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ABSTRACT
Single-snapshot line spectral estimation is carried out with one compressed sensing technique, Band-excluding

Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time samples

of y and yε at t = 0, 1, . . . ,M ∈ N and denote y =

[y(t0), y(t1), . . . , y(tM )]T and

yε = [yε(t0), y
ε
(t1), . . . , y

ε
(tM )]

T .

Since a frequency ω can not be distinguished from

an integer-shifted copy ω+n, n ∈ N we assume that

S ⊂ [0, 1].

A key unit of frequency separation is the Rayleigh

Given M+1 data
Find 
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1. INTRODUCTION
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nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time sam-

ples of y and yε at t = 0, 1, . . . ,M ∈ N and

denote y = [y(t0), y(t1), . . . , y(tM )]T and yε =

[yε(t0), yε(t1), . . . , yε(tM )]T . Since a frequency ω
can not be distinguished from an integer-shifted copy

ω + n, n ∈ N we assume that S ⊂ [0, 1].

A key unit of frequency separation is the Rayleigh

Length (RL), the distance between the center and

the first zero of the sinc function
sin (πωM)

πω , namely,

Audio Engineering Society

Convention Paper
Presented at the 137th Convention

2014 October 9–12 Los Angeles, USA

This Convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed
by at least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention
paper has been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the
Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see
www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct
permission from the Journal of the Audio Engineering Society.

Spectral Estimation with Single-Snapshot

Measurement

Albert Fannjiang1, Lu Li1

1Department of Mathematics, University of California, Davis, CA, 95616.

Correspondence should be addressed to Albert Fannjiang (fannjiang@math.ucdavis.edu)

ABSTRACT
Single-snapshot line spectral estimation is carried out with one compressed sensing technique, Band-excluding

Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time sam-

ples of y and yε at t = 0, 1, . . . ,M ∈ N and

denote y = [y(t0), y(t1), . . . , y(tM )]T and yε =

[yε(t0), yε(t1), . . . , yε(tM )]T . Since a frequency ω
can not be distinguished from an integer-shifted copy

ω + n, n ∈ N we assume that S ⊂ [0, 1].

A key unit of frequency separation is the Rayleigh

Length (RL), the distance between the center and

the first zero of the sinc function
sin (πωM)

πω , namely,

* Simplest setting -- equally spaced samples   
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1. INTRODUCTION

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time samples

of y and yε at t = 0, 1, . . . ,M ∈ N and denote y =

[y(t0), y(t1), . . . , y(tM )]T and

yε = [yε(t0), y
ε
(t1), . . . , y

ε
(tM )]

T , tj = j

Since a frequency ω can not be distinguished from

an integer-shifted copy ω+n, n ∈ N we assume that

S ⊂ [0, 1].

A key unit of frequency separation is the Rayleigh

* Signal model 

* Frequencies can  not be distinguished from their   
integer-shifted version 
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an integer-shifted copy

ω ⇐⇒ ω + n, n ∈ N

we assume that S ⊂ [0, 1].

A key unit of frequency separation is the Rayleigh

Length (RL), the distance between the center and

the first zero of the sinc function
sin (πωM)

πω , namely,

1 RL = 1/M .

More generally, we can consider signal models with

complex-valued frequencies whose imaginary parts

αj > 0 are the damping factors

y
�
(t) = �(t) +

s�

j=1

xje
−αjte

2πiωjt. (2)

The Fourier spectrum around the peak ωj has the

form (αj + i(ω−ωj))
−1

with linewidth roughly 2αj .

The problem of spectral estimation is to reconstruct

{ωj} and {αj} from the single-shot measurement

data y
ε
. The challenge here is that, first, since S

may not be part of a regular grid, the method of

Fourier series is not applicable, and, second, since

the number M + 1 of time samples is finite (not

much larger than s), the method of Fourier trans-

form is ineffective.

2. SUBSPACE METHODS

For any given vector z = [z0, z1, . . . , zM ]
T
, define the

corresponding Hankel matrix

Hankel(z) =





z0 z1 . . . zM−L

z1 z2 . . . zM−L+1
.
.
.

.

.

.
. . .

.

.

.

zL zL+1 . . . zM




. (3)

Let H = Hankel(y) and H
ε
= Hankel(y

ε
).

Define the steering vector of order n ∈ N

φn
(ω) := [1 e

2πiω
e
2πi2ω

. . . e
2πinω

]
T
.
1

(5)

1For complex-valued frequencies the steering vector is

φn(α,ω) := [1 e−α+2πiω e2(−α+2πiω) . . . en(−α+2πiω)]T .
(5)

Then

ΦL
= [φL

(ω1) φ
L
(ω2) · · · φL

(ωs)] (6)

is a Vandermonde matrix and H admits the Vander-

monde decomposition

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs). (7)

2.1. SS-ESPRIT

First we discuss an extension of Estimation of Signal

Parameters via Rotational Invariance Techniques

(ESPRIT) in statistical signal processing [?, ?] to
the deterministic setting with a single snapshot mea-

surement. We call this algorithm Single-Snapshot

ESPRIT (SS-ESPRIT).

Let H1 and H2 be two sub-matrices of H consisting,

respectively, of the first and last L rows of H. As

before we have H1 = ΦL−1
X(ΦM−L

)
T
, but more

importantly

H2 = ΦL−1ΛX(ΦM−L
)
T
, (8)

Λ = diag(e
−2πiω1 , . . . , e

−2πiωs). (9)

Setting Y ≡ X(ΦM−L
)
T
we rewrite the above as

H1 = ΦL−1
Y, H2 = ΦL−1ΛY. (10)

Since Y has full (row) rank, Y Y
†
= I where Y

†

denotes the pseudo-inverse of Y . Hence with Ψ =

Y
†ΛY we have

H2 = H1Ψ (11)

implying that {e−i2πω1 , . . . , e
−i2πωs} is the set of

nonzero eigenvalues of the solution Ψ to (??).

In the noisy case, we solve for Ψ from H
ε
2 = H

ε
1Ψ by

performing Singular Value Truncation (SVT) on H
ε
1

to reduce H
ε
1 to the best rank−s approximation Ĥ1

and then pseudo-inverting Ĥ1 to get the estimate

Ψ̂ = Ĥ
†
1H

ε
2 . We obtain the spectral estimates by

solving for the eigenvalues of Ψ̂.

2.2. SS-MUSIC
The MUSIC algorithm then amounts finding the

nullspace (the noise space) of the Hankel matrix

H
�
= Hankel(y

�
), forming the noise-space correla-

tion function, and identifying the s (the number of
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* Assumption --

the compressive sensing community are assumed to be sparse under a discrete, finite-dimensional
dictionary.

However, signals arising in applications such as radar [9], sonar and remote sensing [20] are
represented by few parameters on a continuous domain. These signals are usually not sparse under
any discrete dictionary but can be approximately sparsely represented by indicator functions on a
discrete domain. An approximation error, called gridding error [22, 17] or basis mismatch [23, 28, 10]
exists, manifesting the gap between the continuous world and the discrete world. This issue is well
illustrated by the line spectral estimation problem [46] as follows.

Suppose a signal y(t) consists of linear combinations of s time-harmonic components from the
set

{e−2πiωjt : ωj ∈ R, j = 1, . . . , s}.

Consider the noisy signal model

yε(t) = y(t) + ε(t), y(t) =
s�

j=1

xje
−2πiωjt (1) {model}

where ε(t) is the external noise.
The task of spectral estimation is to find out the frequency support set S = {ω1, ...,ωs} and the

corresponding amplitudes x = [x1, ..., xs]T from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈ N.
Because the signal y(t) depends nonlinearly on S, the main difficulty of spectral estimation lies in
identifying S. The amplitudes x can be recovered by solving least squares once S is found.

More explicitly, denote (with a slight abuse of notation) y = [yk]Mk=0, ε = [εk]Mk=0 and yε =
y + ε ∈ CM+1, with yk = y(k), yεk = yε(k) and εk = ε(k). Let

φM (ω) = [1 e−2πiω e−2πi2ω . . . e−2πiMω]T ∈ CM+1 (2) {imagingvector}

be the imaging vector of size M + 1 at the frequency ω and define

ΦM = [φM (ω1) φ
M (ω2) . . . φM (ωs)] ∈ C(M+1)×s.

The single-snapshot formulation of spectral estimation takes the form

yε = ΦMx+ ε. (3) {linearsystem}

Again the main difficulty is in the (nonlinear) dependence of ΦM on the unknown frequencies in
S. In addition, with the sampling times t = 0, 1, 2, · · · ,M ∈ N, one can only hope to determine
frequencies on the torus T = [0, 1) with the natural metric

d(ωj ,ωl) = min
n∈Z

|ωj + n− ωl|.

One can attempt to linearize (3) by expanding the matrix ΦM via setting up a grid

G =

�
0

N
,
1

N
, . . . ,

N − 1

N

�
⊂ [0, 1), (4) {eq4}

where N is some large integer, and writing the spectral estimation problem in the form a linear
inversion problem

yε = Ax+ ε (5) {linearsystem1}

2

 Periodic BC.
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Direction Of Arrival (DOA)

Direction of Arrival Estimation

1 Introduction

We have seen that there is a one-to-one relationship between the direction of a signal and the

associated received steering vector. It should therefore be possible to invert the relationship and

estimate the direction of a signal from the received signals. An antenna array therefore should

be able to provide for direction of arrival estimation. We have also seen that there is a Fourier

relationship between the beam pattern and the excitation at the array. This allows the direction

of arrival (DOA) estimation problem to be treated as equivalent to spectral estimation.

d

φ
1

φ
2φ

3

Figure 1: The DOA estimation problem.

The problem set up is shown in Fig. 1. Several (M) signals impinge on a linear, equispaced,

array with N elements, each with direction φi. The goal of DOA estimation is to use the data

received at the array to estimate φi, i = 1, . . .M . It is generally assumed that M < N , though

there exist approaches (such as maximum likelihood estimation) that do not place this constraint.

In practice, the estimation is made difficult by the fact that there are usually an unknown

number of signals impinging on the array simultaneously, each from unknown directions and with

unknown amplitudes. Also, the received signals are always corrupted by noise. Nevertheless, there

are several methods to estimate the number of signals and their directions. Figure 2 shows some

of these several spectral estimation [1] techniques1. Note that this is not an exhaustive list.

This chapter is organized as follows. We begin by determining the Cramer-Rao bound, the

theoretical limit on how well the directions of arrival can be estimated. We then look at methods

to estimates the directions assuming we know the number of incoming signals. We will only describe

5 techniques: correlation, Maximum Likelihood, MUSIC, ESPRIT and Matrix Pencil. Finally we

1I would like to acknowledge the contributions of Prof. Alex Gershman, Dept. of Elec. and Comp. Engg.,

McMaster University, for this figure [1]

1

* Signal model 

* Reduction to spectral estimation --  
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an integer-shifted copy

ω ⇐⇒ ω + n, n ∈ N

we assume that S ⊂ [0, 1].

