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diffuse illumination [7] and the proposed RPM, the phase diffuser
(photoresist, refractive index n¼1.65 at l¼633 nm, 2 mm
aperture diameter) is again used. In the diffuse illumination
setup, the diffuser-to-object distance used is 100 mm, which
results in a mean speckle size of 32 mm at the object plane [7]. In
the phase modulation setup, the diffuser is positioned close
(o1 mm separation) to the object. To emphasize the need for a
PDSF in this technique, experiments are also carried out using a
ground glass diffuser (220 grit), instead of the phase diffuser in
the same setups (Fig. 3(b) and (c)). A laser beam incident on a
ground glass diffuser generates a fully developed speckle field
(FDSF). It is known that a FDSF does not contain an unperturbed
wave component [12,13].

Fig. 4 shows the results for the experimental demonstrations
of speckle illumination by RPM. The first row (Fig. 4(a)–(e))
depicts portions of the intensity recordings taken at the first
measurement plane. Intensity distribution in the uniform
illumination setup (Fig. 4(a)) has circularly symmetric fringes
attributed to the lens aperture diffraction. Using the setup with an
ordinary ground glass diffuser, the speckle patterns shown in
Fig. 4(b) and (c) correspond to diffuser-to-object distances of 100
and 0 mm, respectively. Indicative of a FDSF, the speckle patterns
do not exhibit any distinct circular diffraction pattern. Using the
setup with a phase diffuser, Fig. 4(d) and (e) shows portions of the
recorded speckle patterns corresponding to diffuser-to-object
distances of 100 and 0 mm, respectively. The intensities show

recognizable circular pattern traces, which are due to lens
diffraction of the unperturbed plane wave component of the
PDSF. It is noted that in the case of the phase modulation setup,
the speckle intensity distribution has a higher spatial frequency
(Fig. 4(e)) than that obtained using the previous setup (Fig. 4(d))
indicating that the phase modulated wavefront introduced
greater randomization, hence, a greater scattering angle than
that of the diffused illumination wavefront. To efficiently capture
the scattered beam, the aperture size and the distance are
optimized such that the span of the generated speckle patterns
is kept within the camera sensing area.

Fig. 4(f) shows the phase map obtained using a uniform
illumination setup. The nearly constant phase in the inner circular
region of interest indicates poor reconstruction of the lens’
spherical wavefront. Circular fringe pattern in the outer region
is an artefact due to diffraction at the lens aperture. Fig. 4(k)
shows the wrapped phase error that has a visible spherical
pattern. Error evaluation is based on the resulting phase
difference with a spherical reference wavefront that is incident
on the aperture area (diameter, 2 mm) indicated by the circular
trace in Fig. 4(k). The rms error obtained from the average of the
unwrapped phase error is 0.61 waves. Use of a ground glass
diffuser (Fig. 4(g) and (h)) resulted in no reconstructions
indicating that the FDSF from a ground glass diffuser is not
suitable for the phase retrieval technique. In the setup where
the object is located 100 mm from the phase diffuser, the

Fig. 3. Experimental setups for the multiple-plane phase retrieval method: (a) plane wave or uniform illumination; (b) diffused illumination and (c) speckle illumination
with RPM.

Fig. 4. Recorded intensity patterns (first row), retrieved phase maps (second row) and phase errors with respect to a spherical reference phase (third row) for various
illumination conditions.

P.F. Almoro et al. / Optics and Lasers in Engineering 49 (2011) 252–257256

.

Fourier transform describes wave propagation

F (ei2πw1, ei2πw2) =
�

n
f(n)e−i2πn·w

Analytic continuation =⇒ z-transform

F (z) =
�

n
f(n)z−n.

Discrete phase retrieval problem:

Determine f(n) from Fourier magnitude data

|F (w)|, ∀w = (ei2πw1, ei2πw2) ∈ [0,1]2

Phasing problem formulation

Discrete finite objects

Let n = (n1, n2) ∈ Z2 and z = (z1, z2) ∈ C2.

multi-index : zn = zn11 zn22

Let the object be represented by f(n),n ≤ N = (N,N).

Binary objects: white = 1, black = 0.

Laurent polynomial
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Fourier magnitude data:

|F (w)|2 =
N�

n=−N

�

m
f(m+ n)f∗(m)e−i2πn·w

=
N�

n=−N

Cf(n)e−i2πn·w

where

Cf(n) =
�

m
f(m+ n)f∗(m)

is the autocorrelation function of f.

Fourier magnitude data contain complete information about

autocorrelation function.

Sampling Theorem:

supp(Cf) ⊂ [−N,N ]2=⇒ [0,1]2 is reduced to the Nyquist grid

M =
�
(k1, k2) : kj = 0,

1

2N +1
,

2

2N +1
, · · · ,

2N

2N +1

�

Harmonic (50%) & non-harmonic (50%) Fourier coefficients
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 Phase = Face ?

6

fL = Lena fB = Barbara
FL(w) = |FL(w)|eiθL(w) FB(w) = |FB(w)|eiθB(w)

F1(w) = |FB(w)|eiθL(w) F2(w) = |FL(w)|eiθB(w)

f1 = |Φ∗F1| f2 = |Φ∗F2|
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 Phase =  Face ! 
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Fourier Magnitude: Barbara  Fourier Phase: Lena Fourier Magnitude: Lena  Fourier Phase: Barbara

F1(w) = |FB(w)|eiθL(w) F2(w) = |FL(w)|eiθB(w)

f1 = |Φ∗F1| f2 = |Φ∗F2|
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(Hayes 1982) If the z-transform of  the object has no 
conjugate symmetric factor, the Fourier phase information 
determines the object up to a positive constant factor.

“Almost all” objects have no CSF.

CSF: factor with real-valued coefficients
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Trivial ambiguities

Autocorrelation:

Cf(n) =
�

m+n∈N
f(m+ n)f∗(m)

Invariant under:

(i) global phase,

f(n) −→ eiθf(n), for some θ ∈ [0,2π],

(ii) spatial translation

f(n) −→ f(n+m), some m ∈ Z2

(iii) conjugate inversion (twin image)

f(n) −→ f∗(N− n).
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Sources of ambiguity

THEOREM (Hayes 82, Pitts-Greenleaf 03)

Let the z-transform F (z) of a finite complex-valued sequence

{f(n)} be given by

F (z) = αz−m
p�

k=1

Fk(z), m ∈ N2,α ∈ C

where Fk, k = 1, ..., p are nontrivial irreducible polynomials. Let

G(z) be the z-transform of another finite sequence g(n). Sup-

pose |F (w)| = |G(w)|, ∀w ∈ [0,1]2. Then G(z) must have the

form

G(z) = |α|eiθz−p




�

k∈I
Fk(z)








�

k∈Ic
F ∗
k (1/z

∗
)



, p ∈ N2, θ ∈ R

where I is a subset of {1,2, ..., p}.

Nontrivial ambiguity: Partial conjugate inversion on factors.
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(a) 200× 200 HRM (b) 20× 20 LRM

Fig. 3. (a) High and (b) low resolution masks.

where Po is introduced to enforce the object constraints in the case of DRER.

6.B. Performance study of AER and DRER

First we use AER (11) to recover the non-negative images with the stopping rule �fk+1 −
fk�/�fk� < 0.05% and one LRM of uncertainty δ = 0.2. The results, shown in Fig. 4, are

noisy and inaccurate with 33.75% error for the cameraman and 44.74% error for the phantom.

Consistent with the residual reduction property (Theorem 3), the residual curves in Fig. 4

are monotonically decreasing.

Much improvement can be gained by running DRER, followed by AER. For real-valued

objects, we use the version of DRER (15). DRER (15) is stopped when �fk+1 − fk�/�fk� <

1%, with the maximum of 400 steps, and AER (11) is terminated when �fk+1 − fk�/�fk� <

0.05%, with the maximum of 400 steps. As shown in Figure 5, for the cameraman, 131 DRER

and 6 AER steps took place producing 1.43% error while for the phantom, 75 DRER and 5

AER steps took place with 0.33% error. Consistent with Theorem 1, the mask errors occur

only outside the object supports.

Next we consider the case of the generic complex-valued objects with one UM and one

LRM of uncertainty δ = 0.2. We apply the alternative versions of DRER (20) and AER (19)

which tend to produce better results than (15) and (11) for complex-valued objects. DRER

(20) is stopped when �fk+1 − fk�/�fk� < 1%, with the maximum of 400 steps, and AER

(19) is terminated when �fk+1 − fk�/�fk� < 0.05%, with the maximum of 400 steps. Fig.

6 shows the results for object phases randomly distributed on [0, 2π]. Both algorithms ran

their full course of 400 steps with 2.39% error for the cameraman and 1.37% error for the
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(a) random illumination

Coherent illumination
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Diffraction pattern (Fourier intensity)

(b) wavefront sensing

Figure 1. Conceptual layout of coherent lensless imaging with a fine-grained mask
(a) before (for random illumination) or (b) behind (for wavefront sensing) the object.
The equivalence of the two imaging geometries provides additional flexibility in
implementation.
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Mask effect is multiplicative and described as

f̃(n) = f(n)µ(n)

where {µ(n)} is an array of random variables. The mask can be placed before (Fig. 1(a)) or behind
(Fig. 1(b)) the object, giving rise to two equivalent imaging geometries and providing additional
flexibility in implementation. By placing a mask at a distance from the object, one can create
an illuminating (mask before object) or diffracted (mask behind object) field modulated in both
amplitude and phase in a way dependent on the distance [111].

