MUSIC for Single-Snapshot

Spectral Estimation
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Spectral Estimation (SE)

* Signal model
y (t) = y(t) +e(t Z rje 2Tt
* Problem formulation —
Given M+1 data v° = [¥°(t0), ¥ (t1), - - -, y® (tar)]"
Find S={wi,...,ws} T = [:Cl,...,‘a’,‘s]T

* Simplest setting — equally spaced samples ¢ = j

* Frequencies can not be distinguished from their
integershiftedversion o «<— w+n, néeN

*Assumption— S C [0,1]  Periodic BC.



Direction Of Arrival (DOA)
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< >
d

*Signal model ¥k = Y wje e diA =01, M
j=1

* Reduction to spectral estimation — ~ wj = d cos ¢/ A



Fourier analysis
*DFT of order M+1 — gc{leH k=0,.... M)

— compressed sensing;
Hdata~s

* Fourier coefficients of frequency spikes — k € Z

r(w) = Z T;0(w — wj)

: x(w) _ Z ykez’%rkw

/1 —iwk keZ
r(w)e " dw
0 In distributional sense

*SS-SE = FT with M+1 data points : M~ ?

*lssues: Resolution, Noise stability

Yk
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Statistical Signal Processing

Reference; Stoica - Moses 2004

— —

r{ spectral analysis _}‘ \/

_ ) parametric
nonparametric high-resolution
4 B
high-resolution AR, ARMA based subspace-based
low-resolution "}/
/ _\‘ Lo e model fitting based
periodogram | | ‘correlogram maximum f
H MUSIC
modified det. and stoch. ML
periodogram .
correlogram Borgiotti-Lagunas least squares mnin-norm

* Single Snapshot measurement ==2>> Deterministic approach
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Vector Form

* Vectorization
y = [yklitg, € = [ek)ity and y° =y + e € CM !

¢M(w) _ [1 6—27Tz'w 6—27Tz'2w o 6—27TiMw]T c (CM—I—l
M = [ (w1) oM (wa) ... ¢M(ws)] € CMFIXS

* Signal model in vector form  y© = dMy + e
Matrix unknown === Nonlinear inverse problem

* Rayleigh resolution length (RL): first zero of the sinc function

M2
D(w) = / XMt = === RL=/M

—M/2 TTW

sin mwM
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Hankel Data Matrix

Yo Y1 ... YM—L |

Y1 Y2 e YM—L+1
H = Hankel(y) =

yr. Yyr+i .. (70,7

* Vandermonde decomposition

H=otXx (@M1 X = diag(xy, ..., xs)

1 1 .. 1
6—27Tz'w1 6—27m'w2 o 6—27Tiw3
(I)L B (6—27Tiw1)2 (6—27m'w2)2 o (6—27T73w3)2

(6—27%7@1)1; (6_2”’73“’2)[’ (6—27;7@3)1;
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Signal Model in Matrix Form
H°=H+E=3d"X(eM" M 4+ p
* Condions— L>s, M—L+1>s< M+]>s

X
SVD 01> 09 2 03 > 05 >0
H = [ U1 U2 ] diag(01,02 ..... US,O ..... O) [ Vl VQ ]*
—~— —~ N - 20—~ ——
(L+1)xs (L41)x(L+1—s) (L+1) 5 (M—L+1) (M—L+1)xs (M—L+1)x(M—L+1—s)
* Observation—  Pyw = Uy (Uiw), Vw € CLH!

w € S if and only if Py¢”(w) = 0

* Noise-space correlation

P29 (w)ll2 _ U3¢ (w)]l2

B9 =il = 1ol
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MUSIC with Noisy Data

H®=| Uj Us | diag(of,05,...,05,00,04,...) [ Vi Vy |*
—— —— N -~ NG ——
(L+1)xs (L+1)x(L+1—s) (L41)x (M—L+1) (M=L+41)xs (M—L+1)x(M—L+1—s)

(Weyl’s Theorem). |05 — 0| < [[E|2, j=1,2,...

Input: v €¢ CM+1 s L.

1) Form matrix H® = Hankel(y?) € CEADX(M=L+1)
2) SVD: H® = [Uf Us]diag(o$,...,0%,..)[VFE V5]*, where Us € CUADxs,
3) Compute correlation function R®(w) = ||[Us*¢%(w)|2/||o% (w)]]2.
Output: S = {w corresponding to s largest local maxima of J¢(w)}.