DOA signal model

yk =
s�

j=1

xje
ikd cosφj/λ, k = 0, 1, . . . ,M

ωj = d cosφj/λ

A key unit of frequency separation is the Rayleigh
Length (RL), the distance between the center and

the first zero of the sinc function sin (πωM)
πω , namely,

1 RL = 1/M .

More generally, we can consider signal models with
complex-valued frequencies whose imaginary parts
αj > 0 are the damping factors

y
�(t) = �(t) +

s�

j=1

xje
−αjte

2πiωjt. (2)

The Fourier spectrum around the peak ωj has the
form (αj + i(ω−ωj))−1 with linewidth roughly 2αj .

The problem of spectral estimation is to reconstruct
{ωj} and {αj} from the single-shot measurement
data y

ε. The challenge here is that, first, since S
may not be part of a regular grid, the method of
Fourier series is not applicable, and, second, since
the number M + 1 of time samples is finite (not
much larger than s), the method of Fourier trans-
form is ineffective.

2. SUBSPACE METHODS

For any given vector z = [z0, z1, . . . , zM ]T , define the
corresponding Hankel matrix

Hankel(z) =





z0 z1 . . . zM−L

z1 z2 . . . zM−L+1
...

...
. . .

...
zL zL+1 . . . zM




. (3)

Let H = Hankel(y) and H
ε = Hankel(yε).

Define the steering vector of order n ∈ N

φn(ω) := [1 e
2πiω

e
2πi2ω

. . . e
2πinω]T .1 (5)

Then

ΦL = [φL(ω1) φ
L(ω2) · · · φL(ωs)] (6)

is a Vandermonde matrix and H admits the Vander-
monde decomposition

H = ΦL
X(ΦM−L)T , X = diag(x1, . . . , xs). (7)

2.1. SS-ESPRIT

First we discuss an extension of Estimation of Signal
Parameters via Rotational Invariance Techniques
(ESPRIT) in statistical signal processing [?, ?] to
the deterministic setting with a single snapshot mea-
surement. We call this algorithm Single-Snapshot
ESPRIT (SS-ESPRIT).

Let H1 and H2 be two sub-matrices of H consisting,
respectively, of the first and last L rows of H. As
before we have H1 = ΦL−1

X(ΦM−L)T , but more
importantly

H2 = ΦL−1ΛX(ΦM−L)T , (8)

Λ = diag(e−2πiω1 , . . . , e
−2πiωs). (9)

Setting Y ≡ X(ΦM−L)T we rewrite the above as

H1 = ΦL−1
Y, H2 = ΦL−1ΛY. (10)

Since Y has full (row) rank, Y Y
† = I where Y

†

denotes the pseudo-inverse of Y . Hence with Ψ =
Y

†ΛY we have

H2 = H1Ψ (11)

implying that {e−i2πω1 , . . . , e
−i2πωs} is the set of

nonzero eigenvalues of the solution Ψ to (??).

In the noisy case, we solve for Ψ from H
ε
2 = H

ε
1Ψ by

performing Singular Value Truncation (SVT) on H
ε
1

to reduce H
ε
1 to the best rank−s approximation Ĥ1

and then pseudo-inverting Ĥ1 to get the estimate

1For complex-valued frequencies the steering vector is

φn(α,ω) := [1 e−α+2πiω e2(−α+2πiω) . . . en(−α+2πiω)]T .
(5)
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an integer-shifted copy

ω ⇐⇒ ω + n, n ∈ N

we assume that S ⊂ [0, 1].

DOA signal model

yk =
s�

j=1

xje
−ikd cosφj/λ, k = 0, 1, . . . ,M

ωj = d cosφj/λ

k ∈ Z

A key unit of frequency separation is the Rayleigh
Length (RL), the distance between the center and

the first zero of the sinc function sin (πωM)
πω , namely,

1 RL = 1/M .

More generally, we can consider signal models with
complex-valued frequencies whose imaginary parts
αj > 0 are the damping factors

y
�(t) = �(t) +

s�

j=1

xje
−αjte

2πiωjt. (2)

The Fourier spectrum around the peak ωj has the
form (αj + i(ω−ωj))−1 with linewidth roughly 2αj .

The problem of spectral estimation is to reconstruct
{ωj} and {αj} from the single-shot measurement
data y

ε. The challenge here is that, first, since S
may not be part of a regular grid, the method of
Fourier series is not applicable, and, second, since
the number M + 1 of time samples is finite (not
much larger than s), the method of Fourier trans-
form is ineffective.

2. SUBSPACE METHODS

For any given vector z = [z0, z1, . . . , zM ]T , define the
corresponding Hankel matrix

Hankel(z) =





z0 z1 . . . zM−L

z1 z2 . . . zM−L+1
...

...
. . .

...
zL zL+1 . . . zM




. (3)

Let H = Hankel(y) and H
ε = Hankel(yε).

Define the steering vector of order n ∈ N

φn(ω) := [1 e
2πiω

e
2πi2ω

. . . e
2πinω]T .1 (5)

Then

ΦL = [φL(ω1) φ
L(ω2) · · · φL(ωs)] (6)

is a Vandermonde matrix and H admits the Vander-
monde decomposition

H = ΦL
X(ΦM−L)T , X = diag(x1, . . . , xs). (7)

2.1. SS-ESPRIT

First we discuss an extension of Estimation of Signal
Parameters via Rotational Invariance Techniques
(ESPRIT) in statistical signal processing [?, ?] to
the deterministic setting with a single snapshot mea-
surement. We call this algorithm Single-Snapshot
ESPRIT (SS-ESPRIT).

Let H1 and H2 be two sub-matrices of H consisting,
respectively, of the first and last L rows of H. As
before we have H1 = ΦL−1

X(ΦM−L)T , but more
importantly

H2 = ΦL−1ΛX(ΦM−L)T , (8)

Λ = diag(e−2πiω1 , . . . , e
−2πiωs). (9)

Setting Y ≡ X(ΦM−L)T we rewrite the above as

H1 = ΦL−1
Y, H2 = ΦL−1ΛY. (10)

Since Y has full (row) rank, Y Y
† = I where Y

†

denotes the pseudo-inverse of Y . Hence with Ψ =
Y

†ΛY we have

H2 = H1Ψ (11)

implying that {e−i2πω1 , . . . , e
−i2πωs} is the set of

nonzero eigenvalues of the solution Ψ to (??).

In the noisy case, we solve for Ψ from H
ε
2 = H

ε
1Ψ by

performing Singular Value Truncation (SVT) on H
ε
1

to reduce H
ε
1 to the best rank−s approximation Ĥ1

and then pseudo-inverting Ĥ1 to get the estimate

1For complex-valued frequencies the steering vector is

φn(α,ω) := [1 e−α+2πiω e2(−α+2πiω) . . . en(−α+2πiω)]T .
(5)
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ABSTRACT
Single-snapshot line spectral estimation is carried out with one compressed sensing technique, Band-excluding

Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time samples

of y and yε at t = 0, 1, . . . ,M ∈ N and denote y =

[y(t0), y(t1), . . . , y(tM )]T and

yε = [yε(t0), y
ε
(t1), . . . , y

ε
(tM )]

T , tj = j

S ⊂ { k

M + 1
: k = 0, . . . ,M}

Since a frequency ω can not be distinguished from

* Fourier coefficients of frequency spikes -- 
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an integer-shifted copy

ω ⇐⇒ ω + n, n ∈ N

we assume that S ⊂ [0, 1].

DOA signal model

yk =
s�

j=1

xje
ikd cosφj/λ, k = 0, 1, . . . ,M

ωj = d cosφj/λ

k ∈ Z

A key unit of frequency separation is the Rayleigh
Length (RL), the distance between the center and

the first zero of the sinc function sin (πωM)
πω , namely,

1 RL = 1/M .

More generally, we can consider signal models with
complex-valued frequencies whose imaginary parts
αj > 0 are the damping factors

y
�(t) = �(t) +

s�

j=1

xje
−αjte

2πiωjt. (2)

The Fourier spectrum around the peak ωj has the
form (αj + i(ω−ωj))−1 with linewidth roughly 2αj .

The problem of spectral estimation is to reconstruct
{ωj} and {αj} from the single-shot measurement
data y

ε. The challenge here is that, first, since S
may not be part of a regular grid, the method of
Fourier series is not applicable, and, second, since
the number M + 1 of time samples is finite (not
much larger than s), the method of Fourier trans-
form is ineffective.

2. SUBSPACE METHODS

For any given vector z = [z0, z1, . . . , zM ]T , define the
corresponding Hankel matrix

Hankel(z) =





z0 z1 . . . zM−L

z1 z2 . . . zM−L+1
...

...
. . .

...
zL zL+1 . . . zM




. (3)

Let H = Hankel(y) and H
ε = Hankel(yε).

Define the steering vector of order n ∈ N

φn(ω) := [1 e
2πiω

e
2πi2ω

. . . e
2πinω]T .1 (5)

Then

ΦL = [φL(ω1) φ
L(ω2) · · · φL(ωs)] (6)

is a Vandermonde matrix and H admits the Vander-
monde decomposition

H = ΦL
X(ΦM−L)T , X = diag(x1, . . . , xs). (7)

2.1. SS-ESPRIT

First we discuss an extension of Estimation of Signal
Parameters via Rotational Invariance Techniques
(ESPRIT) in statistical signal processing [?, ?] to
the deterministic setting with a single snapshot mea-
surement. We call this algorithm Single-Snapshot
ESPRIT (SS-ESPRIT).

Let H1 and H2 be two sub-matrices of H consisting,
respectively, of the first and last L rows of H. As
before we have H1 = ΦL−1

X(ΦM−L)T , but more
importantly

H2 = ΦL−1ΛX(ΦM−L)T , (8)

Λ = diag(e−2πiω1 , . . . , e
−2πiωs). (9)

Setting Y ≡ X(ΦM−L)T we rewrite the above as

H1 = ΦL−1
Y, H2 = ΦL−1ΛY. (10)

Since Y has full (row) rank, Y Y
† = I where Y

†

denotes the pseudo-inverse of Y . Hence with Ψ =
Y

†ΛY we have

H2 = H1Ψ (11)

implying that {e−i2πω1 , . . . , e
−i2πωs} is the set of

nonzero eigenvalues of the solution Ψ to (??).