For clarity of subsequent discussion, however, we will focus on the random illumination setup
of Fig. 1 (a) unless we specifically discuss wavefront sensing.

In this proposal, we will mainly concern with the effect of random phases {φ(n)} in the mask

µ(n) = |µ|(n)eiφ(n)
3
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Figure 1. Conceptual layout of coherent lensless imaging with a fine-grained mask
(a) before (for random illumination) or (b) behind (for wavefront sensing) the object.
The equivalence of the two imaging geometries provides additional flexibility in
implementation.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Mask effect is multiplicative and described as

f̃(n) = f(n)µ(n)

where {µ(n)} is an array of random variables. The mask can be placed before (Fig. 1(a)) or behind
(Fig. 1(b)) the object, giving rise to two equivalent imaging geometries and providing additional
flexibility in implementation. By placing a mask at a distance from the object, one can create
an illuminating (mask before object) or diffracted (mask behind object) field modulated in both
amplitude and phase in a way dependent on the distance [111].

For clarity of subsequent discussion, however, we will focus on the random illumination setup
of Fig. 1 (a) unless we specifically discuss wavefront sensing.

In this proposal, we will mainly concern with the effect of random phases {φ(n)} in the mask

µ(n) = |µ|(n)eiφ(n)
3

When the illumination field is only partially coherent and described by a mutual optical intensity

J , the diffraction pattern takes the form |F (ei2πω)|2 =
�

n J(n)Cf (n)e−i2πn·ω
where J is typically

a Gaussian function [101]. The presence of a mutual optical intensity does not affect the issue of

uniqueness of solution but can make the problem more susceptible to noise, especially when J is

narrowly concentrated, corresponding to highly incoherent illumination.

With the standard oversampling the phase problem amounts to recovering the object from its

autocorrelation. However, the autocorrelation function Cf does not uniquely determine the object

f .
First there are global, obvious ambiguities that yield the same diffraction pattern: global phase

(f(·) −→ eiθf(·)), spatial shift (f(·) −→ f(· + n)) and conjugate inversion (twin image: f(·) −→
f((N1, N2)− ·)) which are called the trivial associates. Then there are hidden, nontrivial ambi-

guities which involve conjugate inversion of some, but not all, of nontrivial (i.e. non-monomial in

z and z−1
) irreducible factors of the z-transform F (z), the analytic continuation of the Fourier

transform defined on the unit torus to all z = (z1, z2) ∈ C2
. The twin image is the special case

where all factors undergo the conjugate inversion.

From the works of Bruck, Sodin [9], Bates [1, 2] and Hayes [64, 65] we know that the nontrivial

ambiguities are rare (“almost all” polynomials of two or more variables have no nontrivial factors)

but the trivial ones are inevitable. From Fienup’s pioneering works [54–58] we also learn that the

object can be recovered reasonably well by enforcing positivity and/or a “good” support (e.g. tight

support) constraint. The numerical problems (stagnation, erroneous reconstruction etc) due to

lack of a good support constraint are often attributed to the existence of many local minima due

to non-convexity of the Fourier intensity constraint.

Since a good support constraint may be unavailable, this project seeks an alternative approach.

We intend to work exclusively with the object value constraint such as positivity or the sector

condition which constrains the phases of {f(n)} to a proper sub-interval (called sector) of (−π,π]
(see extension in Section 5). For example, in the X-ray spectrum most object transmission functions

have positive real and imaginary parts [75] and hence satisfy the π/2-sector constraint (the first

quadrant of the complex plane).

To fully utilize the object value constraint we introduce a random mask in the Fourier intensity

measurement (see Fig. 1).
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Mask effect is multiplicative and a masked measurement produces the diffraction pattern of a

masked object of the form

g(n) = f(n)µ(n)
2
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Figure 1. Conceptual layout of coherent lensless imaging with a fine-grained mask
(a) before (for random illumination) or (b) behind (for wavefront sensing) the object.
The equivalence of the two imaging geometries provides additional flexibility in
implementation.
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Mask effect is multiplicative and described as

f̃(n) = f(n)µ(n)

where {µ(n)} is an array of random variables. The mask can be placed before (Fig. 1(a)) or behind
(Fig. 1(b)) the object, giving rise to two equivalent imaging geometries and providing additional
flexibility in implementation. By placing a mask at a distance from the object, one can create
an illuminating (mask before object) or diffracted (mask behind object) field modulated in both
amplitude and phase in a way dependent on the distance [111].

For clarity of subsequent discussion, however, we will focus on the random illumination setup
of Fig. 1 (a) unless we specifically discuss wavefront sensing.

In this proposal, we will mainly concern with the effect of random phases {φ(n)} in the mask

µ(n) = |µ|(n)eiφ(n)
3

When the illumination field is only partially coherent and described by a mutual optical intensity

J , the diffraction pattern takes the form |F (ei2πω)|2 =
�

n J(n)Cf (n)e−i2πn·ω
where J is typically

a Gaussian function [101]. The presence of a mutual optical intensity does not affect the issue of

uniqueness of solution but can make the problem more susceptible to noise, especially when J is

narrowly concentrated, corresponding to highly incoherent illumination.

With the standard oversampling the phase problem amounts to recovering the object from its

autocorrelation. However, the autocorrelation function Cf does not uniquely determine the object

f .
First there are global, obvious ambiguities that yield the same diffraction pattern: global phase

(f(·) −→ eiθf(·)), spatial shift (f(·) −→ f(· + n)) and conjugate inversion (twin image: f(·) −→
f((N1, N2)− ·)) which are called the trivial associates. Then there are hidden, nontrivial ambi-

guities which involve conjugate inversion of some, but not all, of nontrivial (i.e. non-monomial in

z and z−1
) irreducible factors of the z-transform F (z), the analytic continuation of the Fourier

transform defined on the unit torus to all z = (z1, z2) ∈ C2
. The twin image is the special case

where all factors undergo the conjugate inversion.

From the works of Bruck, Sodin [9], Bates [1, 2] and Hayes [64, 65] we know that the nontrivial

ambiguities are rare (“almost all” polynomials of two or more variables have no nontrivial factors)

but the trivial ones are inevitable. From Fienup’s pioneering works [54–58] we also learn that the

object can be recovered reasonably well by enforcing positivity and/or a “good” support (e.g. tight

support) constraint. The numerical problems (stagnation, erroneous reconstruction etc) due to

lack of a good support constraint are often attributed to the existence of many local minima due

to non-convexity of the Fourier intensity constraint.

Since a good support constraint may be unavailable, this project seeks an alternative approach.

We intend to work exclusively with the object value constraint such as positivity or the sector

condition which constrains the phases of {f(n)} to a proper sub-interval (called sector) of (−π,π]
(see extension in Section 5). For example, in the X-ray spectrum most object transmission functions

have positive real and imaginary parts [75] and hence satisfy the π/2-sector constraint (the first

quadrant of the complex plane).

To fully utilize the object value constraint we introduce a random mask in the Fourier intensity

measurement (see Fig. 1).
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expanding the laser beam and impinging on a plate of translucent perpex, which acts as an 
opal diffuser, with unnoticeable grain and nearly Lambertian scattering of the light. In the 
fluorescence experiments the sample is coated with a thin layer (~5 µm) of solution of 
fluorescein diacetate (FDA) that reemits incoherent light in the green wavelengths of the 
optical spectrum.  

The process requires a high resolution image of the speckle that acts as the encoding-
decoding mask. We take these reference images prior to each experiment by focusing at a 
transparent region in the sample plane using a lens with high NA (0.4). Figure 2 displays the 
reference image and its autocorrelation. The size of the autocorrelation peak is the expected 
resolution after the superresolution process when a low NA lens is used. 

 

 
Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern. 

 
Once the reference speckle pattern is captured, the sample is set in place and the lens is 

replaced by a lens with a low NA in the horizontal direction. Then the sample position is 
laterally scanned and the image set is captured. Note that instead of displacing the projected 
pattern (or, equivalently, the diffuser) and the decoding pattern synchronously, we instead 
scan the sample position and keep the encoding and decoding masks static. The situation is 
fully equivalent, provided that the captured images are shifted digitally, to compensate the 
mechanical movement of the sample. The discrete sampling affects the autocorrelation that 
determines the impulse response of the process. Thus in Eq. (3) the integral becomes a 
summation and the variable ξ is discretized. The correlation is obtained by spatial averaging; 
thus the minimum shift should be similar to the correlation run length of the speckle pattern 
(otherwise the contribution of different samples would coincide). The span between extreme 
samples should be significantly larger than the speckle size, for obtaining sufficient statistical 
averaging. The larger the number of samples the better will the correlation estimation be 
(typically a few tenths should suffice).  

