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Monochromatic  Scattering
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Far-Field Back-Scattering Measurement
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Far-field SAR

Incident direction

Receptive direction 



Point targets

Point scatterers

scattered waves

source sensor

incident waves

Reciprocity: SIMO ∼ multi-shot SISO measurement.

Assumption: point scatterers sit on a finite regular grid of spacing

�.

Measurement: randomly sample the scattering directions r̂l, l =

1, ..., n.

SIMO (single-input-multiple-output)

• Scattering amplitude is a finite sum

A(̂r, d̂) =
ω2

4π

m�

j=1
Vju(rj)e

−iωrj ·̂r

u(ri) = ui(ri) + ω2 �

i �=j

G(ri, rj)Vju(rj)

• Born approximation,

A(̂r, d̂) =
ω2

4π

m�

j=1
Vje

iωrj·d̂e−iωrj ·̂r =
ω2

4π

m�

j=1
Vje

iωrj·(d̂−r̂)

• Back-scattering sampling: r̂ = −d̂

A(̂r, d̂) =
ω2

4π

m�

j=1
Vje

2iωrj·d̂
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Diffraction Tomography
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Fourier samplingNear field



Fourier sampling
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 Fourier sampling by moving sensor around        



Compressed Sensing
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• Sparsity: bases/dictionaries 

• Random measurements: incoherence, RIP

• Algorithms:  L1-min,  greedy (OMP)

Example: Source detection

Paraxial Green function:

G(ξ, x) =
eiωz0

4πz0
× exp

�
iω|x− ξ|2

2z0

�

=
eiωz0

4πz0
exp

�
iωx2

2z0

�

exp

�
−iωxξ

z0

�

exp

�
iωξ2

2z0

�

Y = ΦX + E, Y ∈ CM, X ∈ CN

E = model error + external error

M � N

us(x, z) =
�

eiω(αx+βz)us(α)dα, in the groove

−ui(x, h(x)) BC
= us(x, h(x)) =

�
eiω(αx+βh(x))us(α)dα

min �Z�1, s.t. �Y −ΦZ�2 ≤ �E�2 

• Discrete: grid of size            gridding error 

• Linear: Born approximation 

Candes ...  Donoho ... Romberg ... Tao ...Tropp ....



Agenda
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 How do random schemes help ?
  How to discretize & sparsify?
  How to handle coherent sensing matrix?
  How to handle multiple scattering?



Performance Predictors
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Restricted isometry property (RIP)   

                                       random partial Fourier matrix

Mutual coherence: peak sidelobe

CS can recover   objects

CS can recover  s  targets

us(x, z) =
�

eiω(αx+βz)us(α)dα, in the groove

−ui(x, h(x)) BC
= us(x, h(x)) =

�
eiω(αx+βh(x))us(α)dα

min �Z�1, s.t. �Y −ΦZ�2 ≤ �E�2

s logN ×N



Fourier Cell

Resolution: 
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CS-SAR 
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Multi-shot SISO schemes

The (l, j)-entry of Φ ∈ Cn×m is

e−iωlr̂l·rjeiωld̂l·rj = eiωl�(j2(sin θl−sin θ̃l)+j1(cos θl−cos θ̃l)),

j = (j1 − 1) + j2.

• (ρl,φl), l = 1, ..,M polar coordinates of i.i.d. uniform r.v.s

(ξl, ηl) ∈ [0,2π]2.

• Ω−band limited probes, i.e. ωl ∈ [0,Ω]. Set

θ̃l = θl + π = φl (backscattering sampling)

ωl =
Ωρl√

2

l = 1, ...,M.

In this case the scattering amplitude is always sampled in the
back-scattering direction analogous to SAR.
THEOREM (F09)

Suppose

Ω� = π/
√
2.

Then with high probability the L1-minimizer satisfies the

error bound

�X̂ −X�2 ≤ C1s
−1/2�X −X(s)�1 + C2ε.

Linear (LFM) or quadratic chirp: random time samples



Extended Object

piecewise constant approximation 
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Discretization Error

To avoid small divisor, need

multi-shot SISO

point object does not interfere with itself, 
but a pixel/voxel does.
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Sparse Extended Object

40 X 80 original, sparsity= 161, #data= 500
14

us(x, z) =
�

eiω(αx+βz)us(α)dα, in the groove

−ui(x, h(x)) BC
= us(x, h(x)) =

�
eiω(αx+βh(x))us(α)dα

min �Z�1, s.t. �Y −ΦZ�2 ≤ �E�2

s logN ×N

THEOREM (F 09) For CS-SAR sampling scheme with M =
O(s logN), if

�V − V��1 ≤
4ε

π2

then with high probability

�X̂ −X�2 ≤ C1s
−1/2�X −X(s)�1 + C2ε



Distributed extended targets
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Distributed extended targets

• Wavelet expansion

V (x, z) =
�

p,q∈Z2

Vp,qψp,q(x, z)

where

ψp,q(r) = 2−(p1+p2)/2ψ(2−pr− q), p,q ∈ Z2

with

2−pr = (2−p1x,2−p2z)

form an ONB in L2(R2).

