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Source localization
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Figure 1: Sensors are distributed in an aperture of linear size A on the left (z = 0) and the point sources of
unknown locations are distributed on the target plane on the right (z = L).

To cast eq. (2) in the form of finite, discrete linear inversion problem let G = {p1, . . . , pM} be a regular
grid of spacing ! smaller than the minimum distance among the targets. Consequently, each grid point has
at most one target within the distance !/2. Write x = (xj) ∈ CM with

xj = exp

(
iωp2j
2L

)
cj′

whenever pj is within !/2 from some target j′ and zero otherwise. When a target is located at the midpoint
between two neighboring grid points, we can associate either grid point with the target.

Let the data vector b = (bl) ∈ CN be defined as

bl = N−1/24πLe−iωLe
−iωr2

2L yl (3)

and the measurement matrix be

A =
[
a1 . . . aM

]
∈ CN×M (4)

with

aj =
1√
N

(
exp

(
−iωrkpj

L

))
∈ CN , j = 1, ...,M. (5)

After proper normalization of noise we rewrite the problem in the form

Ax+ e = b (6)

where the error vector e = (ek) ∈ CN is the sum of the external noise n = (n(tk)) and the discretization
or gridding error d = (δk) ∈ CN due to approximating the locations by the grid points in G. Obviously
the discretization error decreases as the grid spacing ! decreases. The discretization error, however, depends
nonlinearly on the objects and hence is not in the form of either additive or multiplicative noise.
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ABSTRACT

Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical
imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant
dictionaries as sparsifying operators.

Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are pro-
posed to enhance Orthogonal Matching Pursuit (OMP) and deal with such coherent sensing matrices.

BOMP and BLOOMP have provably performance guarantee of reconstructing sparse, widely separated
objects independent of the redundancy and have a sparsity constraint and computational cost similar to
OMP’s.

Numerical study demonstrates the effectiveness of BLOOMP for compressed sensing with highly coher-
ent, redundant sensing matrices.

Keywords. Model mismatch, compressed sensing, coherence band, gridding error, redundant dictionary.

1. INTRODUCTION

Model mismatch is a fundamental issue in imaging and image processing3. To reduce mismatch error,
it is often necessary to consider measurement matrices that are highly coherent and redundant. Such
measurement matrices lead to serious difficulty in applying compressed sensing (CS) techniques.

Let us consider two examples: discretization in analog imaging and sparse representation of signals.
Consider remote sensing of point sources as depicted in figure 1. Let the noiseless signal at the point r on

the sensor plane emitted by the unit source at ξ on the target plane be given by the paraxial Green function

G(r, ξ) =
eiωL

4πL
× exp

(
iω|r − ξ|2

2L

)

=
eiωL

4πL
exp

(
iωr2

2L

)
exp

(
−iωrξ

L

)
exp

(
iωξ2

2L

)
(1)

where ω is the wavenumber. Suppose that s point sources of unknown locations ξj and strengths cj , j = 1, ..., s
emit simultaneously. Then the signals received by the sensors l, l = 1, ..., N are

yl =
s∑

j=1

cjG(rl, ξj) + nl, l = 1, . . . , N (2)

where nl are external noise.

∗Corresponding author: fannjiang@math.ucdavis.edu.
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Grid model
Source locations: xl : l = 1, ..., s

Source strengths: cl, l = 1, ..., s.

Signal model: at the sensor located at ξl, l = 1, ..., N

yl =
s�

j=1
cjG(ξl, xj) + nl.

Main problem: target localization

Vectorization: Φx+ e = y

Set y to be the data vector where ξl are distributed in an aperture
of size A.

=⇒ We can only hope to recover xj separated by at least the
Rayleigh resolution length

� =
λz0
A

.

Approximate xj by the closest subset of cardinality s of a regular
grid G = {p1, . . . , pM},M � s,.

Write x = (xj) ∈ CM where xj = cj whenever the grid points are the
nearest grid points to the targets and zero otherwise.

The measurement matrix Φ = D1ΨD2

Ψjl =
1√
N

exp

�
−iωxlξj

z0

�

D1 = diag



exp




iωξ2j
2z0









D2 = diag

�

exp

�
iωx2l
2z0

��

Errors: external + gridding

e = n+ d, n = external noise, d = gridding error.
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Linear inversion

Source locations: xl : l = 1, ..., s

Source strengths: cl, l = 1, ..., s.

Signal model: at the sensor located at ξl, l = 1, ..., N

yl =
s�

j=1
cjG(ξl, xj) + nl.

Main problem: target localization

Vectorization: Ax+ e = y

Set y to be the data vector where ξl are distributed in an aperture
of size A.

We can only hope to recover xj separated by at least the Rayleigh
resolution length

� =
λL

a
= 1Error = external noise + gridding error

5

Approximate xj by the closest subset of cardinality s of a regular
grid G = {p1, . . . , pM},M � s,.

Write x = (xj) ∈ CM where xj = cj whenever the grid points are the
nearest grid points to the targets and zero otherwise.

Measurement matrix A = D1ΦD2

Φjl =
1√
N

exp

�
−iωxlξj

L

�

D1 = diag



exp




iωξ2j
2L









D2 = diag

�

exp

�
iωx2l
2L

��

Errors: external + gridding error

e = n+ d, n = external noise, d = gridding error.



W/O additional prior information, we  can only hope to recover targets 
separated by at least one Rayleigh length 

Resolution limit

a = aperture, L = distance,  =wavelength

Source locations: xl : l = 1, ..., s

Source strengths: cl, l = 1, ..., s.

Signal model: at the sensor located at ξl, l = 1, ..., N

yl =
s�

j=1
cjG(ξl, xj) + nl.

Main problem: target localization

Vectorization: Ax+ e = y

Set y to be the data vector where ξl are distributed in an aperture
of size A.

We can only hope to recover xj separated by at least the Rayleigh
resolution length

� =
λL

a
= 1
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Compressed  sensing (CS) 

 Restricted isometry property (RIP)

Incoherence property (IP)

(1− δk)�x�2 ≤ �Ax�2(1 + δk)�x�2, where x is k-sparse.

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

Candes, Donoho, Romberg, Tao, Tibshirani, Tropp…... 

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1

 

 

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

k = 2s, δ2s <
√
2− 1.

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization/regularization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

k = 2s, δ2s <
√
2− 1. µ ∼ 1/

√
N .

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization/regularization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1

7
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CS methods

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization/regularization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization/regularization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1

 Greedy algorithms: 
              

 

Orthogonal matching pursuit (OMP)
Subspace pursuit (SP)
Compressed sampling matching pursuit (Co-SaMP)
Iterative hard thresholding (IHT)
……. etc
              

 

8

(1− δk)�x�22 ≤ �Ax�22(1 + δk)�x�22, where x is k-sparse.

k = 2s, δ2s <
√
2− 1. µ ∼ 1/

√
N .

λ = σ
�
2 logM, λ = 0.5σ

�
logM

The mutual coherence of A is the maximum pairwise coherence
among all pairs of columns

µ(A) = max
j �=l

µ(k, l), µ(k, l) =
| �ak, al� |
|ak||al|

�1-minimization/regularization

Basis Pursuit: min �z�1, �Az− y�2 ≤ ε

Lasso: min
1

2
�Az− y�22 + λ�z�1



CS benefits
Sparse measurement: N << M 

 Non-asymptotic performance guarantee 

Effective algorithms 

Theorem (F&Liao) Suppose that

Bη(i) ∩Bη(j) = ∅, ∀i, j ∈ supp(x)

and that

η(2s− 1)
xmax

xmin
+

2�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)) and
moreover every nonzero component of x̂ is in the η-coherence band
of a unique nonzero component of x.

Theoretical resolution 2�. Independent of grid refinement!

Compression: for moderate SNR

η ∼
1√
N

, N ∼ s2x2max/x
2
min

RIP: N ∼ s

IP: N ∼ s2

9
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Gridding error

Gridding error inversely proportional to the refinement factor 
            F= coarse grid spacing / fine grid spacing

COHERENCE PATTERN–GUIDED COMPRESSIVE SENSING 181
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Figure 1. The relative gridding error is roughly inversely proportional to the refinement factor.

