attenuation [20]. For such objects, [a, b] = [0, π/2].

Generalizing the argument for Theorem 4 we can prove the following.

Theorem 5. Let the finite object {f(n)} satisfy the sector constraint that the phases of
{f(n)} belong to [a, b] ⊂ [0, 2π]. Let S be the sparsity (the number of nonzero elements) of
the object.

(i) Consider the random phase illumination (6) and suppose that the phases φ(n) are i.i.d.
uniform random variables on [0, 2π]. Assume that the resulting z-transform is almost surely
irreducible. Then with probability at least 1−|N ||b− a|[S/2](2π)−[S/2] the object f is uniquely
determined, up to a global phase, by the Fourier magnitude measurement. Here [S/2] is the
greatest integer at most S/2.

(ii) Consider the random amplitude illumination with i.i.d. random variables {λ(n)} ⊂ R
that are equally likely negative or positive, i.e. P{λ(n) > 0} = P{λ(n) < 0} = 1/2,∀n.
Assume that the resulting z-transform is almost surely irreducible. Then with probability at
least

1− |N |2−[(S−1)/2]
(

1−max
{

0,
b− a
π
− 1
})[(S−1)/2]

the object f is uniquely determined, up to a global phase, by the Fourier magnitude measure-
ment.

The global phase is uniquely determined if the sector [a, b] is tight in the sense that no
proper subset of [a, b] contains all the phases of the object.

Proof. Case (i): Consider first the expression (14) with any m 6= 0 and the [S/2] indepen-
dently distributed random variables of g(n) corresponding to [S/2] nonoverlapping pairs of
points {n,n⊕m}. The probability for every such the phase of g(n) to lie in the sector [a, b]
is |b−a|/(2π) for any θ and hence the probability for all g(n) with m 6= 0, θ 6= 0, to lie in the
sector is at most |b− a|[S/2](2π)−[S/2]. The union over m 6= 0 of these events has probability
at most |N ||b− a|[S/2](2π)−[S/2].

Likewise the probability for all g(n) given by (15) to lie in the first quadrant for any m is
at most |N ||b− a|[S/2](2π)−[S/2].

Case (ii): For (14) with any m 6= 0 the [S/2] independently distributed random variables
g(n) corresponding to [S/2] nonoverlapping pairs of points {n,n ⊕m}, satisfy the sector
constraint with probability at most 2−[S/2] if |b−a| ≤ π or (1− (b−a)/(2π))[S/2] if |b−a| > π
for any θ. Hence the probability that all g(n) with m 6= 0 satisfy the sector constraint is at
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most

|N |2−[S/2]
(

1−max
{

0,
b− a
π
− 1
})[S/2]

.

For (15) with θ = 0 and any m, g(n0) = f(n0) at n0 = (N+m)/2 and hence g(n0) lies in
the first quadrant with probability one. For n 6= n0, g(n) satisfies the sector constraint with
probability 1/2 if |b − a| ≤ π or with probability 1 − (b − a)/(2π) if |b − a| > π. Now the
[(S−1)/2] independently distributed random variables g(n) corresponding to nonoverlapping
pairs of points {n,n ⊕m},n 6= n0, satisfy the sector constraint with probability at most
2−[(S−1)/2] if |b − a| ≤ π or (1 − (b − a)/(2π))[(S−1)/2] if |b − a| > π. Hence the probability
that all g(n) given by (15) with arbitrary m satisfy the sector constraint is at most

|N |2−[(S−1)/2]
(

1−max
{

0,
b− a
π
− 1
})[(S−1)/2]

.

�

4.3. Magnitude constraint. Likewise if the object satisfies a magnitude constraint then
we can use random amplitude illumination to enforce uniqueness (up to a global phase).

Theorem 6. Suppose that K pixels of the complex-valued object f satisfy the magnitude
constraint 0 < a ≤ |f(n)| ≤ b and that {λ(n)} are i.i.d. continuous random variables on
R or C with P{|λ(n)/λ(n′)| > b/a or |λ(n)/λ(n′)| < a/b} = 1 − p > 0 for n 6= n′. If the
resulting z-transform is almost surely irreducible then the object f is determined uniquely, up
to a global phase, by the Fourier magnitude data onM, with probability at least 1−|N |p−[K/2].