• Littlewood-Paley basis

ψ(r) = (π2xz)−1(sin (2πx)− sin (πx)) · (sin (2πz)− sin (πz))

which is band-limited

ψ̂(ξ, ζ) =

�
(2π)−1. π ≤ |ξ|, |ζ| ≤ 2π

0, otherwise.



Sensing matrix 
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• Sensing matrix

Φk,l =
1

2np +1
ψ̂(ωk2

p(r̂k − d̂k))e
iωk2

p(d̂k−r̂k)·q

and let Φ = [Φk,l], where d̂k, r̂k,ωk are given below.

• Target vector

Xl = 2π(2np +1)2(p1+p2)/2Vp,q



Sampling scheme
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• Sampling scheme:

Let ξk, ζk be independent, uniform random variables on
[−1,1] and define

αk =
π

ωk2
p�1

·
�

1+ ξk, ξk ∈ [0,1]
−1+ ξk, ξk ∈ [−1,0]

βk =
π

ωk2
p�2

·
�

1+ ζk, ζk ∈ [0,1]
−1+ ζk, ζk ∈ [−1,0]

.

Let (ρk,φk) be the polar coordinates of (αk,βk) for CS-SAR.

• Φk,l are zero if p �= p�. Consequently the sensing matrix
is the block-diagonal matrix with each block (indexed by
p = p�) in the form of random Fourier matrix

Φk,l =
1

2np +1
eiπ(q1ξk+q2ζk).

The above observation means that the target structures
of different dyadic scales are decoupled and can be deter-
mined separately by our approach using compressed sensing
techniques.



TV min

70 X 70 original, sparsity of gradient= 836, #data=1000
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Piecewise Smooth Objects



Multiple-scattering 
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Single-Input-Multiple-Output (SIMO)

Foldy-Lax eq
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Backscattering Sampling

  Fourier tiling of size 
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spatial resolution



High-frequency limit
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Coherence BoundCoherence bound

THEOREM (F 09) The sensing matrix satisfies the coherence

bound

µ(Φ) < µ̄+
C
√
n

with high probability where

µ̄ ≤ (1 + ω�)−1/2cτ�f�τ,∞ (d = 2)

µ̄ ≤ (1 + ω�)−1c1�f�1,∞ (d = 3)

where f is the sampling pdf over the unit circle/sphere and

� · �τ,∞ is the Hölder norm of order τ > 1/2 and the constant cτ
depends only on τ .

• Proof uses concentration inequality and stationary phase.

• Do not need full view: supp(f) ⊂ Sd−1, d = 2,3.

• Need some smoothness in f.

• To have µ � 1, need ω� � 1 and n � 1 .
23



Operator norm boundOperator norm bound

THEOREM (F 09) For the SIMO measurement we have

�Φ�2 ≤
2N

M
with probability larger than



1− c1

�
M − 1

N




M(M−1)

• Tropp 08,  Candes-Plan 09:                                   
coherence & operator norm bounds 
          # recoverable targets ~ # data 
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Recovery of potentialMultiple-scattering wave

Foldy-Lax equation

u(ri) = ui(ri) + ω2 �

j �=i

G(ri,xj)Vju(xj)

Define

U i = (ui(ri1), ..., u
i(ris))

T ∈ Cs

U = (u(ri1), ..., u(ris))
T ∈ Cs

G = [(1− δjl)G(rij , ril)]

V = diag(Vi1, ..., Vis).

Foldy-Lax equation can be written as

U = U i + ω2GVU = U i + ω2GX �

X � = (nonzero components of X)

which implies

V = diag

�
X �

ω2GX � + U i

�
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THEOREM (F 09)

Suppose

ω−2 is not an eigenvalue of the matrix GV

and

U i is not orthogonal to any row vector of
�
I− ω2GV

�−1

(to avoid zero divisor). Then

(∗) V = V̂, V̂ = diag

�
X �

ω2GX � + U i

�

Let ε be the noise level in each measurement. If, in addition,

sµ ≤ 1/3, ω2�GV� < 1/2−O(ε)

then (∗) is well defined and

�V − V̂� = O(ε)

26
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SIMO Reconstruction
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SIMO-SISO Comparison
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Success probability versus # targets



Scattering by rough topography
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x

z

The real part of the scattered field, k = 3.2, λ = 1.963495, θ=0.5π 
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Angular spectrum
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• Data              angular spectrum 
• Shallow groove              sparse  AS

us(x, z) =
� ∞

−∞
eiω(αx+βz)us(α)dα, z > hmax (the peak)

us(α) =
−i

4πβ

� ∞

−∞
e−iω(αx+βh(x))∂u

∂ν

����
z=h(x)

