Blind Ptychography: Theory \& Algorithms

Albert Fannjiang

University of California, Davis

Stanford University, Nov. 28, 2018

Collaborator: Pengwen Chen (NCHU), Zheqing Zhang (UCD)

Outline

- Introduction and motivation: Phase retrieval vs. ptychography.
- Mathematical set-up
- Inherent ambiguities
- Local uniqueness of the exit waves
- Raster grid pathology
- Global uniqueness for mixing schemes.
- Reconstruction
- Conclusion

Phase retrieval

- Mask/probe $\mu+$ propagation $\mathcal{F}+$ intensity measurement: data $=$ diffraction pattern $=|\mathcal{F}(f \otimes \mu)|^{2}, \quad \mathcal{F}=$ Fourier transform.

Ptychography: extended objects

Hoppe (1969): electron microscopy.

- Inverse problem with windowed Fourier intensities.

Fourier ptychography

Zheng et al. (2013): Convolution in the Fourier domain.

Fourier ptychography

Zheng et al. (2014)

FPscope using a cellphone lens

Recovered high-res image

Mask/probe retrieval

Thibault et al. (08/09) - Lensless coherent diffractive imaging

- Relative residual reduces (from 32\% to 18\%) after mask recovery routine is turned on.
- Simultaneous recovery of the mask and the object?

Maiden et al. 2017

- A randomly masked aperture of approximately the same size as the true probe was used as an initial probe estimate and free-space was used as the initial object estimate.
- Overlap ratio $70-80 \%$.

Twin image ambiguity: Chen \& F (2017)

Fresnel mask $\mu^{0}(\mathbf{k}):=\exp \left\{\mathrm{i} \pi \rho|\mathbf{k}|^{2} / m\right\}$

No uniqueness for certain ρ even if the mask is known $\underline{\underline{\underline{1}}}$,

Notation \& set-up

- \mathcal{T} : all the shifts $\mathbf{t} \in \mathbb{Z}^{2}$ involved in the measurement.
- μ^{0} the initial mask; $\mu^{\mathbf{t}}$ the \mathbf{t}-shifted mask
- $\mathcal{M}^{0}=\mathbb{Z}_{m}^{2} ; \mathcal{M}^{\mathbf{t}}$ the domain of $\mu^{\mathbf{t}}$.
- $\mathcal{M}:=\cup_{\mathbf{t} \in \mathcal{T}} \mathcal{M}^{\mathbf{t}}$
- f^{t} : the object restricted to \mathcal{M}^{t}
- Twin $\left(f^{\mathbf{t}}\right): 180^{\circ}$-rotation of $\overline{f^{\mathbf{t}}}$ around the center of $\mathcal{M}^{\mathbf{t}}$
- $f=\vee_{\mathbf{t}} f^{\mathbf{t}} \subseteq \mathcal{M}$ and refer to each $f^{\mathbf{t}}$ as a part of f.

The original object is broken up into a set of overlapping object parts, each of which produces a coded diffraction pattern (coded by $\mu^{\mathbf{t}}$).

Linear phase ambiguity

Consider the probe and object estimates

$$
\begin{aligned}
\nu^{0}(\mathbf{n}) & =\mu^{0}(\mathbf{n}) \exp (-\mathrm{i} a-\mathrm{iw} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathcal{M}^{0} \\
g(\mathbf{n}) & =f(\mathbf{n}) \exp (\mathrm{i} b+\mathrm{i} \mathbf{w} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}_{n}^{2}
\end{aligned}
$$

for any $a, b \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^{2}$. For any \mathbf{t}, we have the following calculation

$$
\begin{aligned}
\nu^{\mathbf{t}}(\mathbf{n}) & =\nu^{0}(\mathbf{n}-\mathbf{t}) \\
& =\mu^{0}(\mathbf{n}-\mathbf{t}) \exp (-\mathrm{i} \mathbf{w} \cdot(\mathbf{n}-\mathbf{t})) \exp (-\mathrm{i} a) \\
& =\mu^{\mathbf{t}}(\mathbf{n}) \exp (-\mathrm{i} \mathbf{w} \cdot(\mathbf{n}-\mathbf{t})) \exp (-\mathrm{i} a)
\end{aligned}
$$

and hence for all $\mathbf{n} \in \mathcal{M}^{\mathbf{t}}, \mathbf{t} \in \mathcal{T}$