We capture a set of 60 images. Each one is multiplied by the previously recorded high 
resolution speckle pattern and the resulting images are added together. Figure 4(a) shows a 
sample image captured with the low resolution lens. No information can be observed on it. 
The typical horizontal speckle size is related with the lens resolution and is too large to 
resolve the pattern in the sample. Figure 4(b) displays the reconstructed image. Although 
speckle noise corrupts the image, the sample can be clearly distinguished. The movie 
associated to the figure shows how the reconstruction is built over time as subsequent frames 
are added. This movie gives also a direct visual interpretation of the underlying principle in 
the method. Note that, despite of the large speckle size, the speckles are blinking as the pass 
the different transmittance areas of the sample. This information is decoded using the same 
mask that was blurred by the low NA lens and recovers the resolution of the high resolution 
encoding mask. 

Finally, we performed a similar test but after covering the sample with a thin layer of 
FDA. This converts the speckle pattern in the sample into an incoherent distribution. Figure 5 

(a) (b) 

(C) 2005 OSA 8 August 2005 / Vol. 13,  No. 16 / OPTICS EXPRESS  6077
#7712 - $15.00 US Received 3 June 2005; revised 25 July 2005; accepted 25 July 2005
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Ptychography with randomly phased illumination

Maiden-Rodenburg 2013
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Random illumination

f̃(n) = f(n)λ(n) (illuminated object)

λ(n), representing the illumination field, is a known sequence

of samples of random variables.

Let λ(n) be continuous random variables with respect to the

Lebesque measure on S1 (the unit circle), R or C.

Case of S1 can be facilitated by a random phase modulator

with

λ(n) = eiφ(n)

where φ(n) are continuous random variables on [0,2π].
Case of R: random amplitude modulator.

Case of C: both phase and amplitude modulations.
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if sampled at the lattice

L =

�
ω = (ω1, ...,ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

�
(3)

which is 2d times of the grid of the original image. The standard phasing problem is to

recover the array f(n) from its Fourier intensity measurement Y (ω) = |F (ei2πω)| for ω ∈ L
or smaller sampling sets.

Clearly the correlation function Cf and the Fourier magnitude data are invariant under

spatial translation

f(·) → f(·+ t) for some t ∈ Zd,

conjugate inversion

f(·) → f(N− ·)

and constant global phase change

f(·) → eiθf(·).

These trivial associates all share the same global geometric information as the original object.

The classical results of uniqueness given in [5] [6] [12] say that for almost all objects in

dimension two or higher the trivial associates are the only ambiguities there are with phase

retrieval. When none of the ambiguities arises, we say that the phasing problem has an

absolutely unique solution [1].

On the other hand, by dimension counting Miao et al. [11] have argued that overall 2

times oversampling, independent of the dimension d, uniquely determines a unique phasing

solution up to spatial shift, conjugate inversion and global phase factor. To measure the

degree of oversampling we use the oversampling ratio (OR)

σ =
Fourier magnitude data number

unknown image pixel number

introduced in [11]. As we demonstrate below, Miao et al.’s conjecture can be realized by

using RPI, but not uniform illumination.

As shown in [1] random illumination (RI) can help remove the phasing ambiguities of

spatial shift and conjugate inversion. An illumination amounts to replacing the original

image f(n) by

g(n) = λ(n)f(n),

where λ(n) is a known array representing the incident wave. In the case of uniform illumi-

nation, λ(n) = 1. In the case of random phase illumination (RPI) [13],

λ(n) = eiφ(n) (4)

3

Standard ratio: 

Compression: 
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False for rank 1 objects: Fundamental Thm of Algebra

if sampled at the lattice

L =

�
ω = (ω1, ...,ωd) | ωj = 0,

1

2Nj + 1
,

2

2Nj + 1
, ...,

2Nj

2Nj + 1

�
(3)

which is 2d times of the grid of the original image. The standard phasing problem is to

recover the array f(n) from its Fourier intensity measurement Y (ω) = |F (ei2πω)| for ω ∈ L
or smaller sampling sets.

Clearly the correlation function Cf and the Fourier magnitude data are invariant under

spatial translation

f(·) → f(·+ t) for some t ∈ Zd,

conjugate inversion

f(·) → f(N− ·)

and constant global phase change

f(·) → eiθf(·).

These trivial associates all share the same global geometric information as the original object.

The classical results of uniqueness given in [5] [6] [12] say that for almost all objects in

dimension two or higher the trivial associates are the only ambiguities there are with phase

retrieval. When none of the ambiguities arises, we say that the phasing problem has an

absolutely unique solution [1].

On the other hand, by dimension counting Miao et al. [11] have argued that overall 2

times oversampling, independent of the dimension d, uniquely determines a unique phasing

solution up to spatial shift, conjugate inversion and global phase factor. To measure the

degree of oversampling we use the oversampling ratio (OR)

σ =
Fourier magnitude data number

unknown image pixel number

introduced in [11]. As we demonstrate below, Miao et al.’s conjecture can be realized by

using RPI, but not uniform illumination.

As shown in [1] random illumination (RI) can help remove the phasing ambiguities of

spatial shift and conjugate inversion. An illumination amounts to replacing the original

image f(n) by

g(n) = λ(n)f(n),

where λ(n) is a known array representing the incident wave. In the case of uniform illumi-

nation, λ(n) = 1. In the case of random phase illumination (RPI) [13],

λ(n) = eiφ(n) (4)

3

=

Irreducibility

THEOREM. Suppose the object {f(n)} is rank ≥ 2. Then the

the z-transform of the illuminated object f(n)λ(n) is irreducible

with probability one.

• False for 1-d objects: fundamental theorem of algebra of

one complex variable.
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Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability

1− |N ||b− a|[S/2](2π)−[S/2]

Absolute uniqueness

A priori constraint + random illumination −→ uniqueness

Positivity

THEOREM If f(n) is real and nonnegative for every n then,

with probability one, f is determined absolutely uniquely by

the Fourier magnitude measurement on the lattice L.

Sector constraint

THEOREM Suppose the phases of the object belong to [a, b] ⊂
[0,2π]. Then the solution to the Fourier phasing problem has

a unique solution with probability

1− |N |
����
b− a

2π

����
[S/2]

.
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Objects  w/o constraint
Complex objects, NO constraint

THEOREM Suppose that {λ1(n)} are i.i.d. In addition, if

either of the following holds true

(i) {λ2(n)} are i.i.d. continuous random variables with respect

to the Lebesgue measure on S1, R or C and {λ2(n)} are inde-

pendent of {λ1(n)};

(ii) {λ2(n)} are deterministic;

then with probability one f(n) is uniquely determined, up to

a constant phase factor, by the Fourier magnitude measure-

ments with two masks λ1 and λ2.
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(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for

11

Objects with loose support
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Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for

11

(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.

4.A. Error, Residual and Noise

Let f̂ be the recovered image. The relative error is defined as

e(f̂) =





�f − f̂�/�f� if absolute uniqueness holds

min
ν∈[0,2π)

�f − eiν f̂�/�f� if uniqueness holds only up to a global phase ,

and the relative residual is defined as

r(f̂) =
� Y − |ΦΛPo{f̂}| �

�Y �

where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for

11

Relative error

Relative residual
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fk+1/fk
Λ �� gk

Φ �� Gk

T
��

f �
k

Po

��

g�kΛ−1
�� G�

kΦ−1
��

Fig. 1.

Proof.

εf(fk) = �fk − f �
k�

≥ �fk+1 − f �
k�

= �Gk+1 −G�
k�

≥ �Gk+1 −G�
k+1�

= �fk+1 − f �
k+1�

= εf(fk+1).

The equality holds only if �fk − f �
k� = �fk+1 − f �

k�, where fk+1 = Po{f �
k}. Since Γ is a closed

convex subset, fk+1 = fk according to Proposition 1.

Remark 1. Proposition 2 holds for the fk+1 = PoPθ
f fk with arbitrary θ(ω).

Proposition 2 shows that the error εf(fk) decreases strictly until it reaches a fixed point

of PoPf , implying that the ER iteration converges to a fixed point.

Proposition 3. Let fk+1 = PoPffk. Let Γ be a closed convex subset of C(N ) and Φ,Λ be

unitary matrices. Then every convergent subsequence of {fk} converges to some h such that

1. if ΦΛh(ω) �= 0, ∀ω ∈ L, h is a fixed point of PoPf .

2. if ΦΛh(ω) = 0 for some ω ∈ L, h is a fixed point of PoPθ
f for some θ.

The proof of Proposition 3 is given in the Appendix. The question is, Is a fixed point of

ER necessarily a phasing solution? With the uniform illumination, however, this is generally

8

Alternating projections
Gerchberg-Saxton; Error Reduction (Fienup)

Residual reduction property

(a) (b)

Fig. 2. Test images of loose support: (a) 269× 269 Cameraman (b) 200× 200

Phantom where the dark borders represent loose support.
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
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
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where Po is introduced if f̂ may not strictly satisfy the object domain constraint as in the

case of HIO.

We consider three types of noise: Gaussian, Poisson and illumination noise, the last of

which is defined as follows. Suppose the illumination field is noisy λ̃(n) = exp(iφ̃(n))

with φ̃(n) = φ(n) + t(δ,n) where t(δ,n) are independent, uniform random variables in

[−πδ/100, πδ/100], δ > 0.

We also test phasing with low resolution illumination which does not consist independently

distributed pixel values but independently distributed blocks of deterministic (indeed, uni-

form) values. In our experiments, illumination of independent 40× 40 blocks works well for
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A solution of phase retrieval is a function belonging to Γ∩Ω.
Let Po and Pf be the orthogonal projection on Γ and Ω,
respectively.