�
1+ ḣ2(x)dx

−ui(x, h(x)) =
1

2
ψ(x) +

� �
∂

∂ν�
G
�
(x, h(x)), (x�, h(x�))

�

−iηG
�
(x, h(x)), (x�, h(x�))

� �

ψ(x�)
�
1+ ḣ2(x�)dx�

us(α) =
1

4π

�
e
−iω

�
αx�+βh(x�)

�

ψ(x�)

×
�

ω − ωḣ(x�)
α

β
+

η

β

�
1+ ḣ2(x�)

�

dx�

us(x, z) =
�

eiω(αx+βz)us(α)dα, in the groove

−ui(x, h(x)) BC
= us(x, h(x)) =

�
eiω(αx+βh(x))us(α)dα

min �Z�1, s.t. �Y −ΦZ�2 ≤ �E�2

s logN ×N

THEOREM (F 09) For CS-SAR sampling scheme with M =
O(s logN), if

�V − V��1 ≤
4ε

π2

then with high probability

�X̂ −X�2 ≤ C1s
−1/2�X −X(s)�1 + C2ε

β =






�
1− α2, |α| ≤ 1

i
�
α2 − 1, |α| > 1.

Outgoing mode

Evanescent mode



Sparsity of angular spectrum
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Angular Spectrum                      
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Iterative solver
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us(x, z) =
� ∞

−∞
eiω(αx+βz)us(α)dα

us(α) =
−i

4πβ

� ∞

−∞
e−iω(αx+βh(x))∂u

∂ν

����
z=h(x)

�
1+ ḣ2(x)dx

−ui(x, h(x)) =
1

2
ψ(x) +

� �
∂

∂ν�
G
�
(x, h(x)), (x�, h(x�))

�

−iηG
�
(x, h(x)), (x�, h(x�))

� �

ψ(x�)
�
1+ ḣ2(x�)dx�

us(α) =
1

4π

�
e
−iω

�
αx�+βh(x�)

�

ψ(x�)

×
�

ω − ωḣ(x�)
α

β
+

η

β

�
1+ ḣ2(x�)

�

dx�

• Frechet differentiable              Newton iteration 



Rayleigh hypothesis
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us(x, z) =
�

eiω(αx+βz)us(α)dα, in the groove

−ui(x, h(x)) BC
= us(x, h(x)) =

�
eiω(αx+βh(x))us(α)dα

• Valid for small, but finite roughness
• Point-wise recovery:  Newton method
• Nonlinear least squares with sparse Fourier modes



Near-field Reconstruction 
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Far-field reconstruction
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Phase retrieval
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diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256

.

Fourier transform describes wave propagation

F (ei2πw1, ei2πw2) =
�

n
f(n)e−i2πn·w

Analytic continuation =⇒ z-transform

F (z) =
�

n
f(n)z−n.

Discrete phase retrieval problem:

Determine f(n) from Fourier magnitude data

|F (w)|, ∀w = (ei2πw1, ei2πw2) ∈ [0,1]2

Phasing problem formulation

Discrete finite objects

Let n = (n1, n2) ∈ Z2 and z = (z1, z2) ∈ C2.

multi-index : zn = zn11 zn22

Let the object be represented by f(n),n ≤ N = (N,N).

Binary objects: white = 1, black = 0.
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Fourier magnitude data:

|F (w)|2 =
N�

n=−N

�

m
f(m+ n)f∗(m)e−i2πn·w

=
N�

n=−N

Cf(n)e−i2πn·w

where

Cf(n) =
�

m
f(m+ n)f∗(m)

is the autocorrelation function of f.

Fourier magnitude data contain complete information about

autocorrelation function.

Sampling Theorem:

supp(Cf) ⊂ [−N,N ]2=⇒ [0,1]2 is reduced to the Nyquist grid

M =
�
(k1, k2) : kj = 0,

1

2N +1
,

2

2N +1
, · · · ,

2N

2N +1

�



Trivial ambiguities
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Trivial ambiguities

Autocorrelation:

Cf(n) =
�

m+n∈N
f(m+ n)f∗(m)

Invariant under:

(i) global phase,

f(n) −→ eiθf(n), for some θ ∈ [0,2π],

(ii) spatial translation

f(n) −→ f(n+m), some m ∈ Z2

(iii) conjugate inversion (twin image)

f(n) −→ f∗(N− n).



Nontrivial ambiguity
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Sources of ambiguity

THEOREM (Hayes 82, Pitts-Greenleaf 03)

Let the z-transform F (z) of a finite complex-valued sequence

{f(n)} be given by

F (z) = αz−m
p�

k=1

Fk(z), m ∈ N2,α ∈ C

where Fk, k = 1, ..., p are nontrivial irreducible polynomials. Let

G(z) be the z-transform of another finite sequence g(n). Sup-

pose |F (w)| = |G(w)|, ∀w ∈ [0,1]2. Then G(z) must have the

form

G(z) = |α|eiθz−p




�

k∈I
Fk(z)








�

k∈Ic
F ∗
k (1/z

∗
)



, p ∈ N2, θ ∈ R

where I is a subset of {1,2, ..., p}.