$$
\nu^{\mathbf{t}}(\mathbf{n}) g^{\mathbf{t}}(\mathbf{n})=\mu^{\mathbf{t}}(\mathbf{n}) f^{\mathbf{t}}(\mathbf{n}) \exp (\mathrm{i}(b-a)) \exp (\mathrm{i} \mathbf{w} \cdot \mathbf{t})
$$

implying g and ν^{0} produce the same ptychographic data as f and μ^{0} since for each $\mathbf{t}, \nu^{\mathbf{t}} \odot g^{\mathbf{t}}$ is a constant phase factor times $\mu^{\mathbf{t}} \odot f^{\mathbf{t}}$.

Measurement scheme

- $\mathcal{M}^{\mathbf{t}}=$ nodes
- Two nodes are s-connected if $\left|\mathcal{M}^{\mathbf{t}} \cap \mathcal{M}^{\mathbf{t}^{\prime}} \cap \operatorname{supp}(f)\right| \geq s$.

Block phase

Theorem (F \& Chen 2018)

Let the scheme be s-connected and each $f^{\mathbf{t}}$ is a non-line object. Suppose that some $f^{\mathbf{t}}$ has a tight support in $\mathcal{M}^{\mathbf{t}}$ and that $\mu^{0} \neq 0$ has independently distributed random phases over at least the range of length π.
Suppose that ν^{0} with

$$
(M P C) \quad \Re\left[\overline{\nu^{0}}(\mathbf{n}) \mu^{0}(\mathbf{n})\right]>0, \quad \forall \mathbf{n} \in \mathcal{M}^{0}
$$

and an arbitrary object $g=\cup_{k} g^{k}$ produce the same ptychographic data as f and μ^{0}. Then with probability at least $1-c^{s}, c<1$,

$$
\nu^{\mathbf{t}} \odot g^{\mathbf{t}}=e^{\mathrm{i} \theta_{\mathbf{t}}} \mu^{\mathbf{t}} \odot f^{\mathbf{t}}, \quad \forall \mathbf{t} \in \mathcal{T}
$$

where c depends on the mask phase distribution.
$\theta_{\mathbf{t}}=$ block phases depending on \mathbf{t} but not \mathbf{n}.

Object support constraint (OSC)

$f^{\mathbf{t}}$ has a tight support in $\mathcal{M}^{\mathbf{t}}: \mathcal{M}^{\mathbf{t}}$ is the smallest rectangle containing f^{t}.

OSC is a relaxation of the tight support condition.

OSC counter-example

Let $m=2 n / 3, \mathbf{t}=(m / 2,0) f^{0}=\left[0, f_{1}^{0}\right]$ and $f^{\mathbf{t}}=\left[f_{0}^{1}, 0\right]$ with $f_{1}^{0}=f_{0}^{1}$.
Likewise, $\mu^{0}=\left[\mu_{0}^{0}, \mu_{1}^{0}\right], \mu^{\mathbf{t}}=\left[\mu_{0}^{1}, \mu_{1}^{1}\right]$.
Let $\nu^{0}=\mu^{0}, \nu^{\mathbf{t}}=\mu^{\mathbf{t}}$ and $g^{0}=\left[g_{0}^{0}, 0\right], g^{\mathbf{t}}=\left[0, g_{1}^{1}\right]$ where

$$
\begin{aligned}
g^{0}(\mathbf{n}) & =\bar{f}^{0}(\mathbf{N}-\mathbf{n}) \bar{\mu}^{0}(\mathbf{N}-\mathbf{n}) / \mu^{0}(\mathbf{n}), \quad \forall \mathbf{n} \in \mathcal{M}^{0} \\
g^{\mathbf{t}}(\mathbf{n}) & =\bar{f}^{\mathbf{t}}(\mathbf{N}+2 \mathbf{t}-\mathbf{n}) \bar{\mu}^{\mathbf{t}}(\mathbf{N}+2 \mathbf{t}-\mathbf{n}) / \mu^{\mathbf{t}}(\mathbf{n}), \quad \forall \mathbf{n} \in \mathcal{M}^{\mathbf{t}}
\end{aligned}
$$

Hence $g^{0} \odot \mu^{0}$ and $g^{\mathbf{t}} \odot \mu^{\mathbf{t}}$ produce the same diffraction patterns as $f^{0} \odot \mu^{0}$ and $f^{\mathbf{t}} \odot \mu^{\mathbf{t}}$ but

$$
\begin{aligned}
g^{0} \odot \mu^{0} & \neq e^{\mathrm{i} \theta_{0}} f^{0} \odot \mu^{0} \\
g^{\mathbf{t}} \odot \mu^{\mathbf{t}} & \neq e^{\mathrm{i} \theta_{\mathbf{t}}} f^{\mathbf{t}} \odot \mu^{\mathbf{t}}
\end{aligned}
$$

even when the mask estimate is perfectly accurate.