The mutual coherence of A is the maximum pairwise coherence among all pairs of columns

(8) µ(A) = max
k !=l

µ(k, l).

According to the theory of optimal recovery [14], for time sampling in [0, 1], the minimum
resolvable length in the frequency domain is unity. This is the Rayleigh threshold, and we shall
refer to this length as the Rayleigh length (RL). Hence for the traditional inversion methods
to work, it is essential that the grid spacing in G be no less than 1 RL. In the CS setting
the Rayleigh threshold is closely related to the decay property of the mutual coherence [21].
Moreover, for G ⊂ Z and uniformly randomly selected tk ∈ [0, 1] the corresponding matrix A
is a random partial Fourier matrix which has a decaying mutual coherence µ = O(N−1/2) and
satisfies RIP with high probability [8, 28].

Without any prior information about the object support, however, the gridding error for
the resolved grid can be as large as the data themselves, creating an unfavorable condition
for sparse reconstruction. To reduce the gridding error, it is natural to consider the fractional
grid

Z/F = {j/F : j ∈ Z}(9)

with some large integer F ∈ N called the refinement factor. Figure 1 shows that the relative
gridding error ‖d‖2/‖b‖2 is roughly inversely proportional to the refinement factor. The
mutual coherence, however, increases with F as the nearby columns of the sensing matrix
become highly correlated.

Figure 2(a) shows the coherence pattern [µ(j, k)] of a 100× 4000 matrix (4) with F = 20.
The bright diagonal band represents a heightened correlation (pairwise coherence) between a
column vector and its neighbors on both sides (about 30 elements). Figure 2(b) shows a half
cross section of the coherence band across 2 RLs. Sparse recovery with large F exceeds the
capability of currently known algorithms as the condition number of the 100 × 30 submatrix
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Gridding error is inversely proportional to refinement factor F

G = Z/F

.
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Peril of gridding error
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BP, off−grid fixing off, m=64, n=128, s=10, µ=0.30031, GERR=0.77017, FERR=1.9465

(a) BP
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(b) OMP
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(c) BPLOT
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(d) SCOMP

Figure 1. Recovery (blue crosses) of off-grid targets (red circles) by (a) BP,

(b) OMP with eq. (8)-(11) and (c) BPLOT, (d) SCOMP with eq. (16)-(19).

Fig. 4(a) shows the success rate (out of 100 independent trials) for various reconstruction

methods as the target sparsity varies with the exact support recovery as the criterion for

success. SCOMP is significantly better than BPLOT which in turn is slightly better than BP

applied to the system (35)-(37). All three are much better than either BP or OMP with the

system (30)-(33). Since the system (35)-(37) provides us with ζp but not {ξp} the nonlinear

least squares does not always improve the results of SCOMP. Fig. 4(b) shows the result

of SCOMP in terms of the combined index (29). Clearly the target support is accurately

recovered but the amplitudes are not, resulting in 43.2% relative error.

For the comparison of LC and QC we use the common parameters ω0 = 1000, T = m =

n = 67, ∆u = 1/m, ∆τ = 1. In addition,

• For LC, α1 = 1;

• For QC, α2 = 1/67, α1 = 0.

15
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Coherence pattern182 ALBERT FANNJIANG AND WENJING LIAO

pairwise coherence pattern

100*4000 matrix with F = 20 & coherence = 0.99566
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(b)

Figure 2. (a) Coherence pattern [µ(j, k)] for the 100×4000 matrix with F = 20. The off-diagonal elements
tend to diminish as the row number increases. The coherence band near the diagonals, however, persists and has
the average profile shown in (b), where the vertical axis is the pairwise coherence averaged over 100 independent
trials and the horizontal axis is the separation between two columns in the unit of RL.

corresponding to the coherence band in Figure 2 easily exceeds 1015. The high condition
number makes stable recovery impossible.

The difficulty with unresolved grids is not limited to the problem of spectral estimation
in signal processing. Indeed, the issue is intrinsic and fundamental to discretization of PDE-
based inverse problems such as remote sensing and medical imaging [10, 11, 25]. While Figure
2 is typical of the coherence pattern from discretization of a one-dimensional problem, in two
or three dimensions, the coherent pattern is more complicated than Figure 2. Nevertheless,
the coherence band typically reflects proximity in the physical space. The proximity between
the object support and its reconstruction can be described by the Bottleneck or the Hausdorff
distance [18]. More generally, coherent bands can arise in sparse and redundant representation
by overcomplete dictionaries (see section 6 for an example). Under this circumstance, the
Bottleneck or Hausdorff distance may not have a direct physical meaning.

In any case, the hope is that if the objects are sufficiently separated with respect to the
coherence band, then the problem of a huge condition number associated with unresolved grids
can somehow be circumvented and the object support can be approximately reconstructed.

Under this additional assumption of widely separated objects, we propose in the present
work several algorithmic approaches to recovery with unresolved grids and provide some per-
formance guarantee for these algorithms.

The paper is organized as follows. In section 2 we introduce the technique of band ex-
clusion (BE) to modify the Orthogonal Matching Pursuit (OMP) algorithm and obtain a
performance guarantee for the improved algorithm, called Band-excluded OMP (BOMP). In
section 3 we introduce the technique of local optimization (LO) and propose the algorithms
Locally Optimized OMP (LOOMP) and band-excluded LOOMP (BLOOMP). In section 4 we

12



Coherence BandCoherence band

Let η > 0. Define the η-coherence band of the index k to be the set

Bη(k) = {i | µ(i, k) > η},

and the η-coherence band of the index set S to be the set

Bη(S) = ∪k∈SBη(k).

Due to the symmetry µ(i, k) = µ(k, i), i ∈ Bη(k) if and only if k ∈
Bη(i).

Denote

B(2)
η (k) ≡ Bη(Bη(k)) = ∪j∈Bη(k)Bη(j)

B(2)
η (S) ≡ Bη(Bη(S)) = ∪k∈SB

(2)
η (k).

13



Greedy pursuit

14

pairwise coherence pattern

100*4000 matrix with F = 20 & coherence = 0.99566
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Coherence pattern Φ∗Φ for 100× 4000 matrix with F = 20 (left).

Algorithm Band-excluding Matched Thresholding (BMT)

Input: A,y, η > 0.

Initialization: S0 = ∅.
Iteration: For k = 1, ..., s,

1) ik = argmaxj |
�
y, aj

�
|, j /∈ B(2)

η (Sk−1).

2) Sk = Sk−1 ∪ {ik}
Output x̂ = argminz �Az− y�2 s.t. supp(z) ⊆ Ss



BMT performance guarantee 
Theorem (F&Liao) Suppose that

Bη(i) ∩Bη(j) = ∅, ∀i, j ∈ supp(x)

and that

η(2s− 1)
xmax

xmin
+

2�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)) and
moreover every nonzero component of x̂ is in the η-coherence band
of a unique nonzero component of x.

Theorem (F&Liao) Suppose that

Bη(i) ∩Bη(j) = ∅, ∀i, j ∈ supp(x)

and that

η(2s− 1)
xmax

xmin
+

2�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)) and
moreover every nonzero component of x̂ is in the η-coherence band
of a unique nonzero component of x.

Theoretical resolution 2�. Independent of grid refinement!

Compression: for moderate SNR

η ∼
1√
N

, N ∼ s2x2max/x
2
min 15



Sketch of proof

16

Let supp(x) = {J1, . . . , Js}. Let Jmax ∈ supp(x) be the index of the

largest component of x in absolute value.

On the one hand, for k = 1, ..., s,

|y�ak| = |x1a�1ak + ...+ xk−1a
�
k−1ak + xk + xk+1a

�
k+1ak +

...+ xsa�sak + e�ak|
≥ xmin − (s− 1)ηxmax − �e�2.

On the other hand, ∀l /∈ Bη(supp(x)),

|y�al| = |x1a�1al + x2a
�
2al + ...+ xsa�sal + e�al|

≤ xmaxsη + �e�2.