Nontrivial ambiguity: Partial conjugate inversion on factors.



Random illumination
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Random Illumination

Coded aperture imaging

diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256

diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256

Diffuser generated speckle pattern: Garcia-Zalevsky-Fixler 05

expanding the laser beam and impinging on a plate of translucent perpex, which acts as an 
opal diffuser, with unnoticeable grain and nearly Lambertian scattering of the light. In the 
fluorescence experiments the sample is coated with a thin layer (~5 µm) of solution of 
fluorescein diacetate (FDA) that reemits incoherent light in the green wavelengths of the 
optical spectrum.  

The process requires a high resolution image of the speckle that acts as the encoding-
decoding mask. We take these reference images prior to each experiment by focusing at a 
transparent region in the sample plane using a lens with high NA (0.4). Figure 2 displays the 
reference image and its autocorrelation. The size of the autocorrelation peak is the expected 
resolution after the superresolution process when a low NA lens is used. 

 

 
Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern. 

 
Once the reference speckle pattern is captured, the sample is set in place and the lens is 

replaced by a lens with a low NA in the horizontal direction. Then the sample position is 
laterally scanned and the image set is captured. Note that instead of displacing the projected 
pattern (or, equivalently, the diffuser) and the decoding pattern synchronously, we instead 
scan the sample position and keep the encoding and decoding masks static. The situation is 
fully equivalent, provided that the captured images are shifted digitally, to compensate the 
mechanical movement of the sample. The discrete sampling affects the autocorrelation that 
determines the impulse response of the process. Thus in Eq. (3) the integral becomes a 
summation and the variable ξ is discretized. The correlation is obtained by spatial averaging; 
thus the minimum shift should be similar to the correlation run length of the speckle pattern 
(otherwise the contribution of different samples would coincide). The span between extreme 
samples should be significantly larger than the speckle size, for obtaining sufficient statistical 
averaging. The larger the number of samples the better will the correlation estimation be 
(typically a few tenths should suffice).  

We capture a set of 60 images. Each one is multiplied by the previously recorded high 
resolution speckle pattern and the resulting images are added together. Figure 4(a) shows a 
sample image captured with the low resolution lens. No information can be observed on it. 
The typical horizontal speckle size is related with the lens resolution and is too large to 
resolve the pattern in the sample. Figure 4(b) displays the reconstructed image. Although 
speckle noise corrupts the image, the sample can be clearly distinguished. The movie 
associated to the figure shows how the reconstruction is built over time as subsequent frames 
are added. This movie gives also a direct visual interpretation of the underlying principle in 
the method. Note that, despite of the large speckle size, the speckles are blinking as the pass 
the different transmittance areas of the sample. This information is decoded using the same 
mask that was blurred by the low NA lens and recovers the resolution of the high resolution 
encoding mask. 

Finally, we performed a similar test but after covering the sample with a thin layer of 
FDA. This converts the speckle pattern in the sample into an incoherent distribution. Figure 5 

(a) (b) 

(C) 2005 OSA 8 August 2005 / Vol. 13,  No. 16 / OPTICS EXPRESS  6077
#7712 - $15.00 US Received 3 June 2005; revised 25 July 2005; accepted 25 July 2005
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Random illumination

f̃(n) = f(n)λ(n) (illuminated object)

λ(n), representing the illumination field, is a known sequence

of samples of random variables.

Let λ(n) be continuous random variables with respect to the

Lebesque measure on S1 (the unit circle), R or C.

Case of S1 can be facilitated by a random phase modulator

with

λ(n) = eiφ(n)

where φ(n) are continuous random variables on [0,2π].
Case of R: random amplitude modulator.

Case of C: both phase and amplitude modulations.
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Irreducibility

THEOREM. Suppose that the support of the object {f(n)}
has rank ≥ 2. Then the the z-transform of the illuminated

object f(n)λ(n) is irreducible with probability one.

• False for 1-d objects: fundamental theorem of algebra of

one complex variable.False for rank 1 objects: fundamental thm of algebra

if sampled at the lattice

L =

�
ω = (ω1, ...,ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

�
(3)

which is 2d times of the grid of the original image. The standard phasing problem is to

recover the array f(n) from its Fourier intensity measurement Y (ω) = |F (ei2πω)| for ω ∈ L
or smaller sampling sets.

Clearly the correlation function Cf and the Fourier magnitude data are invariant under

spatial translation

f(·) → f(·+ t) for some t ∈ Zd,

conjugate inversion

f(·) → f(N− ·)

and constant global phase change

f(·) → eiθf(·).