Mask phase constraint (MPC)

- Let μ^{0} be a nonvanishing random mask with phase at each pixel continuously and independently distributed according to a nonvanishing probability density function p_{γ} on $(-\gamma \pi, \gamma \pi]$ with a constant $\gamma \leq 1$.
- Suppose our mask estimate is ν^{0}. Write the relative mask error as

$$
\alpha(\mathbf{n}) \exp [\mathrm{i} \phi(\mathbf{n})]=\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}), \quad \alpha(\mathbf{n})>0 .
$$

- F. \& Chen (2018): ν^{0} satisfies MPC if

$$
\left|\phi(\mathbf{n})-\phi_{0}\right|<\min \{\gamma, 1 / 2\} \quad \bmod 2 \pi,
$$

for a constant ϕ_{0}, i.e. $\nu^{0}(\mathbf{n})$ is pointing in the half plane in \mathbb{C} with the normal vector $\mu^{0}(\mathbf{n})$ for all \mathbf{n}.

Counter-examples exist!

Raster scan

Raster scan: $\mathbf{t}_{k l}=\tau(k, l), k, l \in \mathbb{Z}$ where τ is the step size. $\mathcal{M}=\mathbb{Z}_{n}^{2}, \mathcal{M}^{0}=\mathbb{Z}_{m}^{2}, n>m$, with the periodic boundary condition.

Block phase

Theorem (F 2018)

Let $\mathcal{T}=\left\{\mathbf{t}_{k}\right\}$ be a \mathbf{v}-generated cyclic group of order q and M^{k} the \mathbf{t}_{k}-shifted mask domain. Suppose that

$$
\nu^{k}(\mathbf{n}) g^{k}(\mathbf{n})=e^{\mathrm{i} \theta_{k}} \mu^{k}(\mathbf{n}) f^{k}(\mathbf{n}), \quad \text { for all } \mathbf{n} \in \mathcal{M}^{k} \text { and } \mathbf{t}_{k} \in \mathcal{T}
$$

If

$$
\mathcal{M}^{k} \cap \mathcal{M}^{k+1} \cap \operatorname{supp}(f) \cap(\operatorname{supp}(f) \oplus \mathbf{v}) \neq \emptyset, \quad \forall k
$$

then $\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{q-1}\right\}$ form an arithmetic progression.

Non-APA ambiguity

For $q=3, \tau=m / 2$, let

$$
f=\left[\begin{array}{ccc}
f_{00} & f_{10} & f_{20} \\
f_{01} & f_{11} & f_{21} \\
f_{02} & f_{12} & f_{22}
\end{array}\right], \quad g=\left[\begin{array}{ccc}
f_{00} & e^{\mathrm{i} 2 \pi / 3} f_{10} & e^{\mathrm{i} 4 \pi / 3} f_{20} \\
e^{\mathrm{i} 2 \pi / 3} f_{01} & e^{\mathrm{i} 4 \pi / 3} f_{11} & f_{21} \\
e^{\mathrm{i} 4 \pi / 3} f_{02} & f_{12} & e^{\mathrm{i} 2 \pi / 3} f_{22}
\end{array}\right]
$$

be the object and its reconstruction, respectively, where $f_{i j}, g_{i j} \in \mathbb{C}^{n / 3 \times n / 3}$. Let
$\mu^{k l}=\left[\begin{array}{ll}\mu_{00}^{k l} & \mu_{10}^{k I} \\ \mu_{01}^{k l} & \mu_{11}^{k l}\end{array}\right], \quad \nu^{k l}=\left[\begin{array}{cc}\mu_{00}^{k l} & e^{-\mathrm{i} 2 \pi / 3} \mu_{10}^{k l} \\ e^{-\mathrm{i} 2 \pi / 3} \mu_{01}^{k l} & e^{-\mathrm{i} 4 \pi / 3} \mu_{11}^{k l}\end{array}\right], \quad k, I=0,1,2$,
be the probe and its estimate, respectively, where $\mu_{i j}^{k l}, \nu_{i j}^{k l} \in \mathbb{C}^{n / 3 \times n / 3}$. It is verified straightforwardly that $\nu^{i j} \odot g^{i j}=e^{\mathrm{i}(i+j) 2 \pi / 3} \mu^{i j} \odot f^{i j}$.