Let Λ be the diagonal matrix with diagonal elements λ!n",
and set g # Λf . Let Φ be the discrete Fourier transform, and
set Y # jΦgj.

Given the Fourier intensity data Y , we define the intensity
fitting operator T as

G0!ω" # T fGg!ω" #

(
Y !ω"ei∡G!ω" if jG!ω"j > 0

Y !ω" if jG!ω"j # 0
: (5)

When G!ω" # 0, ∡G!ω" is not uniquely defined and ∡G!ω" is
set to 0 in Eq. (5). In this case,

Pf # Λ−1Φ−1T ΦΛ:

Indeed ∡G!ω" can be arbitrarily chosen at the zero set of G,
and we define

Pθ
f # Λ−1Φ−1T θΦΛ; (6)

where

T θfGg!ω" #
!
Y!ω"ei∡G!ω" if jG!ω"j > 0
Y !ω"eiθ!ω" if jG!ω"j # 0

. (7)

The object-domain projection Po can take a varied form
depending on the problem.

• When Γ is the set of images with a given phase α,

Pofhg!n" # Pαfh!n"g

≑maxfJ!h!n"" sin α$R!h!n"" cos α; 0geiα:

• When Γ is the set of images with phases in %α; β&
for 0 ≤ α < β ≤ 2π,

– if β − α ≤ π; Pofhg!n"

#

h!n" if α≺∡h!n"≺β
Pβfh!n"g if β≺∡h!n"≺%β$ π ∕ 2&
R!Pαfh!n"g" if %α − π ∕ 2&≺∡h!n"≺α
0 else

;

8
>><

>>:

where Pβ is defined similarly to Pα.

– if β − α > π; Pofhg!n"

#
h!n" if α≺∡h!n"≺β
Pβfh!n"g if β≺∡h!n"≺%!α$ β" ∕ 2$ π&
Pαfh!n"g if %!α$ β" ∕ 2$ π&≺∡h!n"≺α

;

8
<

:

where a≺θ≺b means θ is between a and b such that

!
a ≤ θ ≤ b if a ≤ b
a ≤ θ < 2π or 0 ≤ θ ≤ b if a > b

:

• When Γ is the set of real-valued images,

Pofhg!n" # R!h!n"":

• When Γ is the set of nonnegative real-valued images,

Pofhg!n" # maxfR!h!n""; 0g:

• When Γ is the set of complex-valued images with non-
negative real and imaginary parts,

R!Pofhg!n"" # max!R!h!n""; 0";

J!Pofhg!n"" # max!J!h!n""; 0":

• When Γ is the set of images with support S,

Pofhg!n" #
!
h!n" if n ∈ S
0 else

:

Two error metrics εo and εf defined by

εo!h" # ∥Pofhg − h∥; εf !h" # ∥Pf fhg − h∥

play an important role of our studies. When ΦΛ is unitary, as
in the case of RPI,

εf !h" # ∥Pf fhg − h∥ # ∥T ΦΛh −ΦΛh∥ # ∥Y − jΦΛhj∥:

B. Oversampling
The oversampling method has proven to be an effective, flex-
ible way of implementing various phasing algorithms by con-
verting Fourier magnitude data more finely sampled than
demanded by the original image grid into zero padding, i.e.,
Pofhg!n" # 0;∀n in the padding region, which then acts as
a support constraint of the original image [4,16–18]. In this set-
up, the oversampling ratio is given by

σ #
image pixel number$ zero-padding pixel number

image pixel number
:

Fig. 1. Error reduction algorithm with random illumination.

Fig. 2. Test images of loose support: (a) 269 × 269 cameraman,
(b) 200 × 200 phantom, where the dark borders represent loose support.
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LEMMA Suppose the object constraint is convex. Then

�Pf{fk+1}− fk+1� ≤ �Pf{fk}− fk�.

The equality holds if and only if fk+1 = fk.
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Figure 1. (a)recovered “cameraman”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.002%, ε̃f (f5000) ≈ 5.47%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “cameraman”by 1000 HIO +50 ER with one
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.03%, ε̃f (f1050) ≈ 0.93%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “cameraman”by 2000 ER iter-
ations with single low resolution(block size: 40 × 40) random phase illumination when
ρ = 2. ||f2000 − f1999||/||f1999|| ≈ 0.005%, ε̃f (f2000) ≈ 0.63%. (f)normalized error ε̃(fk)
at each iteration. (g)recovered “cameraman”by 30 HIO +10 ER with single low resolu-
tion(block size: 40×40) random phase illumination when ρ = 2. ||f40−f39||/||f39|| ≈ 0.03%,
ε̃f (f40) ≈ 0.1%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “cameraman”by
6000 ER iterations with one high resolution random phase illumination when ρ = 1.
||f6000 − f5999||/||f5999|| ≈ 7 × 10−6, ε̃f (f6000) ≈ 0.01%. (j) normalized error ε̃(fk) at
each iteration. (k)recovered “cameraman”by 60 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f60 − f59||/||f59|| ≈ 0.08%, ε̃f (f60) ≈ 0.42%. (l)
normalized error ε̃(fk) at each iteration.

Without noise, ρ = 1.2 produces an error near 0. With noise, higher sampling ratio always produces better
reconstruction, but when ρ ≥ 2, increasing sampling ratio doesn’t make a significant difference.

Then, we test the sampling ratio required to recover “phantom”with a random phase between 0 and π/2,
a complex-valued image with nonnegative real and imaginary parts. Figure 3(b) shows the average relative
error in 5 trials versus sampling ratio. It’s noted that a good reconstruction is obtained in the case of
undersampling. When ρ = 0.9, there are more free variables than measurement data.

Finally, we test the sampling ratio required to recover “phantom”with a random phase between 0 and 2π,
a complex-valued image without any positivity constraint. Figure 3(c) shows the average relative error in 5

7
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Figure 2. (a)recovered “phantom”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.006%, ε̃f (f5000) ≈ 14.7%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “phantom”by 1000 HIO +50 ER with single
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.07%, ε̃f (f1050) ≈ 3.95%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “phantom”by 500 ER iterations
with single low resolution(block size: 40 × 40) random phase illumination when ρ = 2.
||f500 − f499||/||f499|| ≈ 0.01%, ε̃f (f500) ≈ 0.05%. (f)normalized error ε̃(fk) at each
iteration. (g)recovered “phantom”by 30 HIO +10 ER with single low resolution(block
size: 40 × 40) random phase illumination when ρ = 2. ||f40 − f39||/||f39|| ≈ 0.07%,
ε̃f (f40) ≈ 0.22%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “phantom”by
1200 ER iterations with one high resolution random phase illumination when ρ = 1.
||f1200 − f1199||/||f1199|| ≈ 4 × 10−6, ε̃f (f1200) ≈ 3 × 10−5. (j) normalized error ε̃(fk)
at each iteration. (k)recovered “phantom”by 30 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f40 − f39||/||f39|| ≈ 0.07%, ε̃f (f40) ≈ 0.26%. (l)
normalized error ε̃(fk) at each iteration.

trials versus sampling ratio. A good recovery is obtained as ρ ≥ 1.7. Further increasing the sampling ratio
helps, but doesn’t make a big difference.

We use ρ = 2 in Figure 6(a), (b) and (c).

5.3. Stability Test. Figure 6(a) and (b) show the average relative error in 5 trials versus the noise level for
“phantom”and “phantom”with a random phase between 0 and π/2 respectively with single random phase
illumination. Recovery error increases almost linearly with respect to the noise percentage. Gaussian noise
and Illuminator noise are more difficult to deal with than poisson noise. Both high resolution and low

8
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Error Reduction (Gerchberg-Saxton)
144 SOLIJTIONS OF LINEAR EQUATIONS

Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance

CONVERGENCE ANALYSIS

between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set
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(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =⇒ convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?
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THEOREM

Let the object f be rank ≥ 2. Let h be a fixed point of PoPf
such that Pfh satisfies the zero-padding condition.

(a) If f is real-valued, h = ±f with probability one,

(b) If f satisfies the sector condition, then h = eiνf, with prob-

ability at least

1− |N |
����
b− a

2π

����
[S/2]

.

X

n
λ!t" n#f !t" n#z−n $ eiθz−k

X

n0
λ!t" n0#f !t" n0# zn0 ;

which implies

λ!t" n#f !t" n# $ eiθλ!t" k − n#f !t" k − n#; ∀ n:
(B11)

However, f is deterministic, and fλ!n#g are independent and
continuous random variables on S1, so Eq. (B11) fails with
probability one for any k. There are finitely many choices
of k, so the z-transform of !λf #t" is almost surely not conjugate
symmetric.

Similarly, the z-transform of !λf #t− is also almost surely not
conjugate symmetric.

Lemma 2. Let f ∈ C!N # be a complex-valued array of rank
≥2. Let fλ!n#g be independent and continuous random vari-
ables on S1. Then, the z-transform of fλ!n#f !n#g is irreducible
up to a power of z−1 with probability 1.

For the proof of Lemma 2, see Theorem 2 of [10].
Lemma 3. Let f and h be two complex-valued arrays.

Let Φ be the discrete Fourier operator such that
Φf !ω# $

P
ke

−2πiω·kf !k#. Then ∡Φf t" $ ∡Φh implies that
∡Φf $ ∡Φh!−t#".