These trivial associates all share the same global geometric information as the original object.

The classical results of uniqueness given in [5] [6] [12] say that for almost all objects in

dimension two or higher the trivial associates are the only ambiguities there are with phase

retrieval. When none of the ambiguities arises, we say that the phasing problem has an

absolutely unique solution [1].

On the other hand, by dimension counting Miao et al. [11] have argued that overall 2

times oversampling, independent of the dimension d, uniquely determines a unique phasing

solution up to spatial shift, conjugate inversion and global phase factor. To measure the

degree of oversampling we use the oversampling ratio (OR)

σ =
Fourier magnitude data number

unknown image pixel number

introduced in [11]. As we demonstrate below, Miao et al.’s conjecture can be realized by

using RPI, but not uniform illumination.

As shown in [1] random illumination (RI) can help remove the phasing ambiguities of

spatial shift and conjugate inversion. An illumination amounts to replacing the original

image f(n) by

g(n) = λ(n)f(n),

where λ(n) is a known array representing the incident wave. In the case of uniform illumi-

nation, λ(n) = 1. In the case of random phase illumination (RPI) [13],

λ(n) = eiφ(n) (4)

3

= Oversampling ratio

We assume object rank > 1 below
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Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability exponentially close to unity

(depending on the sparsity and the phase range |b− a|.)

Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability exponentially close to unity

(depending on the sparsity and the phase range |b− a|.)
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Complex objects, NO constraint

THEOREM. Suppose that {λ1(n)} are i.i.d. continuous ran-

dom variables with respect to the Lebesgue measure on S1, R
or C and in addition either one of the following conditions is

true.

(i) {λ2(n)} are i.i.d. continuous random variables with respect

to the Lebesgue measure on S1, R or C and {λ2(n)} are inde-

pendent of {λ1(n)}.

(ii) {λ2(n)} are deterministic.

Then with probability one f(n) is uniquely determined, up to

a constant phase factor, by the Fourier magnitude measure-

ments with two illuminations λ1 and λ2.

Complex objects w/o constraint
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Error Reduction (Gerchberg-Saxton)
144 SOLIJTIONS OF LINEAR EQUATIONS

Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance

CONVERGENCE ANALYSIS

between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set

CONVEXVERSUS NON.CONVEX SETS 183

(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =⇒ convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?
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(l)

Figure 1. (a)recovered “cameraman”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.002%, ε̃f (f5000) ≈ 5.47%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “cameraman”by 1000 HIO +50 ER with one
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.03%, ε̃f (f1050) ≈ 0.93%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “cameraman”by 2000 ER iter-
ations with single low resolution(block size: 40 × 40) random phase illumination when
ρ = 2. ||f2000 − f1999||/||f1999|| ≈ 0.005%, ε̃f (f2000) ≈ 0.63%. (f)normalized error ε̃(fk)
at each iteration. (g)recovered “cameraman”by 30 HIO +10 ER with single low resolu-
tion(block size: 40×40) random phase illumination when ρ = 2. ||f40−f39||/||f39|| ≈ 0.03%,
ε̃f (f40) ≈ 0.1%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “cameraman”by
6000 ER iterations with one high resolution random phase illumination when ρ = 1.
||f6000 − f5999||/||f5999|| ≈ 7 × 10−6, ε̃f (f6000) ≈ 0.01%. (j) normalized error ε̃(fk) at
each iteration. (k)recovered “cameraman”by 60 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f60 − f59||/||f59|| ≈ 0.08%, ε̃f (f60) ≈ 0.42%. (l)
normalized error ε̃(fk) at each iteration.

Without noise, ρ = 1.2 produces an error near 0. With noise, higher sampling ratio always produces better
reconstruction, but when ρ ≥ 2, increasing sampling ratio doesn’t make a significant difference.

Then, we test the sampling ratio required to recover “phantom”with a random phase between 0 and π/2,
a complex-valued image with nonnegative real and imaginary parts. Figure 3(b) shows the average relative
error in 5 trials versus sampling ratio. It’s noted that a good reconstruction is obtained in the case of
undersampling. When ρ = 0.9, there are more free variables than measurement data.

