Phase Retrieval with Roughly Known Mask

Albert Fannjiang, UC Davis Wenjing Liao, SAMSI/Duke

Stanford April 1, 2014

Outline

- Standard phasing
- Service Ambiguities
- Phasing with random mask
- 🖗 Algorithms
- Phasing with roughly known mask
- **References**:
- F.: Inverse Problems 28 (2012) 075008
- F & Liao: Journal of Optical Society of America A 29 (2012), 1847-1859.
- F & Liao: Inverse Problems 29 (2013) 125001.

Lensless coherent imaging

Fourier magnitude data:

$$|F(\mathbf{w})|^2 = \sum_{\mathbf{n}=-\mathbf{N}}^{\mathbf{N}} \sum_{\mathbf{m}} f(\mathbf{m}+\mathbf{n}) f^*(\mathbf{m}) e^{-i2\pi\mathbf{n}\cdot\mathbf{w}}$$
$$= \sum_{\mathbf{n}=-\mathbf{N}}^{\mathbf{N}} C_f(\mathbf{n}) e^{-i2\pi\mathbf{n}\cdot\mathbf{w}}$$

where

$$\mathcal{C}_f(\mathbf{n}) = \sum_{\mathbf{m}} f(\mathbf{m} + \mathbf{n}) f^*(\mathbf{m})$$

is the autocorrelation function of f.

Fourier magnitude data contain complete information about autocorrelation function.

Sampling Theorem:

 $supp(C_f) \subset [-N,N]^2 \Longrightarrow [0,1]^2$ is reduced to the Nyquist grid

$$\mathcal{M} = \left\{ (k_1, k_2) : k_j = 0, \frac{1}{2N+1}, \frac{2}{2N+1}, \cdots, \frac{2N}{2N+1} \right\}$$

Harmonic (50%) & non-harmonic (50%) Fourier coefficients

Phase = Face ?

$$f_L = \text{Lena}$$

$$F_L(\mathbf{w}) = |F_L(\mathbf{w})|e^{\mathbf{i}\theta_L(\mathbf{w})}$$

$$F_1(\mathbf{w}) = |F_B(\mathbf{w})|e^{\mathbf{i}\theta_L(\mathbf{w})}$$

$$f_1 = |\Phi^*F_1|$$

 $f_B = Barbara$ $F_B(\mathbf{w}) = |F_B(\mathbf{w})|e^{\mathbf{i}\theta_B(\mathbf{w})}$

$$F_2(\mathbf{w}) = |F_L(\mathbf{w})| e^{\mathbf{i}\theta_B(\mathbf{w})}$$
$$f_2 = |\Phi^* F_2|$$

Phase = Face !

$$F_1(\mathbf{w}) = |F_B(\mathbf{w})| e^{\mathbf{i}\theta_L(\mathbf{w})}$$
$$f_1 = |\Phi^* F_1|$$

$$F_{2}(\mathbf{w}) = |F_{L}(\mathbf{w})|e^{\mathbf{i}\theta_{B}(\mathbf{w})}$$
$$f_{2} = |\Phi^{*}F_{2}|$$

Fourier magnitude retrieval

(Hayes 1982) If the z-transform of the object has no conjugate symmetric factor, the Fourier phase information determines the object up to a positive constant factor.

CSF: factor with real-valued coefficients

"Almost all" objects have no CSF.

Trivial ambiguities

Autocorrelation:

$$C_f(\mathbf{n}) = \sum_{\mathbf{m}+\mathbf{n}\in\mathcal{N}} f(\mathbf{m}+\mathbf{n})f^*(\mathbf{m})$$

Invariant under:

(i) global phase,

$$f(\mathbf{n}) \longrightarrow e^{\mathbf{i}\theta} f(\mathbf{n}), \quad \text{ for some } \theta \in [0, 2\pi],$$

(ii) spatial translation

$$f(\mathbf{n}) \longrightarrow f(\mathbf{n} + \mathbf{m}), \text{ some } \mathbf{m} \in \mathbb{Z}^2$$

(iii) conjugate inversion (twin image)

$$f(\mathbf{n}) \longrightarrow f^*(\mathbf{N} - \mathbf{n}).$$

Nontrivial ambiguity

THEOREM (Hayes 82, Pitts-Greenleaf 03)

Let the *z*-transform F(z) of a finite complex-valued sequence $\{f(n)\}$ be given by

$$F(\mathbf{z}) = \alpha \mathbf{z}^{-\mathbf{m}} \prod_{k=1}^{p} F_k(\mathbf{z}), \quad \mathbf{m} \in \mathbb{N}^2, \alpha \in \mathbb{C}$$

where $F_k, k = 1, ..., p$ are nontrivial irreducible polynomials. Let G(z) be the z-transform of another finite sequence g(n). Suppose $|F(w)| = |G(w)|, \forall w \in [0, 1]^2$. Then G(z) must have the form

$$G(\mathbf{z}) = |\alpha| e^{\mathbf{i}\theta} \mathbf{z}^{-\mathbf{p}} \left(\prod_{k \in I} F_k(\mathbf{z}) \right) \left(\prod_{k \in I^c} F_k^*(1/\mathbf{z}^*) \right), \quad \mathbf{p} \in \mathbb{N}^2, \theta \in \mathbb{R}$$

where I is a subset of $\{1, 2, ..., p\}$.