In the noisy case, we solve for Ψ from H
ε
2 = H

ε
1Ψ by

performing Singular Value Truncation (SVT) on H
ε
1

to reduce H
ε
1 to the best rank−s approximation Ĥ1

and then pseudo-inverting Ĥ1 to get the estimate

1For complex-valued frequencies the steering vector is

φn(α,ω) := [1 e−α+2πiω e2(−α+2πiω) . . . en(−α+2πiω)]T .
(5)
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Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

min �x�TV, �yε − y�2 ≤ �

y = inverse Fourier transform of x

x(ω) =

s�

j=1

xjδ(ω − ωj)

yk =

� 1

0
x(ω)e−iωkdω

�

k∈Z
|yk|2 =

� 1

0
|x|2(ω)dω

x(ω) =
�

k∈Z
yke

i2πkω
(1)

�x−
M/2�

k=−M/2

yke
i2πkω�2 → 0 (2)

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components
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(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far
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1. INTRODUCTION

min �x�TV, �yε − y�2 ≤ �

y = inverse Fourier transform of x

x(ω) =
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xjδ(ω − ωj)
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� 1
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x(ω) =
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In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

In distributional sense

Thursday, July 17, 2014



Figure 2: Some of the several approaches to spectral estimation

look at two methods to estimate the number of signals.

2 The Cramer-Rao Bound

We begin by realizing that the DOA is a parameter estimated from the received data. The minimum

variance in this estimate is given by the Cramer-Rao bound (CRB).

The CRB theorem: Given a length-N vector of received signals x dependent on a set of P

parameters θ = [θ1, θ2, . . . , θP ]
T , corrupted by additive noise,

x = v(θ) + n, (1)

where v(θ) is a known function of the parameters, the variance of an unbiased estimate of the p-th

parameter, θp, is greater than the Cramer Rao bound

var(θp) ≥ J−1
pp , (2)

where J−1
pp is the p-th diagonal entry of the inverse of the Fisher information matrix J whose (i, j)th

is given by

Jij = −E

{

∂2

∂θi∂θj
[ln fX(x/θ)]

}

, (3)

where, fX(x/θ) is the pdf of the received vector given the parameters θ and E {·} represents

statistical expectation.

The CRB tells us that estimating parameters from noisy data will necessarily result in noisy

estimates. Furthermore, the CRB is the best we can possibly do in minimizing the residual noise in

unbiased estimates. Also, due to the fact that the minimum variance is dependent on the inverse

2

Statistical Signal Processing

* Single Snapshot measurement 

Reference:   Stoica - Moses 2004

Deterministic approach
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Vector Form

where ε(t) is the external noise.

The problem of spectral estimation is to recover the frequency support set S = {ω1, ...,ωs} and

the corresponding amplitudes x = [x1, ..., xs]
T
from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈

N. Because of the nonlinear dependence of the signal y(t) on frequency, the main difficulty of spec-

tral estimation lies in identifying S. The amplitudes x can be easily recovered by solving least

squares once S is known.

Denote (with a slight abuse of notation) y = [yk]
M
k=0, ε = [εk]Mk=0 and y

ε
= y + ε ∈ CM+1

, with

yk = y(k), y
ε
k = y

ε
(k) and εk = ε(k). Let

φM
(ω) = [1 e

−2πiω
e
−2πi2ω

. . . e
−2πiMω

]
T ∈ CM+1

be the imaging vector of size M + 1 at the frequency ω and define

ΦM
= [φM

(ω1) φ
M
(ω2) . . . φM

(ωs)] ∈ C(M+1)×s
.

The single-snapshot formulation of spectral estimation takes the form

y
ε
= ΦM

x+ ε.

In addition to the nonlinear dependence of ΦM
on the unknown frequencies, with the sampling

times t = 0, 1, 2, · · · ,M ∈ N, one can only hope to determine frequencies on the torus T = [0, 1)

with the natural metric

d(ωj ,ωl) = min
n∈Z

|ωj + n− ωl|.

A key unit of frequency separation is the Rayleigh Length, the distance between the center and

the first zero of the sinc function sin (πωM)/(πω), namely, 1 RL = 1/M .

1.1 Single-snapshot ESPRIT

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem

(2) in the form of multiple measurement vectors suitable for the application of Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5].

Most state-of-the-art spectral estimation methods ([8] and references therein) assume many

snapshots of array measurement as well as statistical assumptions on measurement noise. Below

we present a deterministic, single-snapshot formulation of ESPRIT.

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
.
.
.

.

.

.
.
.
.

.

.

.

yL yL+1 . . . yM




. (2)

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs) (3)

2

*  Vectorization 
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the corresponding amplitudes x = [x1, ..., xs]
T
from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈
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N. Because of the nonlinear dependence of the signal y(t) on frequency, the main difficulty of spec-
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the first zero of the sinc function sin (πωM)/(πω), namely, 1 RL = 1/M .

1.1 Single-snapshot ESPRIT

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem

(2) in the form of multiple measurement vectors suitable for the application of Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5].

Most state-of-the-art spectral estimation methods ([8] and references therein) assume many

snapshots of array measurement as well as statistical assumptions on measurement noise. Below

we present a deterministic, single-snapshot formulation of ESPRIT.

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
.
.
.

.

.

.
.
.
.

.

.

.

yL yL+1 . . . yM




. (2)

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs) (3)

2

*  Signal model in vector form

*  SS-SS in matrix form 

*  Rayleigh resolution length (RL):  first zero of the sinc function

RL = 1/M

Matrix unknown               Nonlinear inverse problem               

where

A :=

�
φM

�
0

N

�
φM

�
1

N

�
. . . φM

�
N − 1

N

��
∈ C(M+1)×N

Discretizing [0, 1) as in (4) amounts to rounding frequencies on the continuum to the nearest grid
points in G, giving rise to a gridding error which is roughly proportional to the grid spacing. On the
other hand, as N increases, correlation among adjacent columns of A also increases dramatically
[22].

A key unit of frequency separation is the Rayleigh Length, roughly the minimum resolvable
separation of two objects with equal intensities in classical resolution theory [12, 15]. Mathemati-
cally, the Rayleigh Length (RL) is the distance between the center and the first zero of the Dirichlet
kernel

D(ω) =

� M/2

−M/2
e
2πitω

dt =
sinπωM

πω
.

Hence 1 RL = 1/M .
The ratio F = N/M between RL and the grid spacing is called the refinement factor in [22]

and super-resolution factor in [6]. The higher F is, the more coherent the measurement matrix A

becomes.

1.1 Single-snapshot MUSIC

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem
(3) in the form of multiple measurement vectors suitable for the application of the MUltiple Signal
Classification (MUSIC) algorithm [43, 42], widely used in signal processing[48, 32, 35] and array
imaging [8, 13, 33].

Most state-of-the-art spectral estimation methods ([46] and references therein) assume many
snapshots of array measurement as well as statistical assumptions on measurement noise. In con-
trast, we pursue below a deterministic approach to spectral estimation with a single snapshot of
array measurement in common with [11].

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
...

...
...

...
yL yL+1 . . . yM




. (6) {hankel}

Since its first appearance in Prony’s method [40] the Hankel data matrix (6) plays an important
role in modern methods such as the state space method [36, 41] and the matrix pencil method [29].

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L)T , X = diag(x1, . . . , xs) (7) {van}
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where ε(t) is the external noise.

The problem of spectral estimation is to recover the frequency support set S = {ω1, ...,ωs} and

the corresponding amplitudes x = [x1, ..., xs]
T
from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈

N. Because of the nonlinear dependence of the signal y(t) on frequency, the main difficulty of spec-

tral estimation lies in identifying S. The amplitudes x can be easily recovered by solving least

squares once S is known.

Denote (with a slight abuse of notation) y = [yk]
M
k=0, ε = [εk]Mk=0 and y

ε
= y + ε ∈ CM+1

, with

yk = y(k), y
ε
k = y

ε
(k) and εk = ε(k). Let

φM
(ω) = [1 e

−2πiω
e
−2πi2ω

. . . e
−2πiMω

]
T ∈ CM+1

be the imaging vector of size M + 1 at the frequency ω and define

ΦM
= [φM

(ω1) φ
M
(ω2) . . . φM

(ωs)] ∈ C(M+1)×s
.

The single-snapshot formulation of spectral estimation takes the form

y
ε
= ΦM

x+ ε.

In addition to the nonlinear dependence of ΦM
on the unknown frequencies, with the sampling

times t = 0, 1, 2, · · · ,M ∈ N, one can only hope to determine frequencies on the torus T = [0, 1)

with the natural metric

d(ωj ,ωl) = min
n∈Z

|ωj + n− ωl|.

A key unit of frequency separation is the Rayleigh Length, the distance between the center and

the first zero of the sinc function sin (πωM)/(πω), namely, 1 RL = 1/M .

1.1 Single-snapshot ESPRIT

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem

(2) in the form of multiple measurement vectors suitable for the application of Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5].

Most state-of-the-art spectral estimation methods ([8] and references therein) assume many

snapshots of array measurement as well as statistical assumptions on measurement noise. Below

we present a deterministic, single-snapshot formulation of ESPRIT.

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
.
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.
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. (2)

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs) (3)
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Hankel Data Matrix

where ε(t) is the external noise.

The problem of spectral estimation is to recover the frequency support set S = {ω1, ...,ωs} and

the corresponding amplitudes x = [x1, ..., xs]
T
from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈

N. Because of the nonlinear dependence of the signal y(t) on frequency, the main difficulty of spec-

tral estimation lies in identifying S. The amplitudes x can be easily recovered by solving least

squares once S is known.

Denote (with a slight abuse of notation) y = [yk]
M
k=0, ε = [εk]Mk=0 and y

ε
= y + ε ∈ CM+1

, with

yk = y(k), y
ε
k = y

ε
(k) and εk = ε(k). Let

φM
(ω) = [1 e

−2πiω
e
−2πi2ω

. . . e
−2πiMω

]
T ∈ CM+1

be the imaging vector of size M + 1 at the frequency ω and define

ΦM
= [φM

(ω1) φ
M
(ω2) . . . φM

(ωs)] ∈ C(M+1)×s
.

The single-snapshot formulation of spectral estimation takes the form

y
ε
= ΦM

x+ ε.

In addition to the nonlinear dependence of ΦM
on the unknown frequencies, with the sampling

times t = 0, 1, 2, · · · ,M ∈ N, one can only hope to determine frequencies on the torus T = [0, 1)

with the natural metric

d(ωj ,ωl) = min
n∈Z

|ωj + n− ωl|.

A key unit of frequency separation is the Rayleigh Length, the distance between the center and

the first zero of the sinc function sin (πωM)/(πω), namely, 1 RL = 1/M .

1.1 Single-snapshot ESPRIT

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem

(2) in the form of multiple measurement vectors suitable for the application of Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5].