Finally, we test the sampling ratio required to recover “phantom”with a random phase between 0 and 2π,
a complex-valued image without any positivity constraint. Figure 3(c) shows the average relative error in 5

7

(e)-(h) Low resolution 40 x 40 block illumination with OR=2
                    (i)-(l)  High resolution illumination with OR=1
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Figure 2. (a)recovered “phantom”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.006%, ε̃f (f5000) ≈ 14.7%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “phantom”by 1000 HIO +50 ER with single
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.07%, ε̃f (f1050) ≈ 3.95%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “phantom”by 500 ER iterations
with single low resolution(block size: 40 × 40) random phase illumination when ρ = 2.
||f500 − f499||/||f499|| ≈ 0.01%, ε̃f (f500) ≈ 0.05%. (f)normalized error ε̃(fk) at each
iteration. (g)recovered “phantom”by 30 HIO +10 ER with single low resolution(block
size: 40 × 40) random phase illumination when ρ = 2. ||f40 − f39||/||f39|| ≈ 0.07%,
ε̃f (f40) ≈ 0.22%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “phantom”by
1200 ER iterations with one high resolution random phase illumination when ρ = 1.
||f1200 − f1199||/||f1199|| ≈ 4 × 10−6, ε̃f (f1200) ≈ 3 × 10−5. (j) normalized error ε̃(fk)
at each iteration. (k)recovered “phantom”by 30 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f40 − f39||/||f39|| ≈ 0.07%, ε̃f (f40) ≈ 0.26%. (l)
normalized error ε̃(fk) at each iteration.

trials versus sampling ratio. A good recovery is obtained as ρ ≥ 1.7. Further increasing the sampling ratio
helps, but doesn’t make a big difference.

We use ρ = 2 in Figure 6(a), (b) and (c).

5.3. Stability Test. Figure 6(a) and (b) show the average relative error in 5 trials versus the noise level for
“phantom”and “phantom”with a random phase between 0 and π/2 respectively with single random phase
illumination. Recovery error increases almost linearly with respect to the noise percentage. Gaussian noise
and Illuminator noise are more difficult to deal with than poisson noise. Both high resolution and low

8

(e) - (h) Low resolution 40 x 40 block illumination with OR=2
                   (i) - (l)  High resolution illumination with OR=1
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Figure 5. (a)recovered “cameraman”by adaptive HIO +10 ER with single low resolu-
tion(block size:40 × 40) random phase illumination and 5% gaussian noise when ρ = 2.
Reconstruction error ||f − f̂ ||/||f || ≈ 7.4% and residual ≈ 2.49%. (b)normalized error ε̃(fk)
at each iteration. (c)recovered “phantom”by adaptive HIO +10 ER with single low resolu-
tion(block size:40×40) random phase illumination and 5% gaussian noise when ρ = 2. Error
≈ 4.26% and residual ≈ 2.85%. (d)normalized error ε̃(fk) at each iteration. (e)recovered
“cameraman”by adaptive HIO +10 ER with single low resolution(block size:40 × 40) ran-
dom phase illumination and 5% poisson noise when ρ = 2. Error ≈ 6.38% and residual
≈ 3.78%. (f)normalized error ε̃(fk) at each iteration. (g)recovered “phantom”by adaptive
HIO +10 ER with single low resolution(block size:40× 40) random phase illumination and
5% poisson noise when ρ = 2. Error ≈ 4.86% and residual ≈ 3.9%. (h)normalized error
ε̃(fk) at each iteration. (i)recovered “cameraman”by adaptive HIO +10 ER with single low
resolution(block size:40 × 40) random phase illumination and 5% illuminator noise when
ρ = 2. Error ≈ 12.83% and residual ≈ 4.05%. (j)normalized error ε̃(fk) at each itera-
tion. (k)recovered “phantom”by adaptive HIO +10 ER with single low resolution(block
size:40 × 40) random phase illumination and 5% illuminator noise when ρ = 2. Error
|| ≈ 12.46% and residual ≈ 5.53%. (l)normalized error ε̃(fk) at each iteration.
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Low resolution illumination with 5% Gaussian, Poisson and 
illuminator errors
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Figure 3

Figure 4. (a)average relative error by adaptive HIO + adaptive ER in 5 trials versus
oversampling rate for “phantom”with one random phase illumination. (b)average relative
error by adaptive HIO + adaptive ER in 5 trials versus oversampling rate for “phantom”with
random phases between 0 and π/2 with one random phase illumination. (c)average relative
error by 200 HIO +300 ER in 5 trials versus oversampling rate for “phantom”with random
phases between 0 and 2π with one uniform illumination and one random phase illumination.

resolution random phase illuminations yield stability to noise. Low resolution random phase illumination
produces a larger error, but its performance is acceptable.

Figure 6(c) shows the average relative error in 5 trials versus the noise level for “phantom”with a random
phase between 0 and 2π with one uniform illumination and one random phase illumination. The instability
for large gaussian noise is observed. When 14% or higher gaussian noise is added, the error increases
dramatically.
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Fig. 8. (a) Relative error for nonnegative-valued Phantom and σ = 2 (b)

Relative error for complex-valued Phantom with phases randomly distributed

in [0, π/2] and σ = 4; (c) Relative error for complex-valued Phantom with

phases randomly distributed in [0, 2π] and σ = 3.
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Coherence band

pairwise coherence pattern
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Redundant dictionary
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Coherence band
Coherence band

Let η > 0. Define the η-coherence band of the index k to be

the set

Bη(k) = {i | µ(i, k) > η},

and the η-coherence band of the index set S to be the set

Bη(S) = ∪k∈SBη(k).