Noise space correlation
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Stability Analysis

4o+ 2||E|2

‘Rs(w) _ R(w)‘ < OéHEHQv & = (0'3 _ HEH2)2

} Noise tolerance ~ min SV of H

*11.D. noise
spectralnorm of E~ /M log M for M > 1

* Claim — max and min SV of H~ M/2
H=olX (M1 X = diag(x,...,zs)



Discrete Ingham Inequalities

1 /2,2  4\—3
= mind(w;,w;) > — ( )
If d py, (wj,wi) L\/; r L
2 2 AN, wo o Lo o /A2 V2 3V2Y, g )
then (5~ o — )l < ple%eld < (57 + s + 7 )llelB, vee G
1 44/ 2 2 2
Lo (@< WV2, v2 | 32
[ L T wL2q? L
1 2 2 4
— 0 (®7)
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Discrete Ingham Inequalities

nd( s 1 /2 /2 4\ 1 \F 2 4
— min d(w.,, w max | =1/ = [ = — = 2z _
If ¢ J et LY#7m\nw L "M —-LV 7w \nm M-

then
o2 , (2 2 4\ (2 2 4
LM —1) = "mn\F T2 L)\x (M —-L32f M_-L
i _ o2 (A2 V2 3v2) (42 V2
:,C —_— .
L(M-L) — ™\ & wL2g? L T w(M — L)?q?

*L=M)2 & the spacing>2 RL

) Max and Min SV are on the same order M/2




Figures of Ment

Hausdorff Distance (HD)

d(S,S) = max {max min d(w,w) , max min d(c&,w)}

oHes weS weS Hes

Noise-to-Signal Ratio (NSR) = E(|le|l2)/|lyll2 = o+/2(M + 1)/]|y]|2

CPU Run Time
Dynamic Range
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BLOOMP

*F-Liao 2012

Algorithm 3. Band-excluded Locally Optimized Orthogonal Matching Pursuit (BLOOMP).

Input: A,b,n >0
Initialization: x" = 0,r’ = b, and S =)
Iteration: Forn =1,...,s
1. imax = argmax; [(r" 1 a;)|,i ¢ B7(72)(S"_1).
2. 8" = LO(S™ ' U {imax}), where LO is the output of Algorithm 2.
3. x" = argming ||[Az — b||2 s.t. supp(z) € S™.
4. r" = b — Ax".
Output: x°.

Algorithm 2. Local Optimization (LO).

Input: A,b,n > 0, S = {il, e ,ik}

Iteration: For n =1,2,...,k
1. x™ = arg min, |Az — blls, supp(z) = (S" "\{in}) U{jn}, jn € By({in}).
2. S™ = supp(x").

Output: S*.
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BP/SDP

*Tang etal. 2013, Candes-Fernandez-Granda 2013

min [[zf[tv, [y —yll2 <€

y = inverse Fourier transtorm of x

Stability requirement: 4 RL

Band Excluded Thresholding (BET)

Input: ©,z,s,r (radius of excluded band).
Initialization: @ = | ].
Iteration: for k=1,...,s
1) Find 7 such that ’53]’ = max; ‘53@’

If z; = 0, then go to Output.
2) Update the support vector: w = [ ; @,
3) Fori=1:n

If W, € ((IJ]' — T, W, + 1), set ; = 0.

Output: w.
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Code: http://www.stanford.edu/
~cfgranda/superres_sdp_noisy.m
SDP is solved in CVX. Output of
SDP is the dual solution of TV
minimization. Frequencies are
identified through root findings of
a polynomial and amplitudes are
solved through least squares.



http://www.stanford.edu
http://www.stanford.edu

Reconstruction of 15 real-valued amplitudes separated by 4RL. Dynamic range = 10 and
NSR = 10%.
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(a) MUSIC. Red: exact; Blue: recovered.
d(S,S) ~ 0.06RL.
\ \ D \ \ \ \ \
61 —© exact
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T

1 ‘0 éO C;O 4‘0 56 gO 76 8‘0 96 100
dist = 3.9449RL

(c) SDP. Red: exact; Blue: Primal solution of
SDP. Hard thresholding (green) yields d(S,S) ~
3.94RL. The true amplitude around 33RL is re-
covered as two amplitudes and the BET technique
can be used to eliminate the smaller one in the step
of frequency selection.
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(b) BLOOMP. Red: exact; Blue: recovered.
d(S,S) ~ 0.05RL.
61 | | ) | | | | ;Q éxact i
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0 \J o
ot
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(d) MF using prolates. Red: exact; Blue: in-

verse Fourier transform of y* windowed by the

first DPSS sequence; Green: frequencies selected

by the BLO technique. d(S,S) ~ 0.10RL.