Most state-of-the-art spectral estimation methods ([8] and references therein) assume many

snapshots of array measurement as well as statistical assumptions on measurement noise. Below

we present a deterministic, single-snapshot formulation of ESPRIT.

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
.
.
.

.

.

.
.
.
.

.

.

.

yL yL+1 . . . yM




. (2)

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs) (3)

2

with the Vandermonde matrix

ΦL =





1 1 . . . 1
e
−2πiω1 e

−2πiω2 . . . e
−2πiωs

(e−2πiω1)2 (e−2πiω2)2 . . . (e−2πiωs)2

...
...

...
...

(e−2πiω1)L (e−2πiω2)L . . . (e−2πiωs)L




.

Let H1 and H2 be two sub-matrices of H consisting, respectively, of the first and last L rows
of H. Clearly we have as before

H1 = ΦL−1
X(ΦM−L)T , (4)

H2 = ΦL−1ΛX(ΦM−L)T , Λ = diag(e−2πω1 , . . . , e
−2πωs) (5)

which can be rewritten as

H1 = ΦL−1
C, H2 = ΦL−1ΛC, (6)

C ≡ X(ΦM−L)T ∈ Cs×(M−L+1)
. (7)

Since C has full (row) rank, CC
† = I where C

† denotes the pseudo-inverse of C. Hence from (7)
we have

H2 = H1Ψ (8)

with Ψ = C
†ΛC implying that {e−2πω1 , . . . , e

−2πωs} is the set of nonzero eigenvalues of the unknown
(M − L+ 1)× (M − L+ 1) matrix Ψ.

Theorem 1. For the Hankel matrices H1, H2 given above,

Ψ = H
†
1H2

is a rank-s solution to eq. (9).

Proof. Since H1H
†
1 is the identity map on the range of H1, it suffices to prove Range(H1) =

Range(H2) = Range(ΦL−1) which would follow from Rank (ΦM−L) = s.
On the other hand, we have Rank (ΦL−1) = s if L ≥ s and ωk �= ωl, ∀k �= l. This is because

s× s square submatrix Φs of ΦL is a square Vandermonde matrix whose determinant is given by

det(Ψs) =
�

1≤i<j≤s

(e−i2πωj − e
−i2πωi).

Clearly, Φs is invertible if and only if ωi �= ωj , i �= j. Hence Rank (Φs) = s which implies
Rank (ΦL−1) = s.

The single-snapshot ESPRIT is based on the following observation.

Theorem 2. For the Hankel matrices H1 and H2 given above, let Ψ be any rank-s solution to

H2 = H1Ψ. Then {e−2πω1 , . . . , e
−2πωs} is the set of nonzero eigenvalues of Ψ.

3

*  Vandermonde decomposition
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with the Vandermonde matrix

ΦL
=





1 1 . . . 1

e
−2πiω1 e

−2πiω2 . . . e
−2πiωs

(e
−2πiω1)

2
(e

−2πiω2)
2

. . . (e
−2πiωs)

2

.

.

.
.
.
.

.

.

.
.
.
.

(e
−2πiω1)

L
(e

−2πiω2)
L

. . . (e
−2πiωs)

L




.

Here we use a special property of Fourier measurements: a time translation corresponds to a

frequency phase modulation.

Let H
ε
= Hankel(y

ε
) and E = Hankel(ε). The multiple measurement vector formulation of

spectral estimation takes the form

H
ε
= H + E = ΦL

X(ΦM−L
)
T
+ E. (8) {eq5}

The crux of MUSIC is this: In the noiseless case with L ≥ s and M − L+ 1 ≥ s the ranges of

H and ΦL
coincide and are a proper subspace (the signal space) of CL+1

. Let the noise space be

the orthogonal complement of the signal space in CL+1
. Then S can be identified as the zero set

of the orthogonal projection of the imaging vector φL
(ω) of size L+ 1 onto the noise space.

More specifically, let the Singular Value Decomposition (SVD) of H be written as

H = [ U1����
(L+1)×s

U2����
(L+1)×(L+1−s)

] diag(σ1,σ2, . . . ,σs, 0, . . . , 0)� �� �
(L+1)×(M−L+1)

[ V1����
(M−L+1)×s

V2����
(M−L+1)×(M−L+1−s)

]
�

with the singular values σ1 ≥ σ2 ≥ σ3 ≥ · · ·σs > 0. The signal and noise spaces are exactly the

column spaces of U1 and U2 respectively.

The orthogonal projection P2 onto the noise space is given by P2w = U2(U
�
2w), ∀w ∈ CL+1

.

Under mild assumptions one can prove that ω ∈ S if and only if P2φL
(ω) = 0. Hence S can be

identified as the zeros of the noise-space correlation function

R(ω) =
�P2φL

(ω)�2
�φL(ω)�2

=
�U�

2φ
L
(ω)�2

�φL(ω)�2
,

or the peaks of the imaging function

J(ω) =
�φL

(ω)�2
�P2φL(ω)�2

=
�φL

(ω)�2
�U�

2φ
L(ω)�2

.

The following fact is the basis for noiseless MUSIC (See Appendix A for proof).

{thm1}
Theorem 1. Suppose ωk �= ωl ∀k �= l. If

L ≥ s, M − L+ 1 ≥ s, (9) {exact}

then

ω ∈ S ⇐⇒ R(ω) = 0 ⇐⇒ J(ω) = ∞.

Remark 1. Condition (9) says that the number of measurement data (M + 1) ≥ 2s suffices to
guarantee exact reconstruction by the MUSIC algorithm.

4

Signal Model in Matrix  Form
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. . . (e
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.
.
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L

. . . (e
−2πiωs)

L
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Here we use a special property of Fourier measurements: a time translation corresponds to a

frequency phase modulation.

Let H
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= Hankel(y

ε
) and E = Hankel(ε). The multiple measurement vector formulation of

spectral estimation takes the form

H
ε
= H + E = ΦL

X(ΦM−L
)
T
+ E. (8) {eq5}

The crux of MUSIC is this: In the noiseless case with L ≥ s and M − L+ 1 ≥ s the ranges of

H and ΦL
coincide and are a proper subspace (the signal space) of CL+1

. Let the noise space be

the orthogonal complement of the signal space in CL+1
. Then S can be identified as the zero set

of the orthogonal projection of the imaging vector φL
(ω) of size L+ 1 onto the noise space.

More specifically, let the Singular Value Decomposition (SVD) of H be written as
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(M−L+1)×(M−L+1−s)
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with the singular values σ1 ≥ σ2 ≥ σ3 ≥ · · ·σs > 0. The signal and noise spaces are exactly the

column spaces of U1 and U2 respectively.

The orthogonal projection P2 onto the noise space is given by P2w = U2(U
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2w), ∀w ∈ CL+1

.

Under mild assumptions one can prove that ω ∈ S if and only if P2φL
(ω) = 0. Hence S can be

identified as the zeros of the noise-space correlation function

R(ω) =
�P2φL
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=
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(ω)�2
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,

or the peaks of the imaging function

J(ω) =
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=
�φL

(ω)�2
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.

The following fact is the basis for noiseless MUSIC (See Appendix A for proof).

{thm1}
Theorem 1. Suppose ωk �= ωl ∀k �= l. If

L ≥ s, M − L+ 1 ≥ s, (9) {exact}

then

ω ∈ S ⇐⇒ R(ω) = 0 ⇐⇒ J(ω) = ∞.

Remark 1. Condition (9) says that the number of measurement data (M + 1) ≥ 2s suffices to
guarantee exact reconstruction by the MUSIC algorithm.

4

*  SVD
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Here we use a special property of Fourier measurements: a time translation corresponds to a

frequency phase modulation.

Let H
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= Hankel(y

ε
) and E = Hankel(ε). The multiple measurement vector formulation of

spectral estimation takes the form

H
ε
= H + E = ΦL

X(ΦM−L
)
T
+ E. (8) {eq5}

The crux of MUSIC is this: In the noiseless case with L ≥ s and M − L+ 1 ≥ s the ranges of

H and ΦL
coincide and are a proper subspace (the signal space) of CL+1

. Let the noise space be

the orthogonal complement of the signal space in CL+1
. Then S can be identified as the zero set

of the orthogonal projection of the imaging vector φL
(ω) of size L+ 1 onto the noise space.
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with the singular values σ1 ≥ σ2 ≥ σ3 ≥ · · ·σs > 0. The signal and noise spaces are exactly the

column spaces of U1 and U2 respectively.

The orthogonal projection P2 onto the noise space is given by P2w = U2(U
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2w), ∀w ∈ CL+1

.

Under mild assumptions one can prove that ω ∈ S if and only if P2φL
(ω) = 0. Hence S can be

identified as the zeros of the noise-space correlation function
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=
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The following fact is the basis for noiseless MUSIC (See Appendix A for proof).

{thm1}
Theorem 1. Suppose ωk �= ωl ∀k �= l. If

L ≥ s, M − L+ 1 ≥ s, (9) {exact}

then

ω ∈ S ⇐⇒ R(ω) = 0 ⇐⇒ J(ω) = ∞.

Remark 1. Condition (9) says that the number of measurement data (M + 1) ≥ 2s suffices to
guarantee exact reconstruction by the MUSIC algorithm.
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Here we use a special property of Fourier measurements: a time translation corresponds to a

frequency phase modulation.

Let H
ε
= Hankel(y

ε
) and E = Hankel(ε). The multiple measurement vector formulation of

spectral estimation takes the form

H
ε
= H + E = ΦL

X(ΦM−L
)
T
+ E. (8) {eq5}

The crux of MUSIC is this: In the noiseless case with L ≥ s and M − L+ 1 ≥ s the ranges of

H and ΦL
coincide and are a proper subspace (the signal space) of CL+1

. Let the noise space be

the orthogonal complement of the signal space in CL+1
. Then S can be identified as the zero set

of the orthogonal projection of the imaging vector φL
(ω) of size L+ 1 onto the noise space.

More specifically, let the Singular Value Decomposition (SVD) of H be written as

H = [ U1����
(L+1)×s

U2����
(L+1)×(L+1−s)

] diag(σ1,σ2, . . . ,σs, 0, . . . , 0)� �� �
(L+1)×(M−L+1)
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(M−L+1)×s
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]
�

with the singular values σ1 ≥ σ2 ≥ σ3 ≥ · · ·σs > 0. The signal and noise spaces are exactly the

column spaces of U1 and U2 respectively.

The orthogonal projection P2 onto the noise space is given by P2w = U2(U
�
2w), ∀w ∈ CL+1

.