Due to the symmetry µ(i, k) = µ(k, i), i ∈ Bη(k) if and only if

k ∈ Bη(i).

Denote

B(2)
η (k) ≡ Bη(Bη(k)) = ∪j∈Bη(k)Bη(j)

B(2)
η (S) ≡ Bη(Bη(S)) = ∪k∈SB

(2)
η (k).
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Band exclusion 

Algorithm 1. BOMP

Input: Φ, Y, η > 0

Initialization: X0 = 0, R0 = Y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = argmaxi |
�
Rn−1,Φi

�
|, i /∈ B(2)

η (Sn−1)

2) Sn = Sn−1 ∪ {imax}
3) Xn = argminZ �ΦZ − Y �2 s.t. supp(Z) ∈ Sn

4) Rn = Y −ΦXn

Output: xs.

Two-dimensional case
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BOMP: performance guaranteePerformance guarantee

THEOREM (F & Liao 11) Suppose that

Bη(i) ∩B(2)
η (j) = ∅, ∀i, j ∈ supp(X)

and that

(5s− 4) · η ·
xmax

xmin
+

5

2
·
�E�2
xmin

< 1

where

xmax = max
k

|Xk|, xmin = min
k

|Xk|.

Let X̂ be the BOMP reconstruction. Then

supp(X̂) ⊆ Bη(supp(X))

and every nonzero component of X̂ is in the η-coherence band
of a unique nonzero component of X.

Theoretical resolution 3�. Numerical resolution ∼ 1�.

Independent of grid refinement!

Compression: s ∼
√
M

dynamic range, η ∼ 1√
M

for moderate SNR.

Performance guarantee

THEOREM (F & Liao 11) Suppose that

Bη(i) ∩B(2)
η (j) = ∅, ∀i, j ∈ supp(X)

and that

(5s− 4) · η ·
xmax

xmin
+

5

2
·
�E�2
xmin

< 1

where

xmax = max
k

|Xk|, xmin = min
k

|Xk|.

Let X̂ be the BOMP reconstruction. Then

supp(X̂) ⊆ Bη(supp(X))

and every nonzero component of X̂ is in the η-coherence band
of a unique nonzero component of X.

Theoretical resolution 3�. Numerical resolution ∼ 1�.

Independent of grid refinement!

Compression: s ∼
√
M

dynamic range, η ∼ 1√
M

for moderate SNR.
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Local optimizationLocal optimization

Algorithm 2. Local Optimization (LO)

Input:Φ, Y, η > 0, S0 = {i1, . . . , ik}.
Iteration: For n = 1,2, ..., k.

1)Xn = arg minZ �ΦZ − Y �2, supp(z) = Sn−1 ∪Bη(in).
2) Sn = supp(Xn).

Output: Sk.

Algorithm 3. BLOOMP

Input: Φ, Y, η > 0

Initialization: X0 = 0, R0 = Y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = argmini |
�
Rn−1,Φi

�
|, i /∈ B(2)

η (Sn−1)

2) Sn = LO(Sn−1 ∪ {imax}).
3) Xn = argminZ �ΦZ − Y �2 s.t. supp(Z) ∈ Sn

4) Rn = Y −ΦXn

Output: Xs.
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Performance guaranteeBLOOMP: performance guarantee

THEOREM (F & Liao 11) Let S0 and Sk be the input and

output, respectively, of the LO algorithm.

If

xmin > (ε+2(s− 1)η)

�
1

1− η
+

�
1

(1− η)2
+

1

1− η2

�

and each element of S0 is in the η-coherence band of a unique

nonzero component of X, then each element of Sk remains in

the η-coherence band of a unique nonzero component of X.
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Figure 2: Reconstruction of the real part of 20 well separated spikes (R = 1, minimum distance 3ρ) with

F = 50, � = 5% by (a) OMP (b) BLOOMP (c) BPDN (d) BPDN-BLOT.

4

Reconstructions of real parts of 20 well-separated targets (distance > 
3 Rayleigh length) with unresolved grid(superresolution factor = 50) 

and 5% noise by (a) OMP (b) BLOOP (c) BP (d) BP-BLOT
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Figure 1: Reconstruction of closely spaced spikes (R = 3, minimum distance 0.2ρ) with F = 100, � = 5% by

(a) OMP, (b) BLOOMP, (c) BPDN, (d) BPDN-BLOT.

3

Reconstructions of  6 closely spaced targets (min distance = 0.2 Rayleigh 
length) with unresolved grid (superresolution factor = 100) and 5% noise by 

(a) OMP (b) BLOOMP (c) BP (d) BP-BLOT



Performance improvement
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success probability versus the number of measurements when dynamic range = 5 and noise = 0
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Figure 4: Success rate versus number of measurements (left, dynamic range 5, zero noise) and dynamic range
(right, 1% noise) for OMP, BOMP and BLOOMP.