Proof. Note that

Φf t"!ω# $ e2πit·ωΦf !ω#;

which implies

2πt ·ω"∡Φf !ω#!mod 2π# $ ∡Φh!ω#

by the assumption ∡Φf t" $ ∡Φh. Thus

∡Φf !ω# $ ∡Φh!ω# − 2πt · ω!mod 2π#;

which is equivalent to

∡Φf $ ∡Φh!−t#":

Let us now turn to the proof of Theorem 4.
Proof. Let f be the true image and h be a fixed point of the

ER iteration. Suppose that h0 $ Pθ
f h satisfies the zero-padding

condition. Then the following three equations hold:

Poh0 $ h; (B12)

jΦΛh0j $ jΦΛf j; (B13)

∡ΦΛh0 $ ∡ΦΛh. (B14)

According to Lemma 2, the z-transform ofΛf is irreducible up
to a power of z−1 with probability 1, so there exists some
integer-valued vector m with −N ≤ m ≤ 0 and some ν ∈ %0; 2π#
such that

h0 $ eiνΛ−1Λm"fm"

or

h0 $ eiνΛ−1Λm−

fm−

:

In the case of h0 $ eiνΛ−1Λm"fm", the third equation in
(B14) becomes

∡eiνΦΛm"fm" $ ∡ΦΛh:

By Lemma 3,

∡eiνΦΛf $ ∡ΦΛ!−m#"h!−m#": (B15)

Lemmas 1 and 2, together with the assumption that
f !0# ≠ 0, imply that the z-transform of Λf is an irreducible,
nontrivial, and nonconjugate symmetric polynomial of z−1

with probability 1.
Next, we apply Proposition 5 to Eq. (B15). Both Λf and

Λ!−m#"h!−m#" are supported on a subset of fnj − N ≤ n ≤ Ng.
By Proposition 5, we obtain

γeiνΛf $ Λ!−m#"h!−m−#"

or equivalently

h!n# $ γeiν
λ!n"m#

λ!n#
f !n"m#

for some positive number γ.

(a) If the true image f !·# is real-valued, then h $ Poh0 is
real-valued, which by the proof of Theorem 1 (see Corrolary 1
of [10]) implies that ν $ 0; π and m $ 0 or equivalently

h $ &γf (B16)

with probability 1. Plugging Eq. (B16) into PoPf h $ h yields
γ $ 1 and thus h $ &f with probability 1.
(b) If f satisfies the sector condition of Theorem 2, then
h $ Poh0 satisfies the same sector condition, which by the
proof of Theorem 2 (see Theorem 4 (i) of [10]) implies that
m $ 0 and

h $ γeiνf (B17)

with probability at least 1 − jN j!β − α#
⌊⌊S ∕ 2⌋⌋

!2π#
−⌊⌊S ∕ 2⌋⌋

.
Plugging Eq. (B17) into PoPf h $ h yields γ $ 1 and thus
h $ eiνf .

By the similar argument, one reaches the same conclusion
in the case of h0 $ eiνΛ−1Λm−

fm−

.
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Douglas-Rachford (DR)

3. Uniqueness of fixed point (Goal 1)

The convergence properties of any iterative scheme for non-convex reconstruction depend crit-
ically on the “landscape” in the state space consisting of all the functions supported on the rect-
angular grid N . In the ideal scenario, the fixed points are attractors and coincide with the trivial
associates within the equivalence class. In this scenario, the iterative process converges to one
of the trivial associates depending on the initial guess. In a pessimistic scenario the multiple
fixed points are saddle points and can usher in strange attractors rendering the iterative process
chaotic [33]. Numerical experiments suggest that the true picture may be somewhere in between
the two extremes.

From our experiences it seems likely that non-uniqueness of fixed points is a main source of
numerical problems for the standard phasing algorithms. Without a random mask or a good
support constraint, every trivial associate in the equivalence class of the object is a fixed point of
the numerical schemes. The converse, however, is usually not true, hence the stagnation problem.

To clarify the “landscape” of the state space, we propose to study first the issue of uniqueness
of fixed point for iterative transform algorithms with masked measurement and reconstruction.

Iterative transform algorithms [57] are based on the idea of alternating projections [35, 60] and
hence also called projection algorithms [3]. The simplest form is Fienup’s Error Reduction (ER)
algorithm [54,55], a variant of Gerchberg-Saxton’s algorithm [60], and can be described as follows.
Let Pf be the projection onto the noncovex set of objects producing the measured diffraction
pattern. Let Φ be the Fourier matrix and M = (µ(n)) the diagonal matrix with the mask array
on the diagonal. Let T be the nonlinear pointwise operator of fitting the Fourier intensity data

T G(ω) =

�
Y (ω) exp (i�G(ω)) if |G(ω)| > 0
Y (ω) if |G(ω)| = 0

where Y (ω) is the measured Fourier magnitude at the spatial frequency ω ∈ (−0.5, 0.5]2 and
�z ∈ (−π,π] denotes the wrapped phase of z ∈ C. We have Pf = M−1Φ∗T ΦM.

Let Po be the projection onto the set of objects satisfying the object value constraint (positiv-
ity, sector constraint etc) as well as the zero-padding condition normally used to implement the
oversampling method [47]. Error Reduction updates the object estimate fk according to the simple
rule

fk+1 = PoPffk, k = 0, 1, 2, 3....

where the initial guess f0 is often chosen randomly.
Fig. 3 (top) demonstrates the accurate reconstruction and the rapid convergence of Error Re-

duction with a random mask. In contrast, the standard phasing approach has a poor performance
(bottom). Even though in both approaches, Error Reduction maintains the monotonicity property
that the numerical residual �Y − |ΦMfk|�2 decreases with each iteration, the residual reduction
translates into true error �f − fk�2 reduction only if a random mask is used. In other words, in the
masked phasing approach the true object apparently becomes the global attractor with respect to
the error norm while in the unmasked approach, phase retrieval is severely ill-posed.

In addition, we will consider a class of iterative transform algorithms that share an appealing
structure. First and foremost is the Douglas-Rachford (DR) algorithm [4,32,67]

fk+1 =
1

2
(RoRf + I)fk, Ro = 2Po − I, Rf = 2Pf − I

which is the branching point of many families of algorithms. Among them we will focus on the
Hybrid Projection-Reflection (HPR) schemes [5] as well as the more general family called the
Difference Maps (DM) [33, 34], both of which are considered much more effective than the Error
Reduction algorithm and comparable to the Hybrid Input-Output (HIO) algorithm [54, 55], the
standard of phasing algorithms for nonperiodic objects.

5

DR + random mask has a unique fixed point. Theorem: 
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Figure 1. (a)recovered “cameraman”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.002%, ε̃f (f5000) ≈ 5.47%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “cameraman”by 1000 HIO +50 ER with one
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.03%, ε̃f (f1050) ≈ 0.93%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “cameraman”by 2000 ER iter-
ations with single low resolution(block size: 40 × 40) random phase illumination when
ρ = 2. ||f2000 − f1999||/||f1999|| ≈ 0.005%, ε̃f (f2000) ≈ 0.63%. (f)normalized error ε̃(fk)
at each iteration. (g)recovered “cameraman”by 30 HIO +10 ER with single low resolu-
tion(block size: 40×40) random phase illumination when ρ = 2. ||f40−f39||/||f39|| ≈ 0.03%,
ε̃f (f40) ≈ 0.1%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “cameraman”by
6000 ER iterations with one high resolution random phase illumination when ρ = 1.
||f6000 − f5999||/||f5999|| ≈ 7 × 10−6, ε̃f (f6000) ≈ 0.01%. (j) normalized error ε̃(fk) at
each iteration. (k)recovered “cameraman”by 60 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f60 − f59||/||f59|| ≈ 0.08%, ε̃f (f60) ≈ 0.42%. (l)
normalized error ε̃(fk) at each iteration.

Without noise, ρ = 1.2 produces an error near 0. With noise, higher sampling ratio always produces better
reconstruction, but when ρ ≥ 2, increasing sampling ratio doesn’t make a significant difference.

Then, we test the sampling ratio required to recover “phantom”with a random phase between 0 and π/2,
a complex-valued image with nonnegative real and imaginary parts. Figure 3(b) shows the average relative
error in 5 trials versus sampling ratio. It’s noted that a good reconstruction is obtained in the case of
undersampling. When ρ = 0.9, there are more free variables than measurement data.

Finally, we test the sampling ratio required to recover “phantom”with a random phase between 0 and 2π,
a complex-valued image without any positivity constraint. Figure 3(c) shows the average relative error in 5
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Figure 2. (a)recovered “phantom”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.006%, ε̃f (f5000) ≈ 14.7%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “phantom”by 1000 HIO +50 ER with single
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.07%, ε̃f (f1050) ≈ 3.95%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “phantom”by 500 ER iterations
with single low resolution(block size: 40 × 40) random phase illumination when ρ = 2.
||f500 − f499||/||f499|| ≈ 0.01%, ε̃f (f500) ≈ 0.05%. (f)normalized error ε̃(fk) at each
iteration. (g)recovered “phantom”by 30 HIO +10 ER with single low resolution(block
size: 40 × 40) random phase illumination when ρ = 2. ||f40 − f39||/||f39|| ≈ 0.07%,
ε̃f (f40) ≈ 0.22%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “phantom”by
1200 ER iterations with one high resolution random phase illumination when ρ = 1.
||f1200 − f1199||/||f1199|| ≈ 4 × 10−6, ε̃f (f1200) ≈ 3 × 10−5. (j) normalized error ε̃(fk)
at each iteration. (k)recovered “phantom”by 30 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f40 − f39||/||f39|| ≈ 0.07%, ε̃f (f40) ≈ 0.26%. (l)
normalized error ε̃(fk) at each iteration.

trials versus sampling ratio. A good recovery is obtained as ρ ≥ 1.7. Further increasing the sampling ratio
helps, but doesn’t make a big difference.