Band-excluding OMP (BOMP)

Band-excluded OMP

We make the following change to the matching step

imax = argmax
i

|
�
rn−1, ai

�
|, i /∈ B(2)

η (Sn−1
)

meaning that the double η-band of the estimated support in the

previous iteration is avoided in the current search. This is natural if

the sparsity pattern of the object is such that Bη(j), j ∈ supp(x) are

pairwise disjoint.

Algorithm 1. BOMP

Input: A,y, η > 0

Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = argmaxi |
�
rn−1, ai

�
|, i /∈ B(2)

η (Sn−1)

2) Sn = Sn−1 ∪ {imax}
3) xn = argminz �Az− y�2 s.t. supp(z) ∈ Sn

4) rn = y −Axn

Output: xs.

Two-dimensional case

17



BOMP performance guaranteePerformance guarantee

Theorem (F&Liao) Suppose that

Bη(i) ∩B(2)
η (j) = ∅, ∀i, j ∈ supp(x)

and that

(5s− 4) · η ·
xmax

xmin

+
5

2
·
�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BOMP reconstruction. Then supp(x̂) ⊆ Bη(supp(x))

and moreover every nonzero component of x̂ is in the η-coherence

band of a unique nonzero component of x.

Theorem (F&Liao) Suppose that

Bη(i) ∩Bη(j) = ∅, ∀i, j ∈ supp(x)

and that

η(2s− 1)
xmax

xmin
+

2�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)) and
moreover every nonzero component of x̂ is in the η-coherence band
of a unique nonzero component of x.

Theoretical resolution 3�. Numerical resolution ∼ 1�.

Independent of grid refinement!

Compression: s ∼
√
N

dynamic range, η ∼ 1√
N

for moderate SNR.
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Local optimization (LO)
Local optimization

Algorithm 2. Local Optimization (LO)

Input:A,y, η > 0, S0 = {i1, . . . , ik}.
Iteration: For n = 1,2, ..., k.

1)xn = arg minz �Az− y�2, supp(z) = Sn−1 ∪Bη(in).
2) Sn = supp(xn).

Output: Sk.

Algorithm 3. BLOOMP

Input: A,y, η > 0

Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = argmini |
�
rn−1, ai

�
|, i /∈ B(2)

η (Sn−1)

2) Sn = LO(Sn−1 ∪ {imax}).
3) xn = argminz �Az− y�2 s.t. supp(z) ∈ Sn

4) rn = y −Axn

Output: xs.

19



LO performance guarantee
BLOOMP: performance guarantee

Theorem (F& Liao) Let S0 and Sk be the input and output,

respectively, of the LO algorithm.

If

xmin > (ε+2(s− 1)η)

�
1

1− η
+

�
1

(1− η)2
+

1

1− η2

�

and each element of S0 is in the η-coherence band of a unique

nonzero component of x, then each element of Sk remains in the

η-coherence band of a unique nonzero component of x.

20



BLO-based CS-algorithmsBLO-based algorithms

BLO Subspace Pursuit (BLOSP)

BLO Co-SaMP (BLO-CoSaMP)

BLO Iterative Hard Thresholding (BLOIHT)

BP-BLOT

Lasso-BLOT

. . . . . . . . .

etc.

Constrained L1-minimization 

Unconstrained L1-minimization 

21



Comparison with BP
 Candes &  Fernandez-Granda 2012

• Requires target separation of at least 4 Rayleigh lengths (RLs)
• Fourier measurement 
• Error bound meaningful only with  SNR >> 1
• Error > 80% at F = 20 (gridding error ~ 5%) independent of SNR

22

Spectral CS: synthesis approach

Duarte-Baraniuk 2010: Spectral Iterated Hard Thresholding (SIHT)

y = Φx+ e = ΦDα+ e

where Φ is i.i.d. Gaussian matrix and D is an oversampled, redundant

DFT frame.

Model assumption: α is widely separated.

Performance metric:

�D(α− α̂)�
�Dα�

Error ≤ Constant ·F2· Noise



Algorithm 2. BLOOMP
Input: Φ, y, s = sparsity (number of spikes)
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s
1) imax = argmaxi |Φ∗

i r
n−1|, i /∈ Band(Sn−1)

2) Sn = LO(Sn−1 ∪ {imax})
where LO is the output of Algorithm 2.
3) xn = argminz �Φz − y� s.t. supp(z) ∈ Sn

4) rn = y − Φxn

Output: xs.

When the BLO technique is combined with
thresholding we have the Band-excluded, Locally
Optimized Thresholding (BLOT) which can be used
to enhance the performance of BP. The BLOT-
enhanced BP is called BP-BLOT (see Algorithm 3).

Algorithm 3. BLOT
Input: x, Φ, y, s = sparsity (number of spikes).
Initialization: S0 = ∅.
Iteration: For n = 1, 2, ..., s.

1) in = arg maxj |xj |, j �∈ Band(Sn−1).
2) Sn = Sn−1 ∪ {in}.

Output:
x̂ = argmin �Φz − y�2, supp(z) ⊆ LO(Ss),
where LO is the output of Algorithm 1.

Note that BLOOMP and BP-BLOT require the
prior information of the sparsity.

III. FILTERED ERROR METRIC

The second drawback of (3) is that the discrete
norm used in (3) does not take into account of the
degree of separation between the estimated support
and the true support as measured by the Hausdorff
distance or the Bottleneck distance. The discrete
norm treats any amount of support offset equally.

An easy remedy to the injudicious treatment of
support offset is to use instead the filtered error
norm �x̂η − xη�, where xη and x̂η are, respectively,
x and x̂ convoluted with an approximate delta-
function of width 2η.

If every spike of x̂ is within η distance from
a spike of x and if the amplitude differences are
small, then the η-filtered error is small. The filter
parameter η represents the level of tolerance for
the support off-set in a specific context. The
filtered error plot, as η and noise level vary, will
give a more accurate and complete picture of
the super-resolution effect. We will demonstrate
the utility of the filtered norm in the numerical tests.
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(d) BP-BLOT

Figure 1: Reconstructions of the real part of 20 ran-
domly phased spikes with R = 1 (minimum distance
4�), F = 50, SNR = 20.

IV. NUMERICAL TESTS

In all our tests, we use 150 × N partial Fourier
matrices (2) where N = 150F for various F and
k = 0, 1, 2, · · · , 149. In this setting, � = 1/150.

For a demonstration of grid-independent recovery,
Fig.1 shows reconstructions of 20 spikes separated by
at least 4� ( R = 1) by using OMP, BP, BLOOMP
and BP-BLOT with noisy (5%) Fourier data. For
this simulation, F = 50. We use the open-source
code YALL1 (http://yall1.blogs.rice.edu/) to
find the BP solution.

In this test, OMP tends to miss small spikes.
BLOOMP, however, approximately recover the sup-
port and magnitudes of the spikes. While the BP re-
construction tends to cluster around the true spikes,
BP-BLOT dramatically improves the performance.
BLOOMP and BP-BLOT have a similarly superior
performance which is essentially independent of F .
BLOOMP and BP-BLOT also perform much bet-
ter than other existing schemes (see Ref. [5, 4] for
systematic comparison).

More quantitatively, the BLO technique reduces
the unfiltered error 144% and 0.1-filtered error 45%
for OMP to 39% and 6%, respectively, for BLOOMP.
The BLOT technique reduces the unfiltered error
159% and 0.1-filtered error 29% for BP to 39% and
6%, respectively, for BP-BLOT.

Fig.2 shows the filtered error with η = 0&0.05�
versus F for 20 well separated spikes with 1, 5, 10%

• 20 random-phased,well-
separated  targets
• Real-parts shown
• F=50
• SNR=20
• Accuracy of BLOOMP & 
BP-BLOT is a few % RL
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(a) SNR=100, η = 0

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

refinement factor F

a
ve

ra
g

e
 r

e
la

tiv
e

 f
ilt

e
re

d
 e

rr
o

r 
in

 5
0

 t
ri
a

ls

relative 0.05−filtered error versus F

 

 
OMP
BLOOMP
BPDN
BPDN−BLOT

(b) SNR=100, η = 0.05�
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(c) SNR=20, η = 0
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(d) SNR=20, η = 0.05�
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05�

Figure 2: Relative errors in reconstruction by OMP,

BLOOMP, BP and BP-BLOT versus the super-

resolution factor.