Nontrivial ambiguity: Partial conjugate inversion on factors.

Tuesday, April 1, 2014

Random masks

Random masks

Fig. 2. (a) Encoding speckle pattern. (b) Autocorrelation of the encoding pattern.

Ptychography with randomly phased illumination

Maiden-Rodenburg 2013

Random illumination

 $\tilde{f}(n) = f(n)\lambda(n)$ (illuminated object)

 $\lambda(n)$, representing the illumination field, is a known sequence of samples of random variables.

Let $\lambda(n)$ be continuous random variables with respect to the Lebesque measure on \mathbb{S}^1 (the unit circle), \mathbb{R} or \mathbb{C} .

Case of \mathbb{S}^1 can be facilitated by a random phase modulator with

$$\lambda(\mathbf{n}) = e^{\mathbf{i}\phi(\mathbf{n})}$$

where $\phi(\mathbf{n})$ are continuous random variables on $[0, 2\pi]$. Case of \mathbb{R} : random amplitude modulator. Case of \mathbb{C} : both phase and amplitude modulations.

Oversampling ratio

 $\sigma = \frac{\text{Fourier magnitude data number}}{\text{unknown image pixel number}}$

Standard ratio: $\sigma = 2^d$

Compression: $\sigma < 2^d$

Irreducibility

<u>THEOREM</u>. Suppose the object $\{f(n)\}$ is rank ≥ 2 . Then the the *z*-transform of the illuminated object $f(n)\lambda(n)$ is irreducible with probability one.

False for rank | objects: Fundamental Thm of Algebra

$$\sigma = \frac{\text{Fourier magnitude data number}}{\text{unknown image pixel number}} = 2^d$$

Absolute uniqueness

<u>THEOREM</u> If f(n) is real and nonnegative for every n then, with probability one, f is determined absolutely uniquely by the Fourier magnitude measurement on the lattice \mathcal{L} .

<u>THEOREM</u> Suppose the phases of the object belong to $[a, b] \subset [0, 2\pi]$. Then the solution to the Fourier phasing problem has a unique solution with probability

$$1 - |\mathcal{N}| \left| \frac{b-a}{2\pi} \right|^{[S/2]}$$

Objects w/o constraint

<u>THEOREM</u> Suppose that $\{\lambda_1(n)\}$ are i.i.d. In addition, if either of the following holds true

(i) $\{\lambda_2(n)\}\$ are i.i.d. continuous random variables with respect to the Lebesgue measure on \mathbb{S}^1 , \mathbb{R} or \mathbb{C} and $\{\lambda_2(n)\}\$ are independent of $\{\lambda_1(n)\}$;

(ii) $\{\lambda_2(n)\}\$ are deterministic;

then with probability one f(n) is uniquely determined, up to a constant phase factor, by the Fourier magnitude measurements with two masks λ_1 and λ_2 .

Objects with loose support

(a)

(b)

Error metrics

Relative error $e(\hat{f}) = \begin{cases} \|f - \hat{f}\| / \|f\| \\ \min_{\nu \in [0, 2\pi)} \|f - e^{i\nu} \hat{f}\| / \|f\| \end{cases}$

Relative residual $r(\hat{f}) = \frac{\parallel Y - |\Phi \Lambda \mathcal{P}_{o}\{\hat{f}\}| \parallel}{\parallel Y \parallel}$

Gerchberg-Saxton; Error Reduction (Fienup)

$r(\hat{f}) = \frac{\|Y - |\Phi \Lambda \mathcal{P}_{o}\{\hat{f}\}\|}{\|Y\|}$ Residual reduction property

Convergence ?

LEMMA Suppose the object constraint is convex. Then

$$|\mathcal{P}_{f}\{f_{k+1}\} - f_{k+1}|| \le ||\mathcal{P}_{f}\{f_{k}\} - f_{k}||.$$

The equality holds if and only if $f_{k+1} = f_k$.

(a)

Tuesday, April 1, 2014

normalized error at each iteration

0 45

0.4

0.35

0.3

0.25

ŗ

(a)

normalized error at each iteration

Error Reduction (Gerchberg-Saxton)

Bregman 65: convex constraints \implies convergence to a feasible solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?

Convergence

THEOREM

Let the object f be rank ≥ 2 . Let h be a fixed point of $\mathcal{P}_{O}\mathcal{P}_{f}$ such that $\mathcal{P}_{f}h$ satisfies the zero-padding condition.