Periodic ambiguity (raster grid pathology)

$(\tau=m / 2) \mathbf{t}_{k l}$-shifted probes $\mu^{k l}$ and $\nu^{k l}$ can be written as

$$
\mu^{k l}=\left[\begin{array}{ll}
\mu_{00}^{k l} & \mu_{10}^{k l} \\
\mu_{01}^{k l} & \mu_{11}^{k l}
\end{array}\right], \quad \nu^{k l}=\left[\epsilon \odot \mu_{i j}^{k l}\right]
$$

Let

$$
\epsilon=[\alpha(\mathbf{n}) \exp (\mathrm{i} \phi(\mathbf{n}))], \quad \epsilon^{-1}=\left[\alpha^{-1}(\mathbf{n}) \exp (-\mathrm{i} \phi(\mathbf{n}))\right] \in \mathbb{C}^{\tau \times \tau} .
$$

Consider the two objects

$$
f=\left[\begin{array}{ccc}
f_{00} & \ldots & f_{q-1,0} \\
\vdots & \vdots & \vdots \\
f_{0, q-1} & \ldots & f_{q-1, q-1}
\end{array}\right], \quad g=\left[\epsilon^{-1} \odot f_{i j}\right]
$$

Two exit waves $\mu^{k l} \odot f^{k l}$ and $\nu^{k l} \odot g^{k l}$ are identical. But the estimates are far off.

Mixing schemes

- Rank-one perturbation $\quad \mathbf{t}_{k l}=\tau(k, I)+\left(\delta_{k}^{1}, \delta_{l}^{2}\right)$.
- Full-rank perturbation $\quad \mathbf{t}_{k l}=\tau(k, I)+\left(\delta_{k l}^{1}, \delta_{k l}^{2}\right)$.

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0

Global uniqueness

Theorem

Suppose f does not vanish in \mathbb{Z}_{n}^{2}. Let $a_{j}^{i}=2 \delta_{j+1}^{i}-\delta_{j}^{i}-\delta_{j+2}^{i}$ and let $\left\{\delta_{j_{k}}^{i}\right\}$ be the subset of perturbations satisfying $\operatorname{gcd}_{j_{k}}\left\{\left|a_{j_{k}}^{i}\right|\right\}=1, \quad i=1,2$, and

$$
\begin{aligned}
\tau & \geq \max _{i=1,2}\left\{\left|a_{j_{k}}^{i}\right|+\delta_{j_{k}+1}^{i}-\delta_{j_{k}}^{i}\right\} \\
2 \tau & \leq m-\max _{i=1,2}\left\{\delta_{j_{k}+2}^{i}-\delta_{j_{k}}^{i}\right\}, \quad(>50 \% \text { overlap }) \\
m-\tau & \geq 1+\max _{k^{\prime}} \max _{i=1,2}\left\{\left|a_{j_{k}}^{i}\right|+\delta_{k^{\prime}+1}^{i}-\delta_{k^{\prime}}^{i}\right\} .
\end{aligned}
$$

Then APA and SF are the only ambiguities, i.e. for some explicit r

$$
\begin{aligned}
g(\mathbf{n}) / f(\mathbf{n}) & =\alpha^{-1}(0) \exp (\mathbf{i n} \cdot \mathbf{r}), \\
\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}) & =\alpha(0) \exp (\mathrm{i} \phi(0)-\mathrm{in} \cdot \mathbf{r}) \\
\theta_{k l} & =\theta_{00}+\mathbf{t}_{k l} \cdot \mathbf{r} .
\end{aligned}
$$

Mixing schemes

Theorem (F \& Chen 2018)
If \mathcal{T} satisfies the mixing property, then

$$
\begin{aligned}
g(\mathbf{n}) / f(\mathbf{n}) & =\alpha^{-1}(0) \exp (\mathbf{i n} \cdot \mathbf{r}), \\
\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}) & =\alpha(0) \exp (\mathrm{i} \phi(0)-\mathbf{i n} \cdot \mathbf{r}) \\
\theta_{\mathbf{t}} & =\theta_{0}+\mathbf{t} \cdot \mathbf{r} .
\end{aligned}
$$