Under mild assumptions one can prove that ω ∈ S if and only if P2φL
(ω) = 0. Hence S can be

identified as the zeros of the noise-space correlation function

R(ω) =
�P2φL

(ω)�2
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=
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The following fact is the basis for noiseless MUSIC (See Appendix A for proof).

{thm1}
Theorem 1. Suppose ωk �= ωl ∀k �= l. If

L ≥ s, M − L+ 1 ≥ s, (9) {exact}

then

ω ∈ S ⇐⇒ R(ω) = 0 ⇐⇒ J(ω) = ∞.

Remark 1. Condition (9) says that the number of measurement data (M + 1) ≥ 2s suffices to
guarantee exact reconstruction by the MUSIC algorithm.
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Here we use a special property of Fourier measurements: a time translation corresponds to a

frequency phase modulation.
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MUSIC with Noisy Data
For the noisy data matrix H
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The MUSIC algorithm is given by

MUSIC for Spectral Estimation

Input: y
ε ∈ CM+1

, s, L.
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.
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, where U
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1 ∈ C(L+1)×s

.

3) Compute imaging function J
ε
(ω) = �φL

(ω)�2/�U ε
2
�φL

(ω)�2.
Output: Ŝ = {ω corresponding to s largest local maxima of J

ε
(ω)}.

Figure 1 shows a noise-space correlation function and an imaging function in the noise-free case.

True frequencies are exactly located where the noise-space correlation vanishes and the imaging

function peaks. e.
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Figure 1: Plots of R(ω) and J(ω) when M = 100, L = 50 and there are 10 equally spaced objects

on T represented by red dots. {figm1}

The MUSIC algorithm as formulated above requires the number of frequencies s as an input.

There are some techniques [14, 34] for evaluating how many objects are present in the event that

such information is not available. When σs � 2�E�2, s can be easily estimated based on the

singular value distribution of H
ε
due to Weyl’s theorem [49].
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such information is not available. When σs � 2�E�2, s can be easily estimated based on the

singular value distribution of H
ε
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{propweyl}
Proposition 1 (Weyl’s Theorem). |σε

j − σj | ≤ �E�2, j = 1, 2, . . .

As a result, σε
j ≤ �E�2, ∀j ≥ s + 1 and σε

s ≥ σs − �E�2. Hence σε
s � σε

s+1, creating a gap

between σε
s and {σε

j : j ≥ s+ 1}. An example is shown in Figure 3.

Before describing our main results, we pause to define notations to be used in the subsequent

sections. For an m × n matrix A, let σmax(A) and σmin(A) denote the maximum and minimum

nonzero singular values of A, respectively. Denote the spectral norm, Frobenius norm and nuclear

norm of A by �A�2, �A�F and �A��. Let xmax = maxj=1,...,s |xj | and xmin = minj=1,...,s |xj |. The

dynamic range of x is defined as xmax/xmin. Fixing S = {ω1, . . . ,ωs} ⊂ T, we define the matrix

ΦN1→N2 such that

ΦN1→N2
kj = e−2πikωj , k = N1, . . . , N2, j = 1, . . . , s.

For simplicity, we denote ΦM
= Φ0→M .

1.2 Contribution of the present work
{sec1.2}

The main contribution of the paper is a stability analysis for the MUSIC algorithm with respect

to general support set S and external noise.

In the MUSIC algorithm frequency candidates are identified at s smallest local minima of the

noise-space correlation which measures how much an imaging vector is correlated with the noise

space. In noise-free case, the noise-space correlation function R(ω) vanishes exactly on S. For the
noisy case we prove

|Rε
(ω)−R(ω)| ≤ α�E�2, α =

4σ1 + 2�E�2
(σs − �E�2)2

(10) {eqp’}

which holds for any support set S ⊂ T.
To make the bounds (10) explicit and more meaningful, we prove the discrete Ingham inequal-

ities (Corollary 1) which implies

σ2
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under the gap assumption

q = min
j �=l

d(ωj ,ωl) > max

�
1

L

�
2

π

�
2

π
− 4

L

�− 1
2

,
1

M − L

�
2

π

�
2

π
− 4

M − L

�− 1
2

�
. (13) {eq9}

Furthermore, we prove that for every ωj ∈ S, there exists a local minimizer ω̂j of Rε
such that

ω̂j → ωj as noise decreases to 0.

To relax the restriction on the minimum separation between adjacent frequencies, condition

(13) suggests that L should be about M/2 and then the resolving power of the present form of

MUSIC is as good as 2/M = 2RL.

By the results of [1], the spectral norm of the random Hankel matrix E from a zero mean,

independently and identically distributed (i.i.d.) sequence of a finite variance is on the order of
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(13) suggests that L should be about M/2 and then the resolving power of the present form of
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By the results of [1], the spectral norm of the random Hankel matrix E from a zero mean,

independently and identically distributed (i.i.d.) sequence of a finite variance is on the order of
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Stability Analysis

Noise tolerance ~ min SV of H

spectral norm of E ~ √
M logM for M � 1 while σs is on the order of M (with L ≈ M/2). In this case the factor α in

(10) is almost always positive for sufficiently large M regardless of the variance of noise and

|R
ε(ω)−R(ω)| = O(M−1/2)

up to a logarithmic factor.
Our analysis can be easily extended to other settings where the MUSIC algorithm can be applied,

such as the estimation of Directions of Arrivals (DOA) [35] and inverse scattering [8, 13, 33].

1.3 Comparison with other works
{sec:1.2}

Among existing works, [21] is most closely related to the present work. Central to the results of
[21] is a stability criterion expressed in terms of the noise-to-signal ratio, the dynamic range and,
when the objects are located exactly on a grid of spacing ≥ 1 RL, the restricted isometry constants
from the theory of compressed sensing [4]. The emphasis there is on sparse (i.e. undersampling),
and typically random, measurement. For the gridless setting considered in the present work, the
implications of the analysis in [21] are not explicit due to lack of the restricted isometry property
for a well-separated set in the continuum. This barrier is overcome in the present work by the
discrete Ingham inequalities and the resulting bounds on singular values.

Other closely related work includes [11] and [7] where Vandermonde decomposition of the Hankel
matrix (6) are used to design different algorithms.

In [11] Demanet et al. propose an approach to single-snapshot spectral estimation with a
selection step of the support set followed by a pruning step. In the selection step, any ω satisfying
sin�(φL(ω),RangeHε) ≤ η for some judicious choice of η > 0 is kept as a frequency candidate.
This is based on their estimate

sin�(φL(ωj),RangeH
ε) ≤ C

s�E�2
xminσmin(ΦM−L)�φL(ωj)�2

, ∀ωj ∈ S

for some constant C > 0. In comparison, our estimates (10)-(12) are more comprehensive as they
apply to T and more explicit due to discrete Ingham inequalities. In addition, the choice of the
thresholding parameter η can affect the performance of the algorithm in [11] while MUSIC does
not contain any thresholding parameter.

With the Hankel structure exploited in [7], Chen and Chi apply the matrix completion tech-
nique to recover a spectrally sparse signal from its partial time-domain samples. Their focus is on
reconstruction of yε(k) from its partial samples instead of frequency reconstruction. We will discuss
the combination of [7] and our work in Section 6 for the purpose of sparse frequency recovery with
compressive samples.

As for frequency recovery, recent progresses center around greedy algorithms and Total Variation
(TV) minimization.

The challenge of applying greedy algorithms to (3) lies in the high coherence and ill conditioning
of the sensing matrix A with a large choice of N . In order to mitigate this effect, we exploit the
coherence pattern of A and introduce the techniques of Band exclusion and Local Optimization
(BLO) to enhance standard compressive sensing algorithms. The performance guarantee in [22]
assumes q ≥ 3RL and ensures reconstruction of S to the accuracy of 1RL.

In [6, 5], Candès and Fernandez-Granda propose TV minimization and show that, under the
assumption of q ≥ 4RL, the minimizer yields an L1 reconstruction error linearly proportional to
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* I.I.D.  noise 

* Claim -- max and min SV of H ~ M/2

where ε(t) is the external noise.

The problem of spectral estimation is to recover the frequency support set S = {ω1, ...,ωs} and

the corresponding amplitudes x = [x1, ..., xs]
T
from a finite data sampled at, say, t = 0, 1, 2, · · · ,M ∈

N. Because of the nonlinear dependence of the signal y(t) on frequency, the main difficulty of spec-

tral estimation lies in identifying S. The amplitudes x can be easily recovered by solving least

squares once S is known.

Denote (with a slight abuse of notation) y = [yk]
M
k=0, ε = [εk]Mk=0 and y

ε
= y + ε ∈ CM+1

, with

yk = y(k), y
ε
k = y

ε
(k) and εk = ε(k). Let

φM
(ω) = [1 e

−2πiω
e
−2πi2ω

. . . e
−2πiMω

]
T ∈ CM+1

be the imaging vector of size M + 1 at the frequency ω and define

ΦM
= [φM

(ω1) φ
M
(ω2) . . . φM

(ωs)] ∈ C(M+1)×s
.

The single-snapshot formulation of spectral estimation takes the form

y
ε
= ΦM

x+ ε.

In addition to the nonlinear dependence of ΦM
on the unknown frequencies, with the sampling

times t = 0, 1, 2, · · · ,M ∈ N, one can only hope to determine frequencies on the torus T = [0, 1)

with the natural metric

d(ωj ,ωl) = min
n∈Z

|ωj + n− ωl|.

A key unit of frequency separation is the Rayleigh Length, the distance between the center and

the first zero of the sinc function sin (πωM)/(πω), namely, 1 RL = 1/M .

1.1 Single-snapshot ESPRIT

In this paper, to circumvent the gridding problem, we reformulate the spectral estimation problem

(2) in the form of multiple measurement vectors suitable for the application of Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) [4, 5].

Most state-of-the-art spectral estimation methods ([8] and references therein) assume many

snapshots of array measurement as well as statistical assumptions on measurement noise. Below

we present a deterministic, single-snapshot formulation of ESPRIT.

Fixing a positive integer 1 ≤ L < M , we form the Hankel matrix

H = Hankel(y) =





y0 y1 . . . yM−L

y1 y2 . . . yM−L+1
.
.
.

.

.

.
.
.
.

.

.

.

yL yL+1 . . . yM




. (2)

It is straightforward to verify that Hankel(y) with y = ΦM
x admits the Vandermonde decom-

position

H = ΦL
X(ΦM−L

)
T
, X = diag(x1, . . . , xs) (3)
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Discrete Ingham Inequalities

Remark 2. Ingham inequalities can be considered as a generalization of the Parseval’s identity for
non-harmonic Fourier series. The gap condition is necessary for a positive lower bound in (15) but
the upper bound always holds.

We prove the discrete version of Ingham inequalities.