(a) If f is real-valued, $h = \pm f$ with probability one,

(b) If f satisfies the sector condition, then $h = e^{i\nu}f$, with probability at least

$$1 - |\mathcal{N}| \left| \frac{b-a}{2\pi} \right|^{[S/2]}$$

$$\mathcal{P}_o h' = h,$$

$$|\Phi \Lambda h'| = |\Phi \Lambda f|,$$

$$\measuredangle \Phi \Lambda h'_{26} = \measuredangle \Phi \Lambda h.$$

Douglas-Rachford (DR)

$$f_{k+1} = \frac{1}{2} (\mathcal{R}_{o} \mathcal{R}_{f} + I) f_{k}, \quad \mathcal{R}_{o} = 2\mathcal{P}_{o} - I, \quad \mathcal{R}_{f} = 2\mathcal{P}_{f} - I$$

Theorem: DR + random mask has a **unique fixed point**.

Uniform mask

(c)

(a)

Multiple masks

$$\mathcal{P}_1 = \Lambda_1^{-1} \Phi^{-1} \mathcal{T}_1 \Phi \Lambda_1$$

$$\mathcal{P}_2 = \Lambda_2^{-1} \Phi^{-1} \mathcal{T}_2 \Phi \Lambda_2.$$

$$f_{k+1} = \mathcal{P}_{o}\mathcal{P}_{2}\mathcal{P}_{1}f_{k}.$$

Tuesday, April 1, 2014

Random phase masks

(e)-(h) Coarse-grained mask with OR=2

(e)

(f)

(i)

(k)

(1)

(j) (i)-(l) Fine-grained mask with OR=l 30

Random phase masks

(e) - (h) Coarse-grained mask with OR=2

(i) - (l) Fine-grained mask with OR=I

0.45 0.4 0.35 e residual 0.25 relativ 0.15 0.1 0.05 0 15 iteration 25 10 20

(b)

10

(f)

15 iteration

20

25

relative residual at each iteration

relative residual at each iteration

0.5

0.5

0.45

0.4

0.35

0.3 e residual 0.25

.2.0 g

0.15

0.1

0.05 0

(d)

relative residual at each iteration

(g)

(i)

(e)

(j)

(k)

(l)

Fine-grained mask with 5% Gaussian, Poisson and mask errors

(a)

ē

Ĕ

iteration

(f)

(c)

normalized error at each iteration

0.9

0.8

0.7

0.6

0.5 normalized

0.3

0.2

0.1 0

5

10

15

20 25 iteration

30

35

40

45

(i)

(e)

Coarse-grained mask with 5% Gaussian, Poisson and mask errors

Compressed measurement

Noise stability

Roughly known mask

Theorem 1. Let f be a two-dimensional nonnegative object. Suppose the exact mask phases $\{\phi(\mathbf{n})\}$ are independently and uniformly distributed on $(-\gamma \pi, \gamma \pi]$ and satisfy the uncertainty constraint with $\delta < \gamma \leq 1$. Let S be the object sparsity and let $\lfloor S/2 \rfloor$ be the greatest integer at most S/2.

Then, with probability no less than

 $1 - N_1 N_2 (\delta/\gamma)^{\lfloor S/2 \rfloor},$

the object is uniquely determined and furthermore the mask's phases $\{\phi(\mathbf{n})\}\ are\ uniquely\ determined,\ up\ to\ a\ global\ constant,\ on\ the\ support\ set\ of\ f\ (i.e.\ f(\mathbf{n}) \neq 0).$

 $\delta/\gamma =$ Uncertainty-to-Diversity Ratio (UDR)

Roughly known mask

THEOREM Let f be a complex-valued object of rank ≥ 2 .

Let the first mask $\lambda^{(1)}$ is only roughly known with uncertainty δ . Suppose the second mask $\lambda^{(2)}$ is exactly known and assume the non-degeneracy condition on $\lambda^{(2)}f$.

Suppose that for a phase mask $\tilde{\lambda}$ of the same uncertainty δ and an object \tilde{f} produce the same Fourier magnitudes on \mathcal{L} . Then with probability no less than

$$1 - |\mathcal{N}|\delta^{\lfloor S/2 \rfloor}$$

$$\tilde{f}(\mathbf{n}) = \exp(i\nu_1)f(\mathbf{n}), \forall \mathbf{n}, \text{ and } \tilde{\lambda}(\mathbf{n}) = \exp(i\nu_2)\lambda(\mathbf{n}) \text{ if } f(\mathbf{n}) \neq \mathbf{0}.$$

Object & Mask updates

Non-negative images with one LRM of 30% uncertainty

Sector images with one UM and LRM of 30% uncertainty

Generic complex images with one UM and LRM of 30% uncertainty

Maximum of 200+1000 delta steps for DRER and AER separately

Diversity-to-Uncertainty Ratio (UDR)

Conclusions

- Random mask as enabling tool for phase retrieval.
- 🖗 Uniqueness
- Mask uncertainty
- Fast convergence
- OR = I (real) or 2 (complex)
- **References**:
- F.: Inverse Problems 28 (2012) 075008
- F & Liao: Journal of Optical Society of America A 29 (2012), 1847-1859.
- F & Liao: Inverse Problems 29 (2013) 125001.