Proof. The proof is similar to that for Theorem 5(ii).
For (14) with any m 6= 0 the [K/2] independently distributed random variables g(n)

corresponding to [K/2] nonoverlapping pairs of points {n,n⊕m} satisfy 0 < a ≤ |g(n)| ≤ b
with probability less than p−[K/2] for any θ. Hence the probability that g(n) with m 6= 0
satisfy the magnitude constraint at K or more points is at most |N |p−[K/2].

For (15) with any m, |g(n0)| = |f(n0)| at n0 = (N + m)/2 and hence g(n0) satisfies the
magnitude constraint with probability one. For n 6= n0, there is at most probability p for
g(n) to satisfy the magnitude constraint. By independence, the [(K − 1)/2] independently
distributed random variables g(n) corresponding to nonoverlapping pairs of points {n,n ⊕
m},n 6= n0, satisfy the magnitude constraint with probability at most p−[(K−1)/2]. Hence
the probability that g(n) given by (15) with arbitrary m satisfy the magnitude constraint
at K or more points is at most |N |p−[(K−1)/2].

The global phase factor is clearly undetermined. �

As in Theorem 4 case (ii) the magnitude constraint here, however, is not convex.

4.4. Complex objects without constraint. For general complex-valued objects without
any constraint, we consider two sets of Fourier magnitude data produced with two indepen-
dent random illuminations and obtain almost sure uniqueness modulo global phase.

Theorem 7. Let {f(n)} be a finite complex-valued array. Let {λ1(n)} and {λ2(n)} be
two independent arrays of continuous random variables on S1, R or C with an absolutely
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continuous joint distribution with respect to the product measure. Suppose that the resulting
z-transform from random illumination is almost surely irreducible.

Then with probability one f(n) is uniquely determined, up to a global phase, by the Fourier
magnitude measurements on M with two illuminations λ1 and λ2.

If the second illumination {λ2(n)} is deterministic while {λ1(n)} is random as above, then
the same conclusion holds.

Proof. Let g(n) be another array that vanishes outside N and produces the same data. By
Theorem 1, 2 and Remark 1

g(n) =

{
eiθif(n⊕mi)λi(n⊕mi)/λi(n)

eiθif ∗(N− n⊕mi)λ
∗
i (N− n⊕mi)/λi(n),

(16)

for some mi ∈ Z2, θi ∈ R, i = 1, 2.
Four scenarios of ambiguity exist but because of the independence of λ1(n), λ2(n) none

can arise.
First of all, if

g(n) = eiθif(n⊕mi)λi(n⊕mi)/λi(n), i = 1, 2

then
eiθ1f(n⊕m1)λ1(n⊕m1)/λ1(n) = eiθ2f(n⊕m2)λ2(n⊕m2)/λ2(n).

This almost surely can not occur unless m1 = m2 = 0, θ1 = θ2 in which case g equals f up
to a global phase factor.

The other possibilities can be similarly ruled out:

g(n) = eiθ1f(n⊕m1)λ1(n⊕m1)/λ1(n)

= eiθ2f ∗(N− n⊕m2)λ
∗
2(N− n⊕m2)/λ2(n)

and

g(n) = eiθif ∗(N− n⊕mi)λ
∗
i (N− n⊕mi)/λi(n), i = 1, 2(17)

for any mi, θi, i = 1, 2.
Now consider the case that {λ2(n)} is deterministic. Let g be given as in (16) with i = 1.

Then the Fourier magnitude data for the second illumination

F̃2(w) =
∑
n

g(n)λ2(n)e−i2πn·w(18)

are continuous random variables unless g(n) = eiθ1f(n). On the other hand, since {λ2(n)}
is deterministic, the Fourier magnitude F̃2(w) must be deterministic also. Thus, g(n) =
eiθ1f(n) for some constant θ1.

�

5. Numerical examples

The following numerical examples (Figures 3 and 2) give a glimse of how the quality and
efficiency of reconstruction can be improved by random phase illumination (6).