{thm3}
Theorem 2. Suppose S satisfies the gap condition

q = min
j �=l

d(ωj ,ωl) >
1

L

�
2

π

�
2

π
− 4

L

�− 1
2
. (16) {sep}

When L is an even integer,

�
2

π
− 2

πL2q2
− 4

L

�
�c�22 ≤

1

L
�ΦL

c�22 ≤
�
4
√
2

π
+

√
2

πL2q2
+

3
√
2

L

�
�c�22, ∀c ∈ Cs. (17) {sv}

In other words,

1

L
σ2
max(Φ

L
) ≤ 4

√
2

π
+

√
2

πL2q2
+

3
√
2

L
(18) {smax}

and

1

L
σ2
min(Φ

L
) ≥ 2

π
− 2

πL2q2
− 4

L
. (19) {smin}

When L is an odd integer,

�
2

π
− 2

πL2q2
− 4

L

�
�c�22 ≤

1

L
�ΦL

c�22 ≤
�
1 +

1

L

��
4
√
2

π
+

√
2

π(L+ 1)2q2
+

3
√
2

L+ 1

�
�c�22, ∀c ∈ Cs.(20) {sv2}

Proof of Theorem 2 is provided in Appendix B.

Remark 3. The difference between the bounds of the discrete and the continuous Ingham inequal-
ities is O(1/L) which is negligible when L is large. The upper bound in (17) holds even when the
gap condition (16) is violated; however, (16) is necessary for the positivity of the lower bound.

Remark 4. Some form of discrete Ingham inequalities are developed in [38, 39] for the analysis
of the control/observation properties of numerical schemes of the 1-d wave equation. The main
result therein is that when time integrals in (15) are replaced by discrete sums on a discrete mesh,
discrete Ingham inequalities converge to the continuous one as the mesh becomes infinitely fine.
Their asymptotic analysis, however, do not provide the non-asymptotic results stated in Theorem
2.

3 Perturbation of noise-space correlation
{secper}

In this section we use tools in classical matrix perturbation theory [45, 31] and develop a perturba-

tion estimate on the noise-space correlation function, the key ingredient of the MUSIC algorithm.

Our main results are presented in Theorem 3, Corollary 1 and Theorem 4 and proofs are provided

in Appendix C.1 and C.2.
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Discrete Ingham Inequalities

{propweyl}
Proposition 1 (Weyl’s Theorem). |σε

j − σj | ≤ �E�2, j = 1, 2, . . .

As a result, σε
j ≤ �E�2, ∀j ≥ s + 1 and σε

s ≥ σs − �E�2. Hence σε
s � σε

s+1, creating a gap

between σε
s and {σε

j : j ≥ s+ 1}. An example is shown in Figure 3.

Before describing our main results, we pause to define notations to be used in the subsequent

sections. For an m × n matrix A, let σmax(A) and σmin(A) denote the maximum and minimum

nonzero singular values of A, respectively. Denote the spectral norm, Frobenius norm and nuclear

norm of A by �A�2, �A�F and �A��. Let xmax = maxj=1,...,s |xj | and xmin = minj=1,...,s |xj |. The

dynamic range of x is defined as xmax/xmin. Fixing S = {ω1, . . . ,ωs} ⊂ T, we define the matrix

ΦN1→N2 such that

ΦN1→N2
kj = e−2πikωj , k = N1, . . . , N2, j = 1, . . . , s.

For simplicity, we denote ΦM
= Φ0→M .

1.2 Contribution of the present work
{sec1.2}

The main contribution of the paper is a stability analysis for the MUSIC algorithm with respect

to general support set S and external noise.

In the MUSIC algorithm frequency candidates are identified at s smallest local minima of the

noise-space correlation which measures how much an imaging vector is correlated with the noise

space. In noise-free case, the noise-space correlation function R(ω) vanishes exactly on S. For the
noisy case we prove

|Rε
(ω)−R(ω)| ≤ α�E�2, α =

4σ1 + 2�E�2
(σs − �E�2)2

(10) {eqp’}

which holds for any support set S ⊂ T.
To make the bounds (10) explicit and more meaningful, we prove the discrete Ingham inequal-

ities (Corollary 1) which implies

σ2
s

L(M − L)
≥ x2min

�
2

π
− 2

πL2q2
− 4

L

��
2

π
− 2

π(M − L)2q2
− 4

M − L

�
(11) {smin’}

σ2
1

L(M − L)
≤ x2max

�
4
√
2

π
+

√
2

πL2q2
+

3
√
2

L

��
4
√
2

π
+

√
2

π(M − L)2q2
+

3
√
2

M − L

�
(12) {smax’}

under the gap assumption

q = min
j �=l

d(ωj ,ωl) > max

�
1

L

�
2

π

�
2

π
− 4

L

�− 1
2

,
1

M − L

�
2

π

�
2

π
− 4

M − L

�− 1
2

�
. (13) {eq9}

Furthermore, we prove that for every ωj ∈ S, there exists a local minimizer ω̂j of Rε
such that

ω̂j → ωj as noise decreases to 0.

To relax the restriction on the minimum separation between adjacent frequencies, condition

(13) suggests that L should be about M/2 and then the resolving power of the present form of

MUSIC is as good as 2/M = 2RL.

By the results of [1], the spectral norm of the random Hankel matrix E from a zero mean,

independently and identically distributed (i.i.d.) sequence of a finite variance is on the order of
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Hausdorff Distance (HD)

3. SemiDefinite Programming (SDP) [5, 47]: The code is from http://www.stanford.edu/

~cfgranda/superres_sdp_noisy.m where SDP is solved through CVX, a package for spec-
ifying and solving convex programs [26, 27]. Output of SDP is the dual solution of total
variation minimization. In the code, frequencies are identified through root findings of a
polynomial and amplitudes are solved through least squares. Let ω̃ = [ω̃j ]nj=1 ∈ Rn be the
frequencies retrieved from the code and x̃ = [x̃j ]nj=1 ∈ Cn be the corresponding amplitudes.
Usually n is greater than s. A straightforward way of extracting s reconstructed frequencies
is by Hard Thresholding (HT), i.e., picking the frequencies corresponding to the s largest am-
plitudes in x̃. We also test if the Band Excluded Thresholding (BET) technique introduced
in [22] can improve on hard thresholding and enhance the performance of SDP (Fig. 6). BET
amounts to trimming ω̃ ∈ Rn to ω̂ ∈ Rs as follows.

Band Excluded Thresholding (BET)

Input: ω̃, x̃, s, r (radius of excluded band).
Initialization: ω̂ = [ ].
Iteration: for k = 1, . . . , s
1) Find j such that |x̃j | = maxi |x̃i|.

If x̃j = 0, then go to Output.
2) Update the support vector: ω̂ = [ω̂ ; ω̃j ].
3) For i = 1 : n

If ω̃i ∈ (ω̃j − r, ω̃j + r), set x̃i = 0.
Output: ω̂.

When frequencies are separated by at least 4RL, we choose r = 1RL.

4. Matched Filtering (MF) using prolates: In [19], Eftekhari and Wakin use matched filtering
windowed by the Discrete Prolate Spheroidal (Slepian) Sequence [44] for the same problem
while frequencies are extracted by band-excluded and locally optimized thresholding proposed
in [22]. In its current form, MF using prolates can not deal with complex-valued amplitudes
so it is tested with real-valued amplitudes only.

Reconstruction error is measured by Hausdorff distance between the exact (S) and the recovered
(Ŝ) sets of frequencies:

d(Ŝ,S) = max

�
max
ω̂∈Ŝ

min
ω∈S

d(ω̂,ω) , max
ω∈S

min
ω̂∈Ŝ

d(ω̂,ω)

�
. (38) {hausdorff}

5.2 Noise-free case

In the noise-free case only MUSIC processes a theory of exact reconstruction regardless of the
distribution of true frequencies. In theory, BLOOMP requires a separation of 3RL for approximate
support recovery while SDP requires a separation of 4RL for exact recovery. In this test we use the
four algorithms to recover 15 real-valued amplitudes separated by 1RL. Figure 4 shows that MUSIC
achieves the accuracy of about 0.004RL while BLOOMP, SDP and MF using prolates essentially
fail, which implies that certain separation condition is necessary for BLOOMP, SDP and MF using
prolates.

16

Suppose T is fixed. The grid spacing ∆ is the possible minimum separation of two frequencies in
S. The weakened gap condition (34) indicates that, on average S has no more than one frequency
in every interval of length 1 but allows R frequencies to locally cluster together. In other words, S
is globally regular but can be locally irregular. R is an index describing the degree of clumping or
irregularity of the support satisfying the weakened gap condition (34). The simplest case is R = 1
where all frequencies are separated by 1.

The crux of Theorem 6 is that the lower bound ν(∆, T, R) depends on ∆ in a power law with an
exponent between 2R−1 and 2R+1. It provides a theoretical justification of the R-point resolution
of MUSIC which refers to the capability of resolving R closely spaced frequencies. Suppose there
are R frequencies equally separated by ∆. According to Theorem 3 success of MUSIC requires

�E�2 = �Hankel(ε)�2 < σs.

Let L = M/2. Roughly speaking, Theorem 6 implies

σs = σmin(Φ
LX(ΦM−L)T ) ≥ xminσmin(Φ

L)σmin(Φ
M−L) ∼ xmin∆

e(R)

with exponent e(R) ∈ [2R − 1, 2R + 1]. Therefore the noise level that MUSIC can handle scales
like ∆e(R) with e(R) ∈ [2R− 1, 2R+1]. As a numerical verification, we do experiments in the case
of R = 2, 3, 4 and show results in Figure 7.

5 Numerical experiments
{secnum}

A systematic numerical simulation is performed on MUSIC, BLOOMP, SDP and Matched Filtering
using prolates in this section, showing that MUSIC combines the advantages of strong stability and
low computation complexity for the detection of well-separated frequencies and furthermore only
MUSIC yields an exact reconstruction in the noise-free case regardless of the distribution of true
frequencies and processes the capability of resolving closely spaced frequencies.

5.1 Algorithms to be tested.

We compare the performances of various algorithms on the line spectral estimation problem (1)
with M = 100 and i.i.d. Gaussian noise, i.e. ε ∼ N(0,σ2I) + iN(0,σ2I). Define the

Noise-to-Signal Ratio (NSR) = E(�ε�2)/�y�2 = σ
�
2(M + 1)/�y�2.

We test and compare the following algorithms.