Gaussian noises. It is noteworthy that the error

curves for OMP and BP are essentially independent

of SNR when F ≥ 15. This may be due to the sen-

sitivity of the algorithms to the round-off error for

large F .

Also, the power-law amplification (PLA) regimes

for OMP and BP are not affected by the filtration

with η = 0.05�. The PLA regime for BP is about

F < 20 (F < 5 for OMP) while the PLA regimes

for BLOOMP and BP-BLOT are much milder and

slower growing.

If we set the relative error equal to, say thrice the

noise level as the threshold of successful recovery,

then in terms of either the unfiltered or filtered er-

ror OMP and BPDN fail for F > 10 while BLOOMP

and BP-BLOT succeed for all F in terms of the

filtered error, achieving grid-independent recovery.

This remains true for a lower error threshold if the

filtration parameter η is increased.

Next we test the strong form of super-resolution
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(b) BLOOMP
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(c) BP
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(d) BP-BLOT

Figure 3: Reconstructions of 5 randomly phased

spikes located at 76, 76.5, 79, 80, 81� (R = 5) with

F = 50, SNR = 20.

with spikes separated by sub-Rayleigh length. As

mentioned before, in this case the spikes can fall into

one another’s coherence band, thus confusing the re-

covery. In this case the excluded zones in Algorithms

1, 2 and 3 are not coherence bands of previously de-

tected spikes but smaller zones whose size is set to

be half the least separation of spikes (Remark 1).

Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-

domly phased spikes (S = {76, 76.5, 79, 80, 81�})
while Fig.4 shows the reconstructions of 6

complex spikes of positive real parts (S =

{10, 10.3, 15, 20, 25, 25.3�}) by OMP, BP, BLOOMP

and BP-BLOT. According to the definition (4) the

former set has Rayleigh index 5 and the latter set has

Rayleigh index 6. Clearly, only BP-BLOT performs

reasonably well in both cases.

Several observations are in order. First, when

some spikes are separated by less than �, the BLO

technique may not improve on the OMP reconstruc-

tions. Second, the BLOT technique improves on

the BP reconstructions, especially for the Bottleneck

distance of support offset, achieving the accuracy of

0.04� in both Fig.3 and Fig.4. Third, the filtered er-

rors for BP-BLOT (15% with η = 0.25� in Fig.3(d)

and 18% with η = 0.1� in Fig.4(d)) are much smaller

than the unfiltered errors (199% in Fig.3(d) and 75%

in Fig.4(d)). Fig.3 (d) most clearly demonstrates the

inadequacy of the unfiltered norm as the error metric

for spike recovery.
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(a) SNR=100, η = 0
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(b) SNR=100, η = 0.05�
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(c) SNR=20, η = 0
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(d) SNR=20, η = 0.05�
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05�

Figure 2: Relative errors in reconstruction by OMP,

BLOOMP, BP and BP-BLOT versus the super-

resolution factor.

Gaussian noises. It is noteworthy that the error

curves for OMP and BP are essentially independent

of SNR when F ≥ 15. This may be due to the sen-

sitivity of the algorithms to the round-off error for

large F .

Also, the power-law amplification (PLA) regimes

for OMP and BP are not affected by the filtration

with η = 0.05�. The PLA regime for BP is about

F < 20 (F < 5 for OMP) while the PLA regimes

for BLOOMP and BP-BLOT are much milder and

slower growing.

If we set the relative error equal to, say thrice the

noise level as the threshold of successful recovery,

then in terms of either the unfiltered or filtered er-

ror OMP and BPDN fail for F > 10 while BLOOMP

and BP-BLOT succeed for all F in terms of the

filtered error, achieving grid-independent recovery.

This remains true for a lower error threshold if the

filtration parameter η is increased.

Next we test the strong form of super-resolution
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(b) BLOOMP
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(c) BP
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(d) BP-BLOT

Figure 3: Reconstructions of 5 randomly phased

spikes located at 76, 76.5, 79, 80, 81� (R = 5) with

F = 50, SNR = 20.

with spikes separated by sub-Rayleigh length. As

mentioned before, in this case the spikes can fall into

one another’s coherence band, thus confusing the re-

covery. In this case the excluded zones in Algorithms

1, 2 and 3 are not coherence bands of previously de-

tected spikes but smaller zones whose size is set to

be half the least separation of spikes (Remark 1).

Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-

domly phased spikes (S = {76, 76.5, 79, 80, 81�})
while Fig.4 shows the reconstructions of 6

complex spikes of positive real parts (S =

{10, 10.3, 15, 20, 25, 25.3�}) by OMP, BP, BLOOMP

and BP-BLOT. According to the definition (4) the

former set has Rayleigh index 5 and the latter set has

Rayleigh index 6. Clearly, only BP-BLOT performs

reasonably well in both cases.

Several observations are in order. First, when

some spikes are separated by less than �, the BLO

technique may not improve on the OMP reconstruc-

tions. Second, the BLOT technique improves on

the BP reconstructions, especially for the Bottleneck

distance of support offset, achieving the accuracy of

0.04� in both Fig.3 and Fig.4. Third, the filtered er-

rors for BP-BLOT (15% with η = 0.25� in Fig.3(d)

and 18% with η = 0.1� in Fig.4(d)) are much smaller

than the unfiltered errors (199% in Fig.3(d) and 75%

in Fig.4(d)). Fig.3 (d) most clearly demonstrates the

inadequacy of the unfiltered norm as the error metric

for spike recovery.
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(a) SNR=100, η = 0
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(b) SNR=100, η = 0.05�
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(c) SNR=20, η = 0
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(d) SNR=20, η = 0.05�
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05�

Figure 2: Relative errors in reconstruction by OMP,

BLOOMP, BP and BP-BLOT versus the super-

resolution factor.

Gaussian noises. It is noteworthy that the error

curves for OMP and BP are essentially independent

of SNR when F ≥ 15. This may be due to the sen-

sitivity of the algorithms to the round-off error for

large F .

Also, the power-law amplification (PLA) regimes

for OMP and BP are not affected by the filtration

with η = 0.05�. The PLA regime for BP is about

F < 20 (F < 5 for OMP) while the PLA regimes

for BLOOMP and BP-BLOT are much milder and

slower growing.

If we set the relative error equal to, say thrice the

noise level as the threshold of successful recovery,

then in terms of either the unfiltered or filtered er-

ror OMP and BPDN fail for F > 10 while BLOOMP

and BP-BLOT succeed for all F in terms of the

filtered error, achieving grid-independent recovery.

This remains true for a lower error threshold if the

filtration parameter η is increased.

Next we test the strong form of super-resolution
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(d) BP-BLOT

Figure 3: Reconstructions of 5 randomly phased

spikes located at 76, 76.5, 79, 80, 81� (R = 5) with

F = 50, SNR = 20.

with spikes separated by sub-Rayleigh length. As

mentioned before, in this case the spikes can fall into

one another’s coherence band, thus confusing the re-

covery. In this case the excluded zones in Algorithms

1, 2 and 3 are not coherence bands of previously de-

tected spikes but smaller zones whose size is set to

be half the least separation of spikes (Remark 1).

Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-

domly phased spikes (S = {76, 76.5, 79, 80, 81�})
while Fig.4 shows the reconstructions of 6

complex spikes of positive real parts (S =

{10, 10.3, 15, 20, 25, 25.3�}) by OMP, BP, BLOOMP

and BP-BLOT. According to the definition (4) the

former set has Rayleigh index 5 and the latter set has

Rayleigh index 6. Clearly, only BP-BLOT performs

reasonably well in both cases.