We use ρ = 2 in Figure 6(a), (b) and (c).

5.3. Stability Test. Figure 6(a) and (b) show the average relative error in 5 trials versus the noise level for
“phantom”and “phantom”with a random phase between 0 and π/2 respectively with single random phase
illumination. Recovery error increases almost linearly with respect to the noise percentage. Gaussian noise
and Illuminator noise are more difficult to deal with than poisson noise. Both high resolution and low

8
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• When Γ is the set of complex-valued images with nonnegative real and imaginary parts,

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (14)

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (15)

3.E. Algorithms with two illuminations

Let λ1 and λ2 be two arrays representing two illuminating fields. Two sets of Fourier mag-

nitude data Y1 = |ΦΛ1f | and Y1 = |ΦΛ2f | are collected, each with an OR σ. Let T1 and T2

be the intensity fitting operators corresponding to Y1 and Y2, respectively, as in (5). Thus

the projections onto the set of images satisfying the Fourier magnitude data Y1 and Y2 are,

respectively,

P1 = Λ−1
1 Φ−1T1ΦΛ1

and

P2 = Λ−1
2 Φ−1T2ΦΛ2.

The corresponding ER algorithm with two sets of Fourier magnitude data Y1 and Y2 is

given by

fk+1 = PoP2P1fk. (16)

The corresponding HIO is obtained by replacing Po in (16) by (10)-(15).

4. Numerical Simulations

In this section, we perform numerical phasing from the Fourier intensity measurement with

UI or RPI.

Our test images are the 256× 256 Cameraman and the 138× 184 Phantom. We surround

both images by dark (i.e. zero-valued) border to create images of loose support. Images of

loose support are typically more challenging to reconstruct. For Cameraman the border is

13 pixel wide in each dimension and the resulting image has 269 × 269 pixels in total. For

Phantom the dark margin is such that the resulting image has 200× 200 pixels.

For the oversampling ratio σ, we zero pad the images to generate a 269
√
σ × 269

√
σ

Cameraman and 200
√
σ × 200

√
σ Phantom. We synthesize the Fourier magnitude data by

applying the FFT to the array.
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• When Γ is the set of complex-valued images with nonnegative real and imaginary parts,

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (14)

�(fk+1(n)) =

�
�(f �

k(n)) if �(f �
k(n)) ≥ 0

�(fk(n))− β · �(f �
k(n)) if �(f �

k(n)) < 0
. (15)

3.E. Algorithms with two illuminations

Let λ1 and λ2 be two arrays representing two illuminating fields. Two sets of Fourier mag-

nitude data Y1 = |ΦΛ1f | and Y1 = |ΦΛ2f | are collected, each with an OR σ. Let T1 and T2

be the intensity fitting operators corresponding to Y1 and Y2, respectively, as in (5). Thus

the projections onto the set of images satisfying the Fourier magnitude data Y1 and Y2 are,

respectively,

P1 = Λ−1
1 Φ−1T1ΦΛ1

and

P2 = Λ−1
2 Φ−1T2ΦΛ2.

The corresponding ER algorithm with two sets of Fourier magnitude data Y1 and Y2 is

given by

fk+1 = PoP2P1fk. (16)

The corresponding HIO is obtained by replacing Po in (16) by (10)-(15).

4. Numerical Simulations

In this section, we perform numerical phasing from the Fourier intensity measurement with

UI or RPI.

Our test images are the 256× 256 Cameraman and the 138× 184 Phantom. We surround

both images by dark (i.e. zero-valued) border to create images of loose support. Images of

loose support are typically more challenging to reconstruct. For Cameraman the border is

13 pixel wide in each dimension and the resulting image has 269 × 269 pixels in total. For

Phantom the dark margin is such that the resulting image has 200× 200 pixels.

For the oversampling ratio σ, we zero pad the images to generate a 269
√
σ × 269

√
σ

Cameraman and 200
√
σ × 200

√
σ Phantom. We synthesize the Fourier magnitude data by

applying the FFT to the array.

10
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Figure 1. (a)recovered “cameraman”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.002%, ε̃f (f5000) ≈ 5.47%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “cameraman”by 1000 HIO +50 ER with one
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.03%, ε̃f (f1050) ≈ 0.93%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “cameraman”by 2000 ER iter-
ations with single low resolution(block size: 40 × 40) random phase illumination when
ρ = 2. ||f2000 − f1999||/||f1999|| ≈ 0.005%, ε̃f (f2000) ≈ 0.63%. (f)normalized error ε̃(fk)
at each iteration. (g)recovered “cameraman”by 30 HIO +10 ER with single low resolu-
tion(block size: 40×40) random phase illumination when ρ = 2. ||f40−f39||/||f39|| ≈ 0.03%,
ε̃f (f40) ≈ 0.1%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “cameraman”by
6000 ER iterations with one high resolution random phase illumination when ρ = 1.
||f6000 − f5999||/||f5999|| ≈ 7 × 10−6, ε̃f (f6000) ≈ 0.01%. (j) normalized error ε̃(fk) at
each iteration. (k)recovered “cameraman”by 60 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f60 − f59||/||f59|| ≈ 0.08%, ε̃f (f60) ≈ 0.42%. (l)
normalized error ε̃(fk) at each iteration.

Without noise, ρ = 1.2 produces an error near 0. With noise, higher sampling ratio always produces better
reconstruction, but when ρ ≥ 2, increasing sampling ratio doesn’t make a significant difference.

Then, we test the sampling ratio required to recover “phantom”with a random phase between 0 and π/2,
a complex-valued image with nonnegative real and imaginary parts. Figure 3(b) shows the average relative
error in 5 trials versus sampling ratio. It’s noted that a good reconstruction is obtained in the case of
undersampling. When ρ = 0.9, there are more free variables than measurement data.

Finally, we test the sampling ratio required to recover “phantom”with a random phase between 0 and 2π,
a complex-valued image without any positivity constraint. Figure 3(c) shows the average relative error in 5

7

(e)-(h) Coarse-grained mask with OR=2
            

Random phase masks

  (i)-(l)  Fine-grained mask with OR=1
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Figure 2. (a)recovered “phantom”by 5000 ER iterations with single uniform illumina-
tion when ρ = 4. ||f5000 − f4999||/||f4999|| ≈ 0.006%, ε̃f (f5000) ≈ 14.7%. (b)normalized
error ε̃(fk) at each iteration. (c)recovered “phantom”by 1000 HIO +50 ER with single
uniform illumination when ρ = 4. ||f1050 − f1049||/||f1049|| ≈ 0.07%, ε̃f (f1050) ≈ 3.95%.
(d)normalized error ε̃(fk) at each iteration. (e)recovered “phantom”by 500 ER iterations
with single low resolution(block size: 40 × 40) random phase illumination when ρ = 2.
||f500 − f499||/||f499|| ≈ 0.01%, ε̃f (f500) ≈ 0.05%. (f)normalized error ε̃(fk) at each
iteration. (g)recovered “phantom”by 30 HIO +10 ER with single low resolution(block
size: 40 × 40) random phase illumination when ρ = 2. ||f40 − f39||/||f39|| ≈ 0.07%,
ε̃f (f40) ≈ 0.22%. (h)normalized error ε̃(fk) at each iteration. (i)recovered “phantom”by
1200 ER iterations with one high resolution random phase illumination when ρ = 1.
||f1200 − f1199||/||f1199|| ≈ 4 × 10−6, ε̃f (f1200) ≈ 3 × 10−5. (j) normalized error ε̃(fk)
at each iteration. (k)recovered “phantom”by 30 HIO +10 ER with one high resolution ran-
dom phase illumination when ρ = 1. ||f40 − f39||/||f39|| ≈ 0.07%, ε̃f (f40) ≈ 0.26%. (l)
normalized error ε̃(fk) at each iteration.

trials versus sampling ratio. A good recovery is obtained as ρ ≥ 1.7. Further increasing the sampling ratio
helps, but doesn’t make a big difference.

We use ρ = 2 in Figure 6(a), (b) and (c).

5.3. Stability Test. Figure 6(a) and (b) show the average relative error in 5 trials versus the noise level for
“phantom”and “phantom”with a random phase between 0 and π/2 respectively with single random phase
illumination. Recovery error increases almost linearly with respect to the noise percentage. Gaussian noise
and Illuminator noise are more difficult to deal with than poisson noise. Both high resolution and low

8

(e) - (h) Coarse-grained mask with OR=2

 (i) - (l)  Fine-grained mask with OR=1

Random phase masks
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Fig. 6. Phasing with σ = 2 and one high resolution RPI: (a) Recovery by 18

HIO +10 ER with 5% Gaussian noise; (b) r(fk) versus k with r(f̂) ≈ 2.62%

and e(f̂) ≈ 4.20%; (c) Recovery by 19 HIO +10 ER with 5% Gaussian noise.