1. The MUSIC algorithm: As suggested by (24) in Corollary 1 we set M = 2L.

2. Band-excluded and Locally Optimized Orthogonal Matching Pursuit (BLOOMP) [22]: BLOOMP
works with an arbitrarily fine grid with grid spacing � = RL/F where F is the refinement/super-
resolution factor. In the presence of noise it is unnecessary to set an extremely large F . A
rule of thumb for the problem of spectral estimation is that F ∼ SNR gives rise to a gridding
error comparable to the external noise [22, Fig. 1]. For instance F = 20 is adequate when
SNR ≥ 5%. When frequencies are separated above 3RL (i.e., in Fig. 4(b), Fig. 5(b) and Fig.
6(a)(b)), we can set the radii of excluded band and local optimization to be 2RL and 1RL,
respectively. When frequencies are separated between 2RL and 3RL (i.e., in Fig. 6(c)(d), the
radii of excluded band and local optimization is set to be 1RL.
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minimize the residual. The search is local in the sense that during the search in the coherence
band of one nonzero component, the locations of other nonzero components are fixed. The
amplitude of the improved estimate is recovered by solving the least squares problem. Because
of the local nature of the LO step, the computation is not expensive (see Remark 4 below).

Algorithm 2. Local Optimization (LO).

Input: A,b, η > 0, S0 = {i1, . . . , ik}
Iteration: For n = 1, 2, . . . , k

1. xn = arg minz ‖Az− b‖2, supp(z) = (Sn−1\{in}) ∪ {jn}, jn ∈ Bη({in}).
2. Sn = supp(xn).

Output: Sk.

Embedding LO in BOMP gives rise to the Band-excluded Locally Optimized Orthogonal
Matching Pursuit (BLOOMP).

Algorithm 3. Band-excluded Locally Optimized Orthogonal Matching Pursuit (BLOOMP).

Input: A,b, η > 0
Initialization: x0 = 0, r0 = b, and S0 = ∅
Iteration: For n = 1, . . . , s

1. imax = argmaxi |〈rn−1,ai〉|, i /∈ B(2)
η (Sn−1).

2. Sn = LO(Sn−1 ∪ {imax}), where LO is the output of Algorithm 2.
3. xn = argminz ‖Az − b‖2 s.t. supp(z) ∈ Sn.
4. rn = b−Axn.

Output: xs.

We now give a condition under which LO does not spoil the BOMP reconstruction of
Theorem 1.

Theorem 2. Let η > 0 and let x be an s-sparse vector such that (15) holds. Let S0 and Sk

be the input and output, respectively, of the LO algorithm.
If

xmin > (ε+ 2(s − 1)η)

(
1

1− η
+

√
1

(1− η)2
+

1

1− η2

)

, ε = ‖e‖,(24)

and each element of S0 is in the η-coherence band of a unique nonzero component of x, then
each element of Sk remains in the η-coherence band of a unique nonzero component of x.

Proof. Because of the iterative nature of Algorithm 2, it is sufficient to show that each
element of S1 is in the η-coherence band of a unique nonzero component of x.

Suppose J1 ∈ supp (x) and i1 ∈ Bη(J1). Let

r = min
z

‖Az− b‖2, supp(z) = (S0\{i1}) ∪ {J1},

r′ = min
z

‖Az− b‖2, supp(z) = (S0\{i1}) ∪ {j}, j ∈ Bη(i1)\Bη(J1).
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minimize the residual. The search is local in the sense that during the search in the coherence
band of one nonzero component, the locations of other nonzero components are fixed. The
amplitude of the improved estimate is recovered by solving the least squares problem. Because
of the local nature of the LO step, the computation is not expensive (see Remark 4 below).

Algorithm 2. Local Optimization (LO).

Input: A,b, η > 0, S0 = {i1, . . . , ik}
Iteration: For n = 1, 2, . . . , k

1. xn = arg minz ‖Az− b‖2, supp(z) = (Sn−1\{in}) ∪ {jn}, jn ∈ Bη({in}).
2. Sn = supp(xn).

Output: Sk.

Embedding LO in BOMP gives rise to the Band-excluded Locally Optimized Orthogonal
Matching Pursuit (BLOOMP).

Algorithm 3. Band-excluded Locally Optimized Orthogonal Matching Pursuit (BLOOMP).

Input: A,b, η > 0
Initialization: x0 = 0, r0 = b, and S0 = ∅
Iteration: For n = 1, . . . , s

1. imax = argmaxi |〈rn−1,ai〉|, i /∈ B(2)
η (Sn−1).

2. Sn = LO(Sn−1 ∪ {imax}), where LO is the output of Algorithm 2.
3. xn = argminz ‖Az − b‖2 s.t. supp(z) ∈ Sn.
4. rn = b−Axn.

Output: xs.

We now give a condition under which LO does not spoil the BOMP reconstruction of
Theorem 1.

Theorem 2. Let η > 0 and let x be an s-sparse vector such that (15) holds. Let S0 and Sk

be the input and output, respectively, of the LO algorithm.
If

xmin > (ε+ 2(s − 1)η)

(
1

1− η
+

√
1

(1− η)2
+

1

1− η2

)

, ε = ‖e‖,(24)

and each element of S0 is in the η-coherence band of a unique nonzero component of x, then
each element of Sk remains in the η-coherence band of a unique nonzero component of x.

Proof. Because of the iterative nature of Algorithm 2, it is sufficient to show that each
element of S1 is in the η-coherence band of a unique nonzero component of x.

Suppose J1 ∈ supp (x) and i1 ∈ Bη(J1). Let

r = min
z

‖Az− b‖2, supp(z) = (S0\{i1}) ∪ {J1},

r′ = min
z

‖Az− b‖2, supp(z) = (S0\{i1}) ∪ {j}, j ∈ Bη(i1)\Bη(J1).

* F-Liao 2012
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ABSTRACT
Single-snapshot line spectral estimation is carried out with one compressed sensing technique, Band-excluding

Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

min �x�TV, �yε − y�2 ≤ �

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
−2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time samples

of y and yε at t = 0, 1, . . . ,M ∈ N and denote y =

[y(t0), y(t1), . . . , y(tM )]T and

yε = [yε(t0), y
ε
(t1), . . . , y

ε
(tM )]

T , tj = j

S ⊂ { j

M + 1
: j = 0, . . . ,M}
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ABSTRACT
Single-snapshot line spectral estimation is carried out with one compressed sensing technique, Band-excluding

Locally Optimized Orthogonal Matching Pursuit (BLOOMP), and two subspace-based methods, Multiple

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT). Simulations show that for separation greater than 3 RL, BLOOMP is the best performer while

for separation between 2 to 3 RL, ESPRIT and MUSIC are the equally best performers. ESPRIT is by far

the computationally most efficient, followed by MUSIC and BLOOMP.

1. INTRODUCTION

min �x�TV, �yε − y�2 ≤ �

y = inverse Fourier transform of x

In the line spectral estimation problem, a noisy sig-

nal y�(t) consisting the sum of s Fourier components

is given by

y�(t) = y(t) + �(t), y(t) =
s�

j=1

xje
−2πiωjt, (1)

where �(t) is the external noise and the frequencies

{ωj} are not necessarily harmonic with respect to

some fundamental frequencies. In other words, the

set of frequencies S = {ω1, . . . ,ωs} may not be part

of any regular grid.

The objective of spectral estimation is to recover S
and the corresponding amplitudes x = [x1, . . . , xs]

T

from a finite (possibly not much larger than s) set

of data sampled.

For simplicity, we consider the regular time samples

of y and yε at t = 0, 1, . . . ,M ∈ N and denote y =

[y(t0), y(t1), . . . , y(tM )]T and

yε = [yε(t0), y
ε
(t1), . . . , y

ε
(tM )]

T , tj = j

* Tang et al. 2013,   Candes-Fernandez-Granda 2013

Stability requirement:  4 RL 

3. SemiDefinite Programming (SDP) [5, 47]: The code is from http://www.stanford.edu/

~cfgranda/superres_sdp_noisy.m where SDP is solved through CVX, a package for spec-
ifying and solving convex programs [26, 27]. Output of SDP is the dual solution of total
variation minimization. In the code, frequencies are identified through root findings of a
polynomial and amplitudes are solved through least squares. Let ω̃ = [ω̃j ]nj=1 ∈ Rn be the
frequencies retrieved from the code and x̃ = [x̃j ]nj=1 ∈ Cn be the corresponding amplitudes.
Usually n is greater than s. A straightforward way of extracting s reconstructed frequencies
is by Hard Thresholding (HT), i.e., picking the frequencies corresponding to the s largest am-
plitudes in x̃. We also test if the Band Excluded Thresholding (BET) technique introduced
in [22] can improve on hard thresholding and enhance the performance of SDP (Fig. 6). BET
amounts to trimming ω̃ ∈ Rn to ω̂ ∈ Rs as follows.

Band Excluded Thresholding (BET)

Input: ω̃, x̃, s, r (radius of excluded band).
Initialization: ω̂ = [ ].
Iteration: for k = 1, . . . , s
1) Find j such that |x̃j | = maxi |x̃i|.

If x̃j = 0, then go to Output.
2) Update the support vector: ω̂ = [ω̂ ; ω̃j ].
3) For i = 1 : n

If ω̃i ∈ (ω̃j − r, ω̃j + r), set x̃i = 0.
Output: ω̂.

When frequencies are separated by at least 4RL, we choose r = 1RL.

4. Matched Filtering (MF) using prolates: In [19], Eftekhari and Wakin use matched filtering
windowed by the Discrete Prolate Spheroidal (Slepian) Sequence [44] for the same problem
while frequencies are extracted by band-excluded and locally optimized thresholding proposed
in [22]. In its current form, MF using prolates can not deal with complex-valued amplitudes
so it is tested with real-valued amplitudes only.

Reconstruction error is measured by Hausdorff distance between the exact (S) and the recovered
(Ŝ) sets of frequencies:

d(Ŝ,S) = max

�
max
ω̂∈Ŝ

min
ω∈S

d(ω̂,ω) , max
ω∈S

min
ω̂∈Ŝ

d(ω̂,ω)

�
. (38) {hausdorff}

5.2 Noise-free case

In the noise-free case only MUSIC processes a theory of exact reconstruction regardless of the
distribution of true frequencies. In theory, BLOOMP requires a separation of 3RL for approximate
support recovery while SDP requires a separation of 4RL for exact recovery. In this test we use the
four algorithms to recover 15 real-valued amplitudes separated by 1RL. Figure 4 shows that MUSIC
achieves the accuracy of about 0.004RL while BLOOMP, SDP and MF using prolates essentially
fail, which implies that certain separation condition is necessary for BLOOMP, SDP and MF using
prolates.
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Code:  http://www.stanford.edu/ 
~cfgranda/superres_sdp_noisy.m
SDP is solved in CVX. Output of 
SDP is the dual solution of TV 
minimization. Frequencies are 
identified through root findings of 
a polynomial and amplitudes are 
solved through least squares. 
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5.3 Detection of well-separated frequencies
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(a) MUSIC. Red: exact; Blue: recovered.
d(Ŝ,S) ≈ 0.06RL.
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(b) BLOOMP. Red: exact; Blue: recovered.
d(Ŝ,S) ≈ 0.05RL.
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(c) SDP. Red: exact; Blue: Primal solution of
SDP. Hard thresholding (green) yields d(Ŝ,S) ≈
3.94RL. The true amplitude around 33RL is re-
covered as two amplitudes and the BET technique
can be used to eliminate the smaller one in the step
of frequency selection.
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(d) MF using prolates. Red: exact; Blue: in-
verse Fourier transform of yε windowed by the
first DPSS sequence; Green: frequencies selected
by the BLO technique. d(Ŝ,S) ≈ 0.10RL.