Several observations are in order. First, when

some spikes are separated by less than �, the BLO

technique may not improve on the OMP reconstruc-

tions. Second, the BLOT technique improves on

the BP reconstructions, especially for the Bottleneck

distance of support offset, achieving the accuracy of

0.04� in both Fig.3 and Fig.4. Third, the filtered er-

rors for BP-BLOT (15% with η = 0.25� in Fig.3(d)

and 18% with η = 0.1� in Fig.4(d)) are much smaller

than the unfiltered errors (199% in Fig.3(d) and 75%

in Fig.4(d)). Fig.3 (d) most clearly demonstrates the

inadequacy of the unfiltered norm as the error metric

for spike recovery.
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(a) SNR=100, η = 0
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(b) SNR=100, η = 0.05�
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(c) SNR=20, η = 0
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(d) SNR=20, η = 0.05�
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05�

Figure 2: Relative errors in reconstruction by OMP,

BLOOMP, BP and BP-BLOT versus the super-

resolution factor.

Gaussian noises. It is noteworthy that the error

curves for OMP and BP are essentially independent

of SNR when F ≥ 15. This may be due to the sen-

sitivity of the algorithms to the round-off error for

large F .

Also, the power-law amplification (PLA) regimes

for OMP and BP are not affected by the filtration

with η = 0.05�. The PLA regime for BP is about

F < 20 (F < 5 for OMP) while the PLA regimes

for BLOOMP and BP-BLOT are much milder and

slower growing.

If we set the relative error equal to, say thrice the

noise level as the threshold of successful recovery,

then in terms of either the unfiltered or filtered er-

ror OMP and BPDN fail for F > 10 while BLOOMP

and BP-BLOT succeed for all F in terms of the

filtered error, achieving grid-independent recovery.

This remains true for a lower error threshold if the

filtration parameter η is increased.

Next we test the strong form of super-resolution
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(d) BP-BLOT

Figure 3: Reconstructions of 5 randomly phased

spikes located at 76, 76.5, 79, 80, 81� (R = 5) with

F = 50, SNR = 20.

with spikes separated by sub-Rayleigh length. As

mentioned before, in this case the spikes can fall into

one another’s coherence band, thus confusing the re-

covery. In this case the excluded zones in Algorithms

1, 2 and 3 are not coherence bands of previously de-

tected spikes but smaller zones whose size is set to

be half the least separation of spikes (Remark 1).

Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-

domly phased spikes (S = {76, 76.5, 79, 80, 81�})
while Fig.4 shows the reconstructions of 6

complex spikes of positive real parts (S =

{10, 10.3, 15, 20, 25, 25.3�}) by OMP, BP, BLOOMP

and BP-BLOT. According to the definition (4) the

former set has Rayleigh index 5 and the latter set has

Rayleigh index 6. Clearly, only BP-BLOT performs

reasonably well in both cases.

Several observations are in order. First, when

some spikes are separated by less than �, the BLO

technique may not improve on the OMP reconstruc-

tions. Second, the BLOT technique improves on

the BP reconstructions, especially for the Bottleneck

distance of support offset, achieving the accuracy of

0.04� in both Fig.3 and Fig.4. Third, the filtered er-

rors for BP-BLOT (15% with η = 0.25� in Fig.3(d)

and 18% with η = 0.1� in Fig.4(d)) are much smaller

than the unfiltered errors (199% in Fig.3(d) and 75%

in Fig.4(d)). Fig.3 (d) most clearly demonstrates the

inadequacy of the unfiltered norm as the error metric

for spike recovery.
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Figure 4: Success rate versus number of measurements (left, dynamic range 5, zero noise) and dynamic range
(right, 1% noise) for OMP, BOMP and BLOOMP.

For the rest of simulations, we show the percentage of successes in 100 independent trials. A reconstruction
is counted as a success if every reconstructed object is within 1 !R of the object support. This is equivalent
to the criterion that the Bottleneck distance between the true support and the reconstructed support is less
than 1 !R. The result is shown in Figure 4. With 10 objects of dynamic range 5, BLOOMP requires the least
number of measurements, followed by BOMP and then OMP, which does not achieve high success rate even
with 100 measurements (left panel). With 100 measurements (N = 100) and 1% noise, BLOOMP can handle
dynamic range up to 120 while BOMP and OMP can handle dynamic range about 5 and 1, respectively.

For the second example (11)-(12), we test, in addition to our algorithms, the method proposed by Duarte
and Baraniuk5 and the analysis approach of frame-adapted Basis Pursuit2,6.

The algorithm, Spectral Iterative Hard Thresholding (SIHT)5, assumes the model-based RIP which, in
spirit, is equivalent to the assumption of well separated support in the synthesis coefficients and therefore
resembles closely to our approach.

While SIHT is a synthesis method like BOMP and BLOOMP, the frame-adapted BP

min‖Ψ!z‖1 s.t ‖Φz− b‖2 ≤ ‖e‖2, (19)

is the analysis approach6. Candès et al.2 have established a performance guarantee for (19) provided that
the measurement matrix Φ satisfies the frame-adapted RIP:

(1− δ)‖Ψz‖2 ≤ ‖ΦΨz‖2 ≤ (1 + δ)‖Ψz‖2, ‖z‖0 ≤ 2s (20)

for a tight frameΨ and a sufficiently small δ and that the analysis coefficientsΨ∗y are sparse or compressible.
Instead of the synthesis coefficients x, however, the quantities of interest are y. Accordingly we measure

the performance by the relative error ‖ŷ− y‖2/‖y‖2 averaged over 100 independent trials. In each trial, 10
randomly phased and located objects (i.e. x) of dynamic range 10 and i.i.d. Gaussian Φ are generated. We
set N = 100, R = 200, F = 20 for test of noise stability and vary N for test of measurement compression.

As shown in Figure 5, BLOOMP is the best performer in noise stability (left panel) and measurement com-
pression (right panel). BLOOMP requires about 40 measurements to achieve nearly perfect reconstruction
while the other methods require more than 200 measurements. Despite the powerful error bound established
in [2], the analysis approach (19) needs more than 200 measurements for accurate recovery because the
analysis coefficients Ψ∗y are typically not sparse. Here redundancy F = 20 produces about 2F = 40 highly
coherent columns around each synthesis coefficient and hence Ψ∗y has about 400 significant components. In
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Numerical results

For two subsets A and B in Rd of the same cardinality, the Bottleneck
distance dB(A,B) is defined as

dB(A,B) = min
f∈M

max
a∈A

|a− f(a)|

where M is the collection of all one-to-one mappings from A to B.
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Performance vs. target range
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LO dramatically improves the performance w.r.t. dynamic range
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CS with highly redundant dictionary

Spectral CS: synthesis approach

Duarte-Baraniuk 2010: Spectral Iterated Hard Thresholding (SIHT)

y = Φx+ e = ΦDα+ e

where Φ is i.i.d. Gaussian matrix and D is an oversampled, redundant

DFT frame.

Model assumption: α is widely separated.

Performance metric:

�D(α− α̂)�
�Dα�

Spectral CS: synthesis approach

Duarte-Baraniuk 2010: Spectral Iterated Hard Thresholding (SIHT)

y = Φx+ e = ΦDα+ e

where Φ is i.i.d. Gaussian matrix and D is an oversampled, redundant

DFT frame.

Model assumption: α is widely separated.

Performance metric:

�D(α− α̂)�
�Dα�
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Coherence pattern

•Coherence band of the dictionary 
•Coherence band of the sensing matrix 
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Analysis approach: Frame-baed BP

29

1) Frame-adapted RIP 

Frame-adapted BP: analysis approach

Candes-Eldar-Needel-Randal 2011:

min
z

�D∗z�1, �Az− y�2 ≤ ε, A = ΦD

Assumptions: (i) A satisfies frame-adapted RIP

(1− δ)�Dz�22 ≤ �Az�22 ≤ (1 + δ)�Dz�22, �z�0 ≤ 2s

(ii) D∗z is sparse ≥ s× r, r = redundancy of dictionary.

Candes-Eldar-Needel-Randal 2011 

Assumptions: 
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Frame-adapted BP: analysis approach

Candes-Eldar-Needel-Randal 2011:

min
z

�D∗z�1, �Az− y�2 ≤ ε, A = ΦD

Assumptions: (i) A satisfies frame-adapted RIP

(1− δ)�Dz�22 ≤ �Az�22 ≤ (1 + δ)�Dz�22, �z�0 ≤ 2s

(ii) D∗z is sparse ≥ s× r, r = redundancy of dictionary.