To test how many Fourier magnitude data are needed for phasing, we define the sampling
rate

ρ = # Fourier magnitude data/# image pixels.
12



bull

(a)

recovered image by 3000 HIO + 10 ER(oversampling rate = 4)

||f frec||/||f|| = 13.2686% relative intensity error = 0.7442%(b)

recovered image by 100 HIO + 10 ER(oversampling rate = 1.1)

||f frec||/||f|| = 2.9675% relative intensity error = 0.37058%(c)

Figure 2. (a) The original object and reconstructions with (b) uniform il-
lumination, ρ = 4 , relative error 13%, relative Fourier magnitude residual
0.74% and (c) random phase illumination, ρ = 0.55, relative error 2.97%,
relative Fourier magnitude residual 0.37% (adapted from [8]).

phantom

(a)

recovered image by 3000 HIO + 10 ER(oversampling rate = 4)

||X Xrec||/||X|| = 115.0778% relative intensity error = 4.3213%(b)

recovered image by 100 HIO + 10 ER(oversampling rate = 1.1)

||f frec||/||f|| = 0.16968% relative intensity error = 0.044375%(c)

Figure 3. (a) The original object and reconstructions with (b) uniform il-
lumination, ρ = 4, relative error 115.1%, relative Fourier magnitude residual
4.3% and (c) random phase illumination, ρ = 1.1, relative error 0.17%, relative
Fourier magnitude residual 0.04% (adapted from [9]).

The uniqueness results above are established for ρ = 4 (in two dimensions).
The standard HIO algorithm of various numbers of iterations is implemented in the frame-

work of the oversampling method [19, 20] which converts the Fourier magnitude data with
ρ > 1 into a support constraint to reduces the ambiguity of spatial shift (but not the twin
image).

Consider two real, positive images for which absolute uniqueness holds with random illu-
mination (Corollary 1): Picasso’s bull (Figure 2(a)), a tight image (due to the bright pixels
surrounding the bull), and the phantom (Figure 3(a)), a loose image (due to the dark pixels
surrounding the phantom).
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Let N be the square (in the case of the phantom) or rectangular (in the case of Picasso’s
bull) frame of image. A tight image has a tightly defined support (i.e. N ) while a loose
image has a loosely defined support (i.e. a proper subset of N ).

With uniform illumination (λ(n) = 1,∀n), ρ = 4 and 3000 HIO iterations, the recovered
bull has a poor quality (Figure 2(b)) due to the interference of the twin image while the
recovered phantom is shifted and distorted due to the loose support constraint (Figure 3(b)).

In both cases, the reconstruction error is high (13% for the bull and 115.1% for the
phantom) but the residual is low (0.37% for the bull and 0.04% for the phantom) indicating
the iterative process has more or less converged. Hence the reconstruction error should be
attributed to the lack of uniqueness rather than the lack of convexity of phasing with uniform
illumination.

In principle, the stagnation problem (large number of iterations) may be due to the lack
of convexity or uniqueness. But consider Figure 2(c) and Figure 3(c): With just a single
random phase illumination, both problems with stagnation and error disappear and phasing
with 100 HIO iterations and ρ = 1.1 achieves accurate, high-quality recovery. This exper-
iment confirms our belief that once absolute uniqueness is enforced, most of the numerical
problems with the phasing algorithms can be alleviated.

6. Conclusions

In conclusion, we have proposed the approach of random illumination to the phase retrieval
problem to address at once all phasing ambiguities, including trivial and nontrivial types.
For general random illumination we have proved almost sure irreducibility for any complex-
valued object of sufficiently high sparsity (Theorem 2) or of convex support whose dimension
is greater than one (Theorem 3). We have proved the almost sure uniqueness, up to a
global phase, under the two-point assumption (Theorem 4). The absolute uniqueness is then
enforced by the positivity constraint (Corollary 1). Under the tight sector constraint, we
have proved the absolute uniqueness with probability exponentially close to unity as the
object sparsity increases (Theorem 5). Under the magnitude constraint, we have proved
uniqueness up to a global phase with probability exponentially close to unity (Theorem 6).
For general complex-valued objects without any constraint, we have established almost sure
uniqueness modulo global phase with two independent random illuminations (Theorem 7).

Numerical examples show that phasing with random illumination drastically reduces the
number of Fourier magnitude data, numerical iterations and the error in reconstruction and
reveal that much of the previous problems with reconstruction error and stagnation is due
to the lack of absolute uniqueness.

Practical implementation of our approach demands precise maneuver of illumination which
can be expected to realize with advances of technology. Systematic and thorough numerical
study of phasing with random illumination in the presence of noise will be presented in the
forthcoming paper [9].

On the issue of convexity on the other hand, there have been recent attempts to formu-
late phase retrieval as a convex optimization problem [5, 6]. These approaches, however
promising, require a lot more Fourier magnitude data and computational resources.

Acknowledgements. I thank Jesus De Loera for helpful discussion and references.
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