(d) r(fk) versus k with r(f̂) ≈ 2.85% and e(f̂) ≈ 3.51%; (e) Recovery by 16

HIO +10 ER with 5% Poisson noise; (f) r(fk) versus k with r(f̂) ≈ 3.71% and

e(f̂) ≈ 5.89%; (g) Recovery by 17 HIO +10 ER with 5% Poisson noise; (h)

r(fk) versus k with r(f̂) ≈ 4.05% and e(f̂) ≈ 4.84%; (i) Recovery by 14 HIO

+10 ER with 5% illuminator noise; (j) r(fk) versus k with r(f̂) ≈ 5.28% and

e(f̂) ≈ 7.75%; (k) Recovery by 16 HIO +10 ER with 5% illuminator noise; (l)

r(fk) versus k with r(f̂) ≈ 5.48% and e(f̂) ≈ 6.35%.
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Fine-grained mask with 5% Gaussian, Poisson and mask errors
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Figure 5. (a)recovered “cameraman”by adaptive HIO +10 ER with single low resolu-
tion(block size:40 × 40) random phase illumination and 5% gaussian noise when ρ = 2.
Reconstruction error ||f − f̂ ||/||f || ≈ 7.4% and residual ≈ 2.49%. (b)normalized error ε̃(fk)
at each iteration. (c)recovered “phantom”by adaptive HIO +10 ER with single low resolu-
tion(block size:40×40) random phase illumination and 5% gaussian noise when ρ = 2. Error
≈ 4.26% and residual ≈ 2.85%. (d)normalized error ε̃(fk) at each iteration. (e)recovered
“cameraman”by adaptive HIO +10 ER with single low resolution(block size:40 × 40) ran-
dom phase illumination and 5% poisson noise when ρ = 2. Error ≈ 6.38% and residual
≈ 3.78%. (f)normalized error ε̃(fk) at each iteration. (g)recovered “phantom”by adaptive
HIO +10 ER with single low resolution(block size:40× 40) random phase illumination and
5% poisson noise when ρ = 2. Error ≈ 4.86% and residual ≈ 3.9%. (h)normalized error
ε̃(fk) at each iteration. (i)recovered “cameraman”by adaptive HIO +10 ER with single low
resolution(block size:40 × 40) random phase illumination and 5% illuminator noise when
ρ = 2. Error ≈ 12.83% and residual ≈ 4.05%. (j)normalized error ε̃(fk) at each itera-
tion. (k)recovered “phantom”by adaptive HIO +10 ER with single low resolution(block
size:40 × 40) random phase illumination and 5% illuminator noise when ρ = 2. Error
|| ≈ 12.46% and residual ≈ 5.53%. (l)normalized error ε̃(fk) at each iteration.
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objects,” J. Opt. Soc. Am. A vol. 15, pp. 1662–1669, 1998.

[18] S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instr. vol. 78, pp.

011301, 2007.

[19] A. Levi and H. Stark ,“Image restoration by the method of generalized projections with application to restoration from

magnitude,” J. Opt. Soc. Am. A vol. 1, pp. 932-943, 1984.

[20] H. Stark, Image Recovery: Theory and Applications. New York: Academic Press, 1987.

10

Coarse-grained mask with 5% Gaussian, Poisson and mask errors

Tuesday, April 1, 2014



34

 
(a) real-valued (b) positive real & imaginary parts (c) no constraint

Compressed measurement

If, in addition, the nonnegativity constraint is assumed, then

R!f k"1!n## $
!
R!f 0k!n## if R!f 0k!n## ≥ 0
R!f k!n##− β ·R!f 0k!n## if R!f 0k!n##< 0 ; (12)

J!f k"1!n## $ J!f k!n## − β · J!f 0k!n##: (13)

• When Γ is the set of complex-valued images with non-
negative real and imaginary parts,

R!f k"1!n## $
!
R!f 0k!n## if R!f 0k!n## ≥ 0
R!f k!n##− β ·R!f 0k!n## if R!f 0k!n##< 0 ; (14)

J!f k"1!n## $
!
J!f 0k!n## if J!f 0k!n## ≥ 0
J!f k!n##− β ·J!f 0k!n## if J!f 0k!n##< 0 : (15)

In addition, the zero-padding condition is replaced by the
relaxed padding condition f k"1!n# $ f k!n# − βf 0k!n#; ∀n in
the padding region.

E. Algorithms with Two Illuminations
Let λ1 and λ2 be two arrays representing two illuminating
fields. Two sets of Fourier magnitude data Y 1 $ jΦΛ1f j
and Y 1 $ jΦΛ2f j are collected, each with an oversampling ra-
tio σ. Let T 1 and T 2 be the intensity fitting operators corre-
sponding to Y 1 and Y 2, respectively, as in Eq. (5). Thus the
projections onto the set of images satisfying the Fourier mag-
nitude data Y 1 and Y 2 are, respectively,

P1 $ Λ−1
1 Φ−1T 1ΦΛ1

and

P2 $ Λ−1
2 Φ−1T 2ΦΛ2:

The corresponding ER algorithm with two sets of Fourier
magnitude data Y 1 and Y 2 is given by

f k"1 $ PoP2P1f k: !16#
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Fig. 5. (Color online) (a) Relative error with one RPI for nonnegative-valued phantom; (b) relative error with one RPI for complex-valued phantom
with phases randomly distributed in %0; π ∕ 2&; (c) relative error by 200HIO" 300ER with one RPI and UI for complex-valued phantom with phases
randomly distributed in %0; 2π&.
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(a) real-valued objects (b) positive real & imaginary parts (c) no constraint

C. Oversampling Ratio Test
To systematically test the oversampling ratio required for
phasing with RPI, we introduce 5% different types of noise
(Gaussian, Poisson, illumination), use low (block size:
40 × 40) as well as high resolution RPI, and let σ vary. We
use an adaptive version of HIO! ER: HIO and ER are termi-
nated if the residual increases in five consecutive iterations.
The relative error of reconstruction for the nonnegative image
phantom is averaged over five trials and shown in Fig. 5(a).
Clearly the relative error steadily decreases as the oversam-
pling ratio increases. Without noise, low resolution RPI can
achieve near zero errorwith σ " 1.1.With 5%noise, the relative
error stabilizes after σ " 2 to a level comparable to the noise.

Next we consider the complex-valued phantomwith phases
randomly distributed in the sector #0; π ∕ 2$. Figure 5(b) shows
the average relative error e%f̂ & with one high resolution or low
resolution (block size: 4 × 4) RPI and three kinds of noise.
Again the relative error stabilizes after σ " 2 to a level com-
parable to the noise. Note that for 1.8 < σ < 2, there are more
free variables in the complex-valued image than in the Fourier

intensity data and yet the reconstructions are still of good
quality.

Finally, we consider the complex-valued phantom with
phases randomly distributed in #0; 2π$. Figure 5(c) shows
the average relative error e%f̂ & with one high resolution or
low resolution (block size: 4 × 4) RPI plus one UI. Excellent
recovery is achieved for σ ≥ 1.8.

D. Stability Test
For images with positivity constraint and with one RPI,
we terminate HIO when the relative residual increases for
five consecutive steps and apply 10 steps of ER afterward.
The maximal HIO iteration is set to be 100. For complex-
valued images with two illuminations, we apply 200 steps
of HIO and 300 steps of ER.

Figure 6 shows the recovery for the nonnegative-valued
images with one high resolution RPI and 5% Gaussian
[(a)–(d)], Poisson [(e)–(h)], and illuminator noise [(i)–(l)]. Mul-
tiplicative noise such as Poisson and illumination noises are
generally more debilitating than the additive Gaussian noise.
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Fig. 8. (Color online) (a) Relative error for nonnegative-valued phantom and σ " 2; (b) relative error for complex-valued phantom with phases
randomly distributed in #0; π ∕ 2$ and σ " 4; (c) relative error for complex-valued phantom with phases randomly distributed in #0; 2π$ and σ " 3.
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Roughly known mask

Theorem 1. Let f be a two-dimensional nonnegative object. Sup-
pose the exact mask phases {φ(n)} are independently and uniformly
distributed on (−γπ, γπ] and satisfy the uncertainty constraint with
δ < γ ≤ 1. Let S be the object sparsity and let �S/2� be the greatest
integer at most S/2.

Then, with probability no less than

1−N1N2(δ/γ)
�S/2�,

the object is uniquely determined and furthermore the mask’s phases
{φ(n)} are uniquely determined, up to a global constant, on the
support set of f (i.e. f(n) �= 0).

δ/γ = Uncertainty-to-Diversity Ratio (UDR)

Tuesday, April 1, 2014



37

THEOREM Let f be a complex-valued object of rank

≥ 2.

Let the first mask λ(1) is only roughly known with uncer-

tainty δ. Suppose the second mask λ(2) is exactly known

and assume the non-degeneracy condition on λ(2)f.