Figure 5: Reconstruction of 15 real-valued amplitudes separated by 4RL. Dynamic range = 10 and
NSR = 10%. {figc1}

Figure 5 shows reconstructions of 15 real-valued frequencies separated by 4RL. By extracting
15 largest local maxima of the imaging function Jε(ω), MUSIC yields a reconstruction distance
of 0.06RL. As predicted by the theory in [22], every recovered object of BLOOMP is within 1
RL distance from a true one. Indeed, in this simulation BLOOMP achieves the best accuracy
of 0.05 RL among tested algorithms. The primal solution of SDP is usually not s-sparse and
the recovered frequencies tend to cluster around the true ones [25] which degrades the accuracy.
The Hausdorff distance between the recovered spikes with the s strongest amplitudes and the true

18

Reconstruction of 15 real-valued amplitudes separated by 4RL. Dynamic range = 10 and 
NSR = 10%.
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Frequencies separated between 4RL and 5RL
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(a) Dynamic range = 1. Average running time for

SDP and MUSIC in one experiment is 20.3583s

and 0.3627s while the average running time for

BLOOMP is 6.3420s (F = 20), 3.2788s (F = 10)

and 1.7610(F = 5).
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(b) Dynamic range = 10. Average running time

for SDP and MUSIC in one experiment is 20.5913s

and 0.3661s while the average running time for

BLOOMP is 6.2623s (F = 20), 3.3030s (F = 10)

and 1.7542s (F = 5).

Frequencies separated between 2RL and 3RL
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(c) Dynamic range = 1. Average running time for

SDP and MUSIC in one experiment is 20.6750s

and 0.3334s while the average running time for

BLOOMP is 19.8357s (F = 20), 11.2349s (F = 9)

and 8.0850s (F = 5).
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(d) Dynamic range = 10. Average running time

for SDP and MUSIC in one experiment is 21.0572s

and 0.3321s while the average running time for

BLOOMP is 19.9233s (F = 20), 11.5190s (F = 9)

and 8.1054s (F = 5).

Figure 6: Average error by SDP with HT, BET-enhanced SDP, BLOOMP and MUSIC on complex-
valued objects separated between 4RL and 5RL (a)(b) or separated between 2RL and 3RL (c)(d)
versus NSR when dynamic range = 1 (a)(c) and when dynamic range = 10 (b)(d). MF using
prolates is not included since it is not designed for complex amplitudes. {figc2}
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Linear stability:  (i)  0 ~ 0.2 HD;  (ii) >0.2 HD

HD versus NSR
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(a) MUSIC. Red: exact; Blue: recovered.
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Figure 4: Reconstruction of 15 real-valued frequencies separated by 1RL. Dynamic range = 1 and
NSR = 0%. {figc3}
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Reconstruction of 15 real-valued frequencies separated by 1RL. Dynamic 
range = 1 and NSR = 0%.
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Superresolution
* MUSIC ~ 2 RL Linear stability

4.2 The minimum singular value of ΦL

At this stage we can not provide an explicit lower bound of σmin(ΦL) under certain weakened gap
condition but we discuss some implications from Donoho’s paper [15].

According to definition,

σ2
min(Φ

L)�c�22 ≤
L�

k=0

������

s�

j=1

cje
−2πikωj

������

2

(33) {eqd4}

for all c ∈ Cs such that
�

j |cj |2 < ∞.
Let L(∆) be the lattice with spacing ∆ on R, i.e., L(∆) = {k∆, k ∈ Z} and suppose all

frequencies in S are located on L(∆), i.e., S ⊂ L(∆). In [15], Donoho provides a lower bound for
the sum of complex exponentials in the system {e−2πiωjt, t ∈ [−T, T ], ωj ∈ S ⊂ L(∆)}, which can
be viewed as a continuous version of (33) while the summation over k = 0, . . . , L is substituted by
an integral on [−T, T ].

{thmd2}
Theorem 6 ([15, Theorem 1.3 and 1.4]). Suppose S = {ω1,ω2, . . .} ⊂ L(∆) is an ordered set such
that ωj+1 > ωj , ∀j. Suppose R is the least positive integer such that

|ωj+R − ωj | > R, ∀j. (34) {eqd11}

Suppose for all S satisfying (34), the inequality

ν(∆, T, R)�c�22 ≤
� T

−T
|
�

ωj∈S
cje

−2πiωjt|2dt (35) {eqd5}

holds for all sequence c satisfying
�

j |cj |2 < ∞. Then

1. Suppose T > 1,

ν(∆, T, R) ≥ ∆2R+1α(T,R) (36) {eqd6}

where α(T,R) is some positive constant depending on T and R.

2. Let ∆0 ∈ (0, 1). If ∆ < ∆0 then

ν(∆, T, R) ≤ ∆2R−1β(T,R,∆0) (37) {eqd7}

where β(T,R,∆0) is some positive constant depending on T , R and ∆0.

Remark 13. Our statement of the theorem is slightly different than Theorem 1.3 and 1.4 in [15].
No algorithm is proposed for support reconstruction in [15] mainly due to the non-convexity of the
weakened gap constraint (34).

Remark 14. Even though it has not been proven, Donoho considers it plausible that a more general
family of inequalities holds in which the lattice constraint S ⊂ L(∆) is removed. He conjectured
that ν(∆, T, R) would be like ∆e(R) for certain exponent e(R).
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ωj∈S
cje

−2πiωjt|2dt (35) {eqd5}
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j |cj |2 < ∞. Then

1. Suppose T > 1,
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R = Size of largest cluster

{propweyl}
Proposition 1 (Weyl’s Theorem). |σε

j − σj | ≤ �E�2, j = 1, 2, . . .

As a result, σε
j ≤ �E�2, ∀j ≥ s + 1 and σε

s ≥ σs − �E�2. Hence σε
s � σε

s+1, creating a gap

between σε
s and {σε

j : j ≥ s+ 1}. An example is shown in Figure 3.

Before describing our main results, we pause to define notations to be used in the subsequent

sections. For an m × n matrix A, let σmax(A) and σmin(A) denote the maximum and minimum

nonzero singular values of A, respectively. Denote the spectral norm, Frobenius norm and nuclear

norm of A by �A�2, �A�F and �A��. Let xmax = maxj=1,...,s |xj | and xmin = minj=1,...,s |xj |. The

dynamic range of x is defined as xmax/xmin. Fixing S = {ω1, . . . ,ωs} ⊂ T, we define the matrix

ΦN1→N2 such that

ΦN1→N2
kj = e−2πikωj , k = N1, . . . , N2, j = 1, . . . , s.

For simplicity, we denote ΦM
= Φ0→M .

1.2 Contribution of the present work
{sec1.2}

The main contribution of the paper is a stability analysis for the MUSIC algorithm with respect

to general support set S and external noise.

In the MUSIC algorithm frequency candidates are identified at s smallest local minima of the

noise-space correlation which measures how much an imaging vector is correlated with the noise

space. In noise-free case, the noise-space correlation function R(ω) vanishes exactly on S. For the
noisy case we prove

|Rε
(ω)−R(ω)| ≤ α�E�2, α =

4σ1 + 2�E�2
(σs − �E�2)2

(10) {eqp’}

which holds for any support set S ⊂ T.
To make the bounds (10) explicit and more meaningful, we prove the discrete Ingham inequal-

ities (Corollary 1) which implies
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under the gap assumption
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�
. (13) {eq9}

Furthermore, we prove that for every ωj ∈ S, there exists a local minimizer ω̂j of Rε
such that

ω̂j → ωj as noise decreases to 0.

To relax the restriction on the minimum separation between adjacent frequencies, condition

(13) suggests that L should be about M/2 and then the resolving power of the present form of

MUSIC is as good as 2/M = 2RL.

By the results of [1], the spectral norm of the random Hankel matrix E from a zero mean,

independently and identically distributed (i.i.d.) sequence of a finite variance is on the order of

6
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(a) Two-point resolution of MUSIC, R = 2
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(b) Three-point resolution of MUSIC, R = 3
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(c) Four-point resolution of MUSIC, R = 4
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(d) Five-point resolution of MUSIC, R = 5

Figure 7: The color represents the logarithm to the base 2 of the average ratio between d(S, Ŝ) and
the separation of frequencies with respect to NSR (y-axis) and object separation (x-axis) in the unit
of RL. Reconstruction is considered successful if the ratio is less than 1/2 (from green to black).
A clear phase transition (green curve) is observed. Transition points from which the ratio between
d(S, Ŝ) and separation drops below 1/2 are marked out. In each cases we plot two black curves
y = cxk corresponding to k = 2R − 1 and k = 2R + 1 and with a proper choice of c such that the
curve fits all transition points under least squares. In (a) the top is y = 46.7828x3 and the bottom
curve is y = 255.677x5. In (b) the top is y = 9.2532x5 and the bottom curve is y = 14.0662x7. In
(c) the top is y = 1.7191x7 and the bottom curve is y = 1.3906x9. In (d) the top is y = 0.3790x9

and the bottom curve is y = 0.2384x11. Interestingly the phase transition curve fits very well with
the top curve y = cx2R−1 in all cases. {figPT}
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(c) Four-point resolution of MUSIC, R = 4
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the unit of RL. Reconstruction is considered successful if the ratio is less than 1/2 (from green to
black). A clear phase transition (green curve) is observed. Transition points from which the ratio
between d(S, Ŝ) and separation drops below 1/2 are marked out.
In each cases we plot two black curves y = cxk corresponding to k = 2R − 1 and k = 2R + 1 and
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and the bottom curve is y = 14.0662x7. In (c) the top is y = 1.7191x7 and the bottom curve is
y = 1.3906x9. In (d) the top is y = 0.3790x9 and the bottom curve is y = 0.2384x11. Interestingly
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Conclusion
* Deterministic single-snapshot MUSIC

* Discrete Ingham Inequalities

* Stability and Resolution --
 linear stability for separation > 2 RL

* Nearly optimal superresolution 

* Efficiency
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