HD versus NSR

Frequencies separated between 4RL and 5RL

Distance (unit:RL) versus NSR

| w—— SDP with HT
SDP with BET
|| w— Bl OOMP

w
(3]

w

= MUSIC
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151

Average distance (unit:RL) in 100 trials
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NSR

(a) Dynamic range = 1. Average running time for
SDP and MUSIC in one experiment is 20.3583s
and 0.3627s while the average running time for
BLOOMP is 6.3420s (F' = 20), 3.2788s (F = 10)
and 1.7610(F = 5).

Distance (unit:RL) versus NSR

mmmmm SDP with HT |-
I SDP with BET|.
m— BLOOMP .
[| e MUSIC
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(b) Dynamic range = 10. Average running time
for SDP and MUSIC in one experiment is 20.5913s
and 0.3661s while the average running time for
BLOOMP is 6.2623s (F' = 20), 3.3030s (F' = 10)
and 1.7542s (F = 5).

Linear stability: (i) 0~ 0.2 HD; (i) >0.2 HD
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Reconstruction of 15 real-valued frequencies separated by 1RL. Dynamic

range = 1 and NSR = 0%.
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(a) MUSIC. Red: exact; Blue: recovered. (b) BLOOMP. Red: exact; Blue: recovered.
d(S,S) ~ 0.004RL. d(S,S) ~ 1.81RL.
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(c) SDP. Red: exact; Blue: recovered.

thresholding yields d(S,S) ~ 2.72RL.
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Hard  (d) MF using prolates. Red: exact; Blue: inverse
Fourier transform of y windowed by the first DPSS
sequence.



Superresolution

*MUSIC ~2 RL Linear stability

* Superresolution (Donoho 92) — with unresolved grid

Assumption S C L(A) L(A) = {kAk € Z}
Suppose R, 1s the least positive integer such that

‘Cdj_|_R — w]‘ > R*/M, V]

Continuous data t € [0, M]
min SV (A, M, R)||c|2 < / S e gy
w;j €S
Lower bound v(A, M, R) > Ao (M, R)

Upper bound (A, M, R) < A*"1B(M, R)
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Optimal Superresolution

Lattice spacing A~ minimum separation of frequencies

Rayleigh Index (R) ~ R =Size of largest cluster
‘wj—l—R o wj‘ > R*/M7 vj.

oy + 2| B
(05 — [ El2)?

==2>> Noise tolerance ~min SV (A, M, R) < A2R-15(M, R)

R (w) = R(w)| < af[El2, «

Numerical performance achieves the upper bound
power law !



The logarithm to the base 2 of (distance error / separation) The logarithm to the base 2 of (distance error / separation)
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(a) Two-point resolution of MUSIC, R = 2 (b) Three-point resolution of MUSIC, R = 3
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(c) Four-point resolution of MUSIC, R = 4 (d) Five-point resolution of MUSIC, R =5

In each cases we plot two black curves y = cx* corresponding to k = 2R — 1 and k = 2R + 1 and
with a proper choice of ¢ such that the curve fits all transition points under least squares. In (a)
the top is y = 46.7828z> and the bottom curve is y = 255.677z°. In (b) the top is y = 9.2532x°
and the bottom curve is y = 14.0662z". In (c) the top is ¥y = 1.7191z" and the bottom curve is

y = 1.39062". In (d) the top is y = 0.37902” and the bottom curve is y = 0.2384x'1. Interestingly
the phase transition curve fits very well with the top curve y = cz?%~! in all cases.
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Conclusion

* Deterministic single-snapshot MUSIC
* Discrete Ingham Inequalities

* Stability and Resolution —
linear stability for separation >2 RL

* Efficiency

* Nearly optimal superresolution