Suppose that for a phase mask λ̃ of the same uncertainty

δ and an object f̃ produce the same Fourier magnitudes

on L. Then with probability no less than

1− |N |δ�S/2�

f̃(n) = exp (iν1)f(n), ∀n, and λ̃(n) = exp (iν2)λ(n) if f(n) �=
0.

Roughly known mask
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fk+1, fk
λk �� gk

Φ−1T Φ
��

f �
k

Po

��

g�k
λ−1
k

��

(a) object update

λk+1,λk
fk+1 �� µk

Φ−1T Φ
��

λ�
k

Qm

��

µ�
k

f−1
k+1

��

(b) mask update

Fig. 1. Alternating Error Reduction (AER) between object and mask.

3.B. Mask Update

Based on the newly updated object estimate fk+1, we define Qf,k as

λ�
k = Qf,kλk(n) =






Φ−1T ΦΛkfk+1(n)/fk+1(n) if fk+1(n) �= 0

λk(n) else

. (8)

Let M be the ensemble of phase masks satisfying the phase uncertainty constraint (5):

M = {λ̃ | ∀n,�λ̃(n) ∈ �φ0(n)∓ δπ�}. (9)

Let Qm be the orthogonal projection onto M. Note that Qm can be computed pixel by pixel

as follows.

Let a = (φ0(n)− δπ)(mod 2π), b = (φ0(n) + δπ)(mod 2π) and

c =

�
π + (a+ b)/2 (mod 2π), if a ≤ b

(a+ b)/2 (mod 2π), else.

Then Qm can be expressed as

Qmλ
�
k(n) =






exp (i�λ�
k(n)) if �λ�

k(n) ∈ �a, b�
exp (ib) if �λ�

k(n) ∈ �b, c�
exp (ia) if �λ�

k(n) ∈ �c, a�.
(10)

Since the the object and the mask have interchangeable roles, we set λk+1 = QmQf,kλk

in the spirit of ER (see Fig. 1(b)). Note the differences between the mask update rule here

and that of the extended ptychographical engine (ePIE) ((4) in Ref. [11]): First, (8) uses the

newly updated object fk+1 while ePIE uses the previous one. Second, more importantly, the

rough prior knowledge about the mask is enforced by Qm here while ePIE does not consider

this aspect.

Now we prove the following residual reduction property.

6
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(a) e(f̂) ≈ 1.26% (b)
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(c) ρ(f̂ , µ̂) ≈ 0.25%

(d) e(f̂) ≈ 0.96% (e)
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(f) ρ(f̂ , µ̂) ≈ 0.23%

(g) e(f̂) ≈ 0.37% (h)
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(i) ρ(f̂ , µ̂) ≈ 0.12%

Figure 7. Recovery of non-negative images with one LRM of δ = 0.3. (a)
the recovered cameraman f̂ by 90 DRER + 6 AER steps. (d) the recovered
mandrill f̂ by 61 DRER + 6 AER steps. (g) the recovered phantom f̂ by
72 DRER + 5 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

0.05%, with the maximum of 500 steps. As shown in Figure 7, the results are 90 DRER and
6 AER steps with 1.26% error for the cameraman, 72 DRER and 5 AER with 0.37% error
for the phantom and 61 DRER and 6 AER with 0.96% error for the mandrill. Consistent
with Theorem 1, the mask errors occur only outside the object supports.

8.4. Unconstrained complex images. Next we consider the case of the complex-valued
objects without phase constraint and with one UM and one LRM of uncertainty δ = 0.3.
We apply the alternative versions of DRER (19) and AER (18) which tend to produce

13

Non-negative images  with one  LRM of 30% uncertainty
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(a) e(f̂) ≈ 2.62% (b)
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(c) ρ(f̂ , µ̂) ≈ 1.12%

(d) e(f̂) ≈ 2.16% (e)
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(f) ρ(f̂ , µ̂) ≈ 1.03%

(g) e(f̂) ≈ 1.47% (h)
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(i) ρ(f̂ , µ̂) ≈ 0.80%

Figure 9. Recovery of the π/2-sector constrained images with one UM and
one LRM of δ = 0.3. (a) absolute values of the recovered cameraman f̂ by 21
DRER + 500 AER steps. (d) absolute values of the recovered mandrillf̂ by
23 DRER + 500 AER steps. (g) absolute values of the recovered phantom f̂
by 23 DRER + 500 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

and complex-valued images images with unconstrained random phases (c)(f)(i). We use the
same stopping rules and updating rules as above for each case, except that the maximum
number of steps is changed to 200 + δ · 1000 for DRER and AER separately to adapt to
variable uncertainty.
Without mask update the error curves are roughly linear with the noise amplification

factor roughly 2 (top two curves), consistent with our previous results reported in [6]. With
mask update, the results (bottom two curves) are drastically improved in all cases.

16

Sector images  with one UM and  LRM of 30% uncertainty
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Generic complex images  with one UM and  LRM of 30% uncertainty

(a) e(f̂) ≈ 6.43% (b)
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(c) ρ(f̂ , µ̂) ≈ 2.66%

(d) e(f̂) ≈ 4.62% (e)
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(f) ρ(f̂ , µ̂) ≈ 2.04%

(g) e(f̂) ≈ 2.20% (h)
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(i) ρ(f̂ , µ̂) ≈ 1.31%

Figure 8. Recovery of unconstrained complex-valued images with one UM
and one LRM of δ = 0.3. (a) absolute values of the recovered cameraman f̂ by
500 DRER + 500 AER steps. (d) absolute values of the recovered mandrill f̂ by
500 DRER + 500 AER steps. (g) absolute values of the recovered phantom f̂
by 500 DRER + 500 AER steps. The middle column shows the absolute phase
differences between µ and µ̂. The right column shows the relative residual at
each iteration.

better results than (14) and (10) for complex-valued objects. DRER (19) is stopped when
�fk+1 − fk�/�fk� < 1%, with the maximum of 500 steps, and AER (18) is terminated when
�fk+1 − fk�/�fk� < 0.05%, with the maximum of 500 steps. Fig. 8 shows the results for
object phases randomly distributed on [0, 2π). Both algorithms ran their full course of 500
steps with 6.43% error for the cameraman, 2.20% error for the phantom and 4.62% for the
mandrill. The mask errors occur only outside the object supports, consistent with Theorem
2.

14

Tuesday, April 1, 2014



42

Maximum of  200+1000 delta steps for  DRER and AER separately
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(i)

Figure 10. Noiseless reconstruction error with or without mask update. Av-
eraged relative error e(f̂) of 5 independent runs versus the percentage of mask
uncertainty for nonnegative images (left column), π/2-sector images (middle
column) and unconstrained images (right column) in the order of cameraman,
mandrill and phantom (top to bottom). The stopping rules and mask updat-
ing rules are the same as described in the main text for each case with the
maximum of 200 + 1000 · δ steps for DRER and AER separately.
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For the Gaussian noise let E = E1 + iE2 be a complex Gaussian vector where E1 and E2

consist of |L| independent Gaussian random variables with zero mean and variance σ2
. The

noisy Fourier intensity data are given by Y 2
noisy = |ΦΛf + E|2. We set

�
2|L|σ2/�ΦΛf� =

10%.
For the Poisson noise, let the noisy data Ynoisy = Xnoisy/a where Xnoisy consists of |L|

independent Poisson random variables with mean a|ΦΛf | where the scaling factor a > 0 is

chosen so that the overall noise-to-signal ratio �
�

a|ΦΛf |�/�a|ΦΛf |� = 10%.

Figure 11 shows the averaged relative error e(f̂), over 5 runs of independent random initial

guesses, as a function of the mask uncertainty δ of HRM or LRM, in the presence of 10%

gaussian or 10% poisson noise. Not surprisingly, the reconstruction with the Poisson noise

is generally worse than that with the Gaussian noise. The presence of (Gaussian or Poisson)

noise amplifies the difference in performance between HRM and LRM especially in the case

of π/2-sector images (the middle column). The reconstruction with HRM is stable across

the board.
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(a) Nonnegative images
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(b) π/2-sector images
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(c) Unconstrained images

Figure 12. Reconstruction error with variable γ with δ = 0.3 for (a) non-

negative, (b) π/2-sector constrained and (c) unconstrained images.

8.8. Reconstruction error versus uncertainty-to-diversity ratio (UDR). Fig. 12

shows the relative error versus the range of mask phases for δ = 0.3. The error starts

to change precipitously around UDR ≈ 1 consistent with the threshold predicted by the

probability bound 1− |N |UDR�S/2�
in Theorems 1 (for non-negative images) and 2.

The real or complex mandrill has the best performance near the threshold UDR ≈ 1

probably due to its highest sparsity S among the tested images. Surprisingly the non-

negative mandrill image can be accurately recovered with γ just slightly greater than 0.2

(Fig. 12(a)). By contrast, the image with the lowest sparsity (i.e. phantom) also has the

worst performance.

9. Conclusion

We proved the uniqueness, up to a global phase, for phasing with PUM with probability

exponentially close to one, depending on the object sparsity and the uncertainty-to-diversity

ratio (UDR) of the mask. We designed algorithms that achieve nearly perfect recovery for

19

Diversity-to-Uncertainty Ratio (UDR)
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Conclusions

Random mask as enabling tool for phase retrieval.

Uniqueness

Mask uncertainty

Fast convergence

OR =1 (real)  or 2 (complex)
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