For the rest of simulations, we show the percentage of successes in 100 independent trials. A reconstruction
is counted as a success if every reconstructed object is within 1 �R of the object support. This is equivalent
to the criterion that the Bottleneck distance between the true support and the reconstructed support is less
than 1 �R. The result is shown in Figure 4. With 10 objects of dynamic range 5, BLOOMP requires the least
number of measurements, followed by BOMP and then OMP, which does not achieve high success rate even
with 100 measurements (left panel). With 100 measurements (N = 100) and 1% noise, BLOOMP can handle
dynamic range up to 120 while BOMP and OMP can handle dynamic range about 5 and 1, respectively.

For the second example (11)-(12), we test, in addition to our algorithms, the method proposed by Duarte
and Baraniuk5 and the analysis approach of frame-adapted Basis Pursuit2,6.

The algorithm, Spectral Iterative Hard Thresholding (SIHT)5, assumes the model-based RIP which, in
spirit, is equivalent to the assumption of well separated support in the synthesis coefficients and therefore
resembles closely to our approach.

While SIHT is a synthesis method like BOMP and BLOOMP, the frame-adapted BP

min�Ψ�z�1 s.t �Φz− b�2 ≤ �e�2, (19)

is the analysis approach6. Candès et al.2 have established a performance guarantee for (19) provided that
the measurement matrix Φ satisfies the frame-adapted RIP:

(1− δ)�Ψz�2 ≤ �ΦΨz�2 ≤ (1 + δ)�Ψz�2, �z�0 ≤ 2s (20)

for a tight frameΨ and a sufficiently small δ and that the analysis coefficientsΨ∗y are sparse or compressible.
Instead of the synthesis coefficients x, however, the quantities of interest are y. Accordingly we measure

the performance by the relative error �ŷ− y�2/�y�2 averaged over 100 independent trials. In each trial, 10
randomly phased and located objects (i.e. x) of dynamic range 10 and i.i.d. Gaussian Φ are generated. We
set N = 100, R = 200, F = 20 for test of noise stability and vary N for test of measurement compression.

As shown in Figure 5, BLOOMP is the best performer in noise stability (left panel) and measurement com-
pression (right panel). BLOOMP requires about 40 measurements to achieve nearly perfect reconstruction
while the other methods require more than 200 measurements. Despite the powerful error bound established
in [2], the analysis approach (19) needs more than 200 measurements for accurate recovery because the
analysis coefficients Ψ∗y are typically not sparse. Here redundancy F = 20 produces about 2F = 40 highly
coherent columns around each synthesis coefficient and hence Ψ∗y has about 400 significant components. In
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Figure 5: Relative errors versus relative noise (left) and number of measurements (right, zero noise) for

dynamic range 10.

general, the sparsity of the analysis coefficients is at least 2sF where s is the sparsity of the widely separated
synthesis coefficients and F is the redundancy. Thus according to the error bound of [2] the performance of

the analysis approach (19) would degrade with the redundancy of the dictionary.

To understand the superior performance of BLOOMP in this set-up let us give an error bound using (18)

and (20)

�Ψ(x− x̂)�2 ≤ 1

1− δ
�A(x− x̂)�2 ≤ 1

1− δ
�b− e−Ax̂�2 ≤ 1 + c

1− δ
�e�2 (21)

where x̂ is the output of BLOOMP. This implies that the reconstruction error of BLOOMP is essentially

determined by the external noise, consistent with the left and right panels of Figure 5, and is independent

of the dictionary redundancy if Corollary 1 holds. In comparison, the BOMP result appears to approach an

asymptote of nonzero (∼ 10%) error. This demonstrates the effect of local optimization technique in reducing

error. The advantage of BLOOMP over BOMP, however, disappears in the presence of large external noise

(left panel).

5. CONCLUSION

We have proposed algorithms, BOMP and BLOOMP, for sparse recovery with highly coherent, redun-

dant sensing matrices and have established performance guarantee that is redundancy independent. These

algorithms have a sparsity constraint and computational cost similar to OMP’s. Our work is inspired by

the redundancy-independent performance guarantee recently established for the MUSIC algorithm for array

processing.7

Our algorithms are based on variants of OMP enhanced by two novel techniques: band exclusion and local

optimization. We have extended these techniques to various CS algorithms, including Lasso, and performed

systematic tests elsewhere8.

Numerical results demonstrate the superiority of BLO-based algorithms for reconstruction of sparse ob-

jects separated by above the Rayleigh threshold.
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Frame-adapted BP: analysis approach

Candes-Eldar-Needel-Randal 2011:

min
z

�D∗z�1, �Az− y�2 ≤ ε

Assumptions: (i) A satisfies frame-adapted RIP

(ii) D∗z is sparse ≥ s× r, r = redundancy of dictionary.
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