2) sparsity or compressibility
 of analysis coefficients  

But, unless with a tight frame, analysis coefficients have long tail



Analysis approach: Spectral CS

30

 Duarte-Baraniuk 2012:  model-based CS (SIHT)
Two-dimensional case

xn+1 = Ts(xn +Φ∗(y −Φxn))

Coherence-inhibiting structured sparse approximation  
is implemented by the heuristics of selecting the s 
largest, well separated analysis coefficients.

IHT:
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Figure 5: Relative errors versus relative noise (left) and number of measurements (right, zero noise) for
dynamic range 10.

general, the sparsity of the analysis coefficients is at least 2sF where s is the sparsity of the widely separated
synthesis coefficients and F is the redundancy. Thus according to the error bound of [2] the performance of
the analysis approach (19) would degrade with the redundancy of the dictionary.

To understand the superior performance of BLOOMP in this set-up let us give an error bound using (18)
and (20)

‖Ψ(x− x̂)‖2 ≤ 1

1− δ
‖A(x− x̂)‖2 ≤ 1

1− δ
‖b− e−Ax̂‖2 ≤ 1 + c

1− δ
‖e‖2 (21)

where x̂ is the output of BLOOMP. This implies that the reconstruction error of BLOOMP is essentially
determined by the external noise, consistent with the left and right panels of Figure 5, and is independent
of the dictionary redundancy if Corollary 1 holds. In comparison, the BOMP result appears to approach an
asymptote of nonzero (∼ 10%) error. This demonstrates the effect of local optimization technique in reducing
error. The advantage of BLOOMP over BOMP, however, disappears in the presence of large external noise
(left panel).

5. CONCLUSION

We have proposed algorithms, BOMP and BLOOMP, for sparse recovery with highly coherent, redun-
dant sensing matrices and have established performance guarantee that is redundancy independent. These
algorithms have a sparsity constraint and computational cost similar to OMP’s. Our work is inspired by
the redundancy-independent performance guarantee recently established for the MUSIC algorithm for array
processing.7

Our algorithms are based on variants of OMP enhanced by two novel techniques: band exclusion and local
optimization. We have extended these techniques to various CS algorithms, including Lasso, and performed
systematic tests elsewhere8.

Numerical results demonstrate the superiority of BLO-based algorithms for reconstruction of sparse ob-
jects separated by above the Rayleigh threshold.
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Super-resolution w. Fourier measurement 

Super-Resolution by Compressive Sensing
Algorithms

Albert Fannjiang∗, Wenjing Liao
Department of Mathematics

UC Davis, CA 95616-8633.

Abstract - In this work, super-resolution by

4 compressive sensing methods (OMP, BP,

BLOOMP, BP-BLOT) with highly coherent par-
tial Fourier measurements is comparatively stud-

ied.

An alternative metric more suitable for gaug-

ing the quality of spike recovery is introduced and

based on the concept of filtration with a parame-

ter representing the level of tolerance for support

offset.

In terms of the filtered error norm only

BLOOMP and BP-BLOT can perform grid-

independent recovery of well separated spikes

of Rayleigh index 1 for arbitrarily large super-

resolution factor. Moreover both BLOOMP and

BP-BLOT can localize spike support within a few

percent of the Rayleigh length. This is a weak

form of super-resolution.

Only BP-BLOT can achieve this feat for

closely spaced spikes separated by a fraction of

the Rayleigh length, a strong form of super-

resolution.

I. INTRODUCTION

Superresolution as Fourier spectrum extrapola-
tion (i.e. uncovering high spatial frequency compo-
nents from low spatial frequency data) is typically an
ill-posed process and prone to extreme instability to
noise, unless additional prior knowledge and/or mul-
tiple data sets are available. Many techniques have
been proposed in the literature but few have robust
performances and rigorous foundation.

A basic result in super-resolution with Fourier
measurements is given by Ref. [3] (see also Ref.
[1]). In the present work we discuss the strengths
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and weaknesses of this result and give a numerical
assessment of the super-resolution capability of com-
pressive sensing (CS) algorithms.

First let us review the set-up of Fourier mea-
surements of grid-bound spikes. Consider the noisy
Fourier data y = Φx+ e of a grid-bound spike train

x(t) =
N−1�

l=0

x(l)δ(t− l

N
) (1)

on a fine grid of spacingN−1 with the sensing matrix
element

Φkl = e−2πikl/N , k ∈ [0, N/F ). (2)

When F > 1, one is confronted with the prob-
lem of retrieving the fine scale structure of x from a
coarse scale information only. The Rayleigh resolu-
tion length � associated with the Fourier data is the
reciprocal of the observed bandwidth in (2). The
ratio F of the Rayleigh length to the fine grid spac-
ing is the super-resolution factor Ref. [1, 3] or the
refinement factor Ref. [4, 5].

According to Ref. [3], any grid-bound spike train
of the form (1) that is consistent with the Fourier
data over the frequency band [0, N/F ) deviates from
the true solution by

Error ≤ Constant ·Fα· Noise, α ≤ 2R+ 1 (3)

where

R(S) = min

�
r : r ≥ sup

t
#(S ∩ [t, t+ 4�r))

�
(4)

is the Rayleigh index of the support set S of x. As
explained in Ref. [3], a set has Rayleigh index at
most R if in any interval of length 4� · R there are
at most R spikes.
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and weaknesses of this result and give a numerical
assessment of the super-resolution capability of com-
pressive sensing (CS) algorithms.

First let us review the set-up of Fourier mea-
surements of grid-bound spikes. Consider the noisy
Fourier data y = Φx+ e of a grid-bound spike train

x(t) =
N−1�

l=0

x(l)δ(t− l

N
) (1)

on a fine grid of spacingN−1 with the sensing matrix
element

Φkl = e−2πikl/N , k ∈ [0, N/F ). (2)

When F > 1, one is confronted with the prob-
lem of retrieving the fine scale structure of x from a
coarse scale information only. The Rayleigh resolu-
tion length � associated with the Fourier data is the
reciprocal of the observed bandwidth in (2). The
ratio F of the Rayleigh length to the fine grid spac-
ing is the super-resolution factor Ref. [1, 3] or the
refinement factor Ref. [4, 5].

According to Ref. [3], any grid-bound spike train
of the form (1) that is consistent with the Fourier
data over the frequency band [0, N/F ) deviates from
the true solution by

Error ≤ Constant ·Fα· Noise, α ≤ 2R+ 1 (3)

where

R(S) = min

�
r : r ≥ sup

t
#(S ∩ [t, t+ 4�r))

�
(4)

is the Rayleigh index of the support set S of x. As
explained in Ref. [3], a set has Rayleigh index at
most R if in any interval of length 4� · R there are
at most R spikes.

Donoho 1992: optimal recovery theory, no explicit algorithm

Rayleigh index
Discrete error norm≤ Constant ·Fα· Noise, α ≤ 2R+1

Rayleigh index of a set S is at most r if every interval of length 4�r
contains at most r points in S. R(S) is the smallest of such r.
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(a) SNR=100, η = 0
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(b) SNR=100, η = 0.05�
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(c) SNR=20, η = 0
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05�

Figure 2: Relative errors in reconstruction by OMP,

BLOOMP, BP and BP-BLOT versus the super-

resolution factor.

Gaussian noises. It is noteworthy that the error

curves for OMP and BP are essentially independent

of SNR when F ≥ 15. This may be due to the sen-

sitivity of the algorithms to the round-off error for

large F .

Also, the power-law amplification (PLA) regimes

for OMP and BP are not affected by the filtration

with η = 0.05�. The PLA regime for BP is about

F < 20 (F < 5 for OMP) while the PLA regimes

for BLOOMP and BP-BLOT are much milder and

slower growing.

If we set the relative error equal to, say thrice the

noise level as the threshold of successful recovery,

then in terms of either the unfiltered or filtered er-

ror OMP and BPDN fail for F > 10 while BLOOMP

and BP-BLOT succeed for all F in terms of the

filtered error, achieving grid-independent recovery.

This remains true for a lower error threshold if the

filtration parameter η is increased.

Next we test the strong form of super-resolution
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Figure 3: Reconstructions of 5 randomly phased

spikes located at 76, 76.5, 79, 80, 81� (R = 5) with

F = 50, SNR = 20.

with spikes separated by sub-Rayleigh length. As

mentioned before, in this case the spikes can fall into

one another’s coherence band, thus confusing the re-

covery. In this case the excluded zones in Algorithms

1, 2 and 3 are not coherence bands of previously de-

tected spikes but smaller zones whose size is set to

be half the least separation of spikes (Remark 1).

Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-

domly phased spikes (S = {76, 76.5, 79, 80, 81�})
while Fig.4 shows the reconstructions of 6

complex spikes of positive real parts (S =

{10, 10.3, 15, 20, 25, 25.3�}) by OMP, BP, BLOOMP

and BP-BLOT. According to the definition (4) the

former set has Rayleigh index 5 and the latter set has

Rayleigh index 6. Clearly, only BP-BLOT performs

reasonably well in both cases.

Several observations are in order. First, when

some spikes are separated by less than �, the BLO

technique may not improve on the OMP reconstruc-

tions. Second, the BLOT technique improves on

the BP reconstructions, especially for the Bottleneck

distance of support offset, achieving the accuracy of

0.04� in both Fig.3 and Fig.4. Third, the filtered er-

rors for BP-BLOT (15% with η = 0.25� in Fig.3(d)

and 18% with η = 0.1� in Fig.4(d)) are much smaller

than the unfiltered errors (199% in Fig.3(d) and 75%

in Fig.4(d)). Fig.3 (d) most clearly demonstrates the

inadequacy of the unfiltered norm as the error metric

for spike recovery.

5 random-phased spikes at 76, 76.5, 79, 80, 81 (R=5) with F=50, SNR=20
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Figure 4: Reconstructions of the real parts of 5

complex spikes located at 10, 10.3, 15, 20, 25, 25.3�
(R = 6) with F = 50, SNR = 20.

Zooming in on the two pairs of closely spaced

spikes in Fig.4(c) will give us a better sense of

how the BLOT technique achieves the feat of super-

resolution (see Fig.5). BLOT capitalizes on the ten-

dency of BP spikes to mushroom around the true

spikes and use the extra prior information (sparsity

and minimum separation) to prune and grow the re-

construction.

Finally, unlike the case of Rayleigh index 1 in

Fig.1, the BLOT technique slightly increases the

residuals (from 4.97% to 4.98% in Fig.3 and 4.99%

to 5.13% in Fig.4) to achieve the super-resolution

effect. In contrast, the BLO technique always

reduces the residuals which may not help recovery

of spikes separated by sub-Rayleigh length.

V. CONCLUSION

We have argued that the discrete unfiltered norm

is not a proper error metric for spike recovery since

the offset of the support recovery is not accounted for

and that a filtered error norm may be used instead.

We have demonstrated that both BLOOMP and

BP-BLOT can recover well separated spikes in terms

of the filtered error norm as well as localize the spikes

within a few percent of the Rayleigh length, indepen-
dent of the super-resolution factor. This is a weak

form of super-resolution.

When some spikes are closely spaced below the

Rayleigh length, only BP-BLOT can localize the
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Figure 5: Zoom-ins of the closely spaced spikes in

Fig.4(c).

spikes within a few percent of �. The performance

can be further enhanced by increasing the number

of Fourier data within the same bandwidth, moving

from the under-sampling to the full and even over-

sampling regimes (not shown).

Our numerical tests show that the super-

resolution factor and the Rayleigh index are not the

only factors at play. The minimum separation, the

range of spike values and overall configuration also

affect super-resolution results.
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Figure 4: Reconstructions of the real parts of 5

complex spikes located at 10, 10.3, 15, 20, 25, 25.3�
(R = 6) with F = 50, SNR = 20.

Zooming in on the two pairs of closely spaced

spikes in Fig.4(c) will give us a better sense of

how the BLOT technique achieves the feat of super-

resolution (see Fig.5). BLOT capitalizes on the ten-

dency of BP spikes to mushroom around the true

spikes and use the extra prior information (sparsity

and minimum separation) to prune and grow the re-

construction.

Finally, unlike the case of Rayleigh index 1 in

Fig.1, the BLOT technique slightly increases the

residuals (from 4.97% to 4.98% in Fig.3 and 4.99%

to 5.13% in Fig.4) to achieve the super-resolution

effect. In contrast, the BLO technique always

reduces the residuals which may not help recovery

of spikes separated by sub-Rayleigh length.

V. CONCLUSION

We have argued that the discrete unfiltered norm

is not a proper error metric for spike recovery since

the offset of the support recovery is not accounted for

and that a filtered error norm may be used instead.

We have demonstrated that both BLOOMP and

BP-BLOT can recover well separated spikes in terms

of the filtered error norm as well as localize the spikes

within a few percent of the Rayleigh length, indepen-
dent of the super-resolution factor. This is a weak

form of super-resolution.

When some spikes are closely spaced below the

Rayleigh length, only BP-BLOT can localize the
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Figure 5: Zoom-ins of the closely spaced spikes in

Fig.4(c).

spikes within a few percent of �. The performance

can be further enhanced by increasing the number

of Fourier data within the same bandwidth, moving

from the under-sampling to the full and even over-

sampling regimes (not shown).

Our numerical tests show that the super-

resolution factor and the Rayleigh index are not the

only factors at play. The minimum separation, the

range of spike values and overall configuration also

affect super-resolution results.
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Figure 4: Reconstructions of the real parts of 5

complex spikes located at 10, 10.3, 15, 20, 25, 25.3�
(R = 6) with F = 50, SNR = 20.

Zooming in on the two pairs of closely spaced

spikes in Fig.4(c) will give us a better sense of

how the BLOT technique achieves the feat of super-

resolution (see Fig.5). BLOT capitalizes on the ten-

dency of BP spikes to mushroom around the true

spikes and use the extra prior information (sparsity

and minimum separation) to prune and grow the re-

construction.

Finally, unlike the case of Rayleigh index 1 in

Fig.1, the BLOT technique slightly increases the

residuals (from 4.97% to 4.98% in Fig.3 and 4.99%

to 5.13% in Fig.4) to achieve the super-resolution

effect. In contrast, the BLO technique always

reduces the residuals which may not help recovery

of spikes separated by sub-Rayleigh length.

V. CONCLUSION

We have argued that the discrete unfiltered norm

is not a proper error metric for spike recovery since

the offset of the support recovery is not accounted for

and that a filtered error norm may be used instead.

We have demonstrated that both BLOOMP and

BP-BLOT can recover well separated spikes in terms

of the filtered error norm as well as localize the spikes

within a few percent of the Rayleigh length, indepen-
dent of the super-resolution factor. This is a weak

form of super-resolution.

When some spikes are closely spaced below the

Rayleigh length, only BP-BLOT can localize the
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Figure 5: Zoom-ins of the closely spaced spikes in

Fig.4(c).

spikes within a few percent of �. The performance

can be further enhanced by increasing the number

of Fourier data within the same bandwidth, moving

from the under-sampling to the full and even over-

sampling regimes (not shown).

Our numerical tests show that the super-

resolution factor and the Rayleigh index are not the

only factors at play. The minimum separation, the

range of spike values and overall configuration also

affect super-resolution results.
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(R = 6) with F = 50, SNR = 20.

Zooming in on the two pairs of closely spaced

spikes in Fig.4(c) will give us a better sense of

how the BLOT technique achieves the feat of super-

resolution (see Fig.5). BLOT capitalizes on the ten-

dency of BP spikes to mushroom around the true

spikes and use the extra prior information (sparsity

and minimum separation) to prune and grow the re-

construction.

Finally, unlike the case of Rayleigh index 1 in

Fig.1, the BLOT technique slightly increases the

residuals (from 4.97% to 4.98% in Fig.3 and 4.99%

to 5.13% in Fig.4) to achieve the super-resolution

effect. In contrast, the BLO technique always

reduces the residuals which may not help recovery

of spikes separated by sub-Rayleigh length.

V. CONCLUSION

We have argued that the discrete unfiltered norm

is not a proper error metric for spike recovery since

the offset of the support recovery is not accounted for

and that a filtered error norm may be used instead.

We have demonstrated that both BLOOMP and

BP-BLOT can recover well separated spikes in terms

of the filtered error norm as well as localize the spikes

within a few percent of the Rayleigh length, indepen-
dent of the super-resolution factor. This is a weak

form of super-resolution.

When some spikes are closely spaced below the

Rayleigh length, only BP-BLOT can localize the
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Figure 5: Zoom-ins of the closely spaced spikes in

Fig.4(c).

spikes within a few percent of �. The performance

can be further enhanced by increasing the number

of Fourier data within the same bandwidth, moving

from the under-sampling to the full and even over-

sampling regimes (not shown).

Our numerical tests show that the super-

resolution factor and the Rayleigh index are not the

only factors at play. The minimum separation, the

range of spike values and overall configuration also

affect super-resolution results.
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High resolution illumination

(a) error = 7.05%
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(b) residual = 0.88%
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(c) shift(red)

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 50 regular shifts.

(d) error = 6.52%
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(e) residual = 0.84%
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(f) shift(red)

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 50 regular shifts.

(g) error = 6.00%
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(h) residual = 0.72%
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(i) shift(red)

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 50 random shifts.

Figure 2: Mask shift: 50 regular or random shifts.
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F=10, OR=2, # random shifts=50
# data = 2 # pixels

6% error, 0.7% residual
(a) error = 0.0001%
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(b) relative residual, residual = 0.00005%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 100 regular shifts in total.

(c) error = 1.46%
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(d) relative residual, residual = 0.36%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 64 regular shifts in total.

(e) error = 10.21%
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(f) relative residual, residual = 1.31%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 49 regular shifts in total.

Figure 5:

4

200 x 200 phantom 

Algorithm: alternating projection

20

(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for

11

Objects with Loose Support

(a) 200× 200 HRM (b) 20× 20 LRM

Fig. 3. (a) High and (b) low resolution masks.

where Po is introduced to enforce the object constraints in the case of DRER.

6.B. Performance study of AER and DRER

First we use AER (11) to recover the non-negative images with the stopping rule �fk+1 −
fk�/�fk� < 0.05% and one LRM of uncertainty δ = 0.2. The results, shown in Fig. 4, are

noisy and inaccurate with 33.75% error for the cameraman and 44.74% error for the phantom.

Consistent with the residual reduction property (Theorem 3), the residual curves in Fig. 4

are monotonically decreasing.

Much improvement can be gained by running DRER, followed by AER. For real-valued

objects, we use the version of DRER (15). DRER (15) is stopped when �fk+1 − fk�/�fk� <

1%, with the maximum of 400 steps, and AER (11) is terminated when �fk+1 − fk�/�fk� <

0.05%, with the maximum of 400 steps. As shown in Figure 5, for the cameraman, 131 DRER

and 6 AER steps took place producing 1.43% error while for the phantom, 75 DRER and 5

AER steps took place with 0.33% error. Consistent with Theorem 1, the mask errors occur

only outside the object supports.

Next we consider the case of the generic complex-valued objects with one UM and one

LRM of uncertainty δ = 0.2. We apply the alternative versions of DRER (20) and AER (19)

which tend to produce better results than (15) and (11) for complex-valued objects. DRER

(20) is stopped when �fk+1 − fk�/�fk� < 1%, with the maximum of 400 steps, and AER

(19) is terminated when �fk+1 − fk�/�fk� < 0.05%, with the maximum of 400 steps. Fig.

6 shows the results for object phases randomly distributed on [0, 2π]. Both algorithms ran

their full course of 400 steps with 2.39% error for the cameraman and 1.37% error for the

10

Saturday, January 26, 2013 HRI

36



HRI

(a) error = 0.0001%
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(b) relative residual, residual = 0.00005%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 100 regular shifts in total.

(c) error = 1.46%
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(d) relative residual, residual = 0.36%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 64 regular shifts in total.

(e) error = 10.21%
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(f) relative residual, residual = 1.31%

Parameters: refinement factor at each direction = 10; oversampling rate at each direction

= 2; High resolution mask 1× 1; Mask shift: 49 regular shifts in total.

Figure 5:

4

F=10, OR=2, # regular shifts=100
# data= 4 # pixels

Algorithm: alternating projection
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Low resolution illumination
(a) error = 4.44%
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(b) relative residual, residual = 0.40%

Figure 2: Parameters: refinement factor at each direction = 3; oversampling rate at each
direction = 3; Low resolution mask 3× 3; Mask shift: 9 shifts in total.

(a) error = 14.53%
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(b) relative residual, residual = 0.66%

Figure 3: Parameters: refinement factor at each direction = 5; oversampling rate at each
direction = 5; Low resolution mask 5× 5; Mask shift: 25 shifts in total.
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(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for
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Fig. 3. (a) High and (b) low resolution masks.

where Po is introduced to enforce the object constraints in the case of DRER.

6.B. Performance study of AER and DRER

First we use AER (11) to recover the non-negative images with the stopping rule �fk+1 −
fk�/�fk� < 0.05% and one LRM of uncertainty δ = 0.2. The results, shown in Fig. 4, are

noisy and inaccurate with 33.75% error for the cameraman and 44.74% error for the phantom.

Consistent with the residual reduction property (Theorem 3), the residual curves in Fig. 4

are monotonically decreasing.

Much improvement can be gained by running DRER, followed by AER. For real-valued

objects, we use the version of DRER (15). DRER (15) is stopped when �fk+1 − fk�/�fk� <

1%, with the maximum of 400 steps, and AER (11) is terminated when �fk+1 − fk�/�fk� <

0.05%, with the maximum of 400 steps. As shown in Figure 5, for the cameraman, 131 DRER

and 6 AER steps took place producing 1.43% error while for the phantom, 75 DRER and 5

AER steps took place with 0.33% error. Consistent with Theorem 1, the mask errors occur

only outside the object supports.

Next we consider the case of the generic complex-valued objects with one UM and one

LRM of uncertainty δ = 0.2. We apply the alternative versions of DRER (20) and AER (19)

which tend to produce better results than (15) and (11) for complex-valued objects. DRER

(20) is stopped when �fk+1 − fk�/�fk� < 1%, with the maximum of 400 steps, and AER

(19) is terminated when �fk+1 − fk�/�fk� < 0.05%, with the maximum of 400 steps. Fig.

6 shows the results for object phases randomly distributed on [0, 2π]. Both algorithms ran

their full course of 400 steps with 2.39% error for the cameraman and 1.37% error for the
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Conclusion
BLO away the resolvable grid: BLOOMP, BP-BLOT
Theoretical resolution: 2 or 3 Rayleigh lengths
Practical resolution: 1 Rayleigh length
Accuracy: a few percents of Rayleigh length
# measurements ̃                       , SNR
Better than (thresholded) BP and analysis approaches 
such as  Frame-adapted BP, SIHT
BP-BLOT has super-resolution effect
Roughly translation-invariant coherence pattern, cf. 
Adcock & Hansen: infinite-dim CS
Super-resolution with random illumination

Theorem (F&Liao) Suppose that

Bη(i) ∩Bη(j) = ∅, ∀i, j ∈ supp(x)

and that

η(2s− 1)
xmax

xmin
+

2�e�2
xmin

< 1

where

xmax = max
k

|xk|, xmin = min
k

|xk|.

Let x̂ be the BMT reconstruction. Then supp(x̂) ⊆ Bη(supp(x)) and
moreover every nonzero component of x̂ is in the η-coherence band
of a unique nonzero component of x.

Theoretical resolution 2�. Independent of grid refinement!

Compression: for moderate SNR

η ∼
1√
N

, N ∼ s2x2max/x
2
min

RIP: N ∼ s

IP: N ∼ s2
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