Alternating minimization

$|\mathcal{F}(\mu, f)|=b:$ the ptychographic data. Define $A_{k} h:=\mathcal{F}\left(\mu_{k}, h\right)$, $B_{k} \eta:=\mathcal{F}\left(\eta, f_{k+1}\right)$. We have $A_{k} f_{j+1}=B_{j} \mu_{k}$.
(1) Initial guess μ_{1}.
(2) Update the object estimate $\quad f_{k+1}=\underset{g \in \mathbb{C}^{n \times n}}{\operatorname{argmin}} \mathcal{L}\left(A_{k}^{*} g\right)$
(3) Update the probe estimate $\mu_{k+1}=\underset{\nu \in \mathbb{C} m \times m}{\operatorname{argmin}} \mathcal{L}\left(B_{k}^{*} \nu\right)$
(9) Terminate when $\left\|B_{k}^{*} \mu_{k+1} \mid-b\right\|$ is less than tolerance or stagnates. If not, go back to step 2 with $k \rightarrow k+1$.
Two non-convex log-likelihood functions:

$$
\begin{aligned}
& \text { Poisson: } \quad \mathcal{L}(y)=\sum_{i}|y[i]|^{2}-b^{2}[i] \ln |y[i]|^{2} \\
& \text { Gaussian: } \quad \mathcal{L}(y)=\frac{1}{2}| ||y|-b \|^{2} .
\end{aligned}
$$

The Gaussian is non-differentiable and the hight SNR and near critical limit of the Poisson.

Initialization

- Mask/probe initialization

$$
\mu_{1}(\mathbf{n})=\mu^{0}(\mathbf{n}) \exp [\mathrm{i} \phi(\mathbf{n})],
$$

where $\phi(\mathbf{n})$ i.i.d. uniform on $(-\pi / 2, \pi / 2) \Longrightarrow$

$$
\Re\left[\overline{\mu_{1}}(\mathbf{n}) \mu^{0}(\mathbf{n})\right]>0, \quad \forall \mathbf{n} \in \mathcal{M}^{0}
$$

Relative error of the mask estimate

$$
\sqrt{\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left|e^{\mathrm{i} \phi}-1\right|^{2} d \phi}=\sqrt{2\left(1-\frac{2}{\pi}\right)} \approx 0.8525
$$

- Object initialization: $f_{1}=$ constant or random phase object.

Douglas-Rachford splitting (DRS)

Each minimization can be cast into the form:

$$
\arg \min _{g \in \mathbb{C}^{n \times n}} \mathcal{L}\left(A_{k}^{*} g\right) \Longrightarrow \arg \min _{u} K(u)+\mathcal{L}(u)
$$

where

$$
K=\text { Indicator function of } \quad\left\{A_{k}^{*} x: x \in \mathbb{C}^{n \times n}\right\} .
$$

DRS is defined by the following iteration for $I=1,2,3 \cdots$

$$
\begin{aligned}
y^{I+1} & =\operatorname{prox}_{K / \rho}\left(u^{\prime}\right) \\
z^{I+1} & =\operatorname{prox}_{\mathcal{L} / \rho}\left(2 y^{I+1}-u^{\prime}\right) \\
u^{I+1} & =u^{I}+z^{I+1}-y^{I+1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{prox}_{K / \rho}(u)=A_{k}^{*}\left(A_{k}^{*}\right)^{\dagger} u \\
& \operatorname{prox}_{\mathcal{L} / \rho}(u)=\underset{x}{\operatorname{argmin}} \mathcal{L}(x)+\frac{\rho}{2}\|x-u\|^{2}
\end{aligned}
$$

Fixed point algorithm with Gaussian log-likelihood

- $\rho=1$
- Reflectors: $R_{k}=2 P_{k}-I, S_{k}=2 Q_{k}-I$.
- Gaussian:

$$
\begin{aligned}
u_{k}^{I+1} & =\frac{1}{2} u_{k}^{\prime}+\frac{1}{2} b \odot \operatorname{sgn}\left(R_{k} u_{k}^{\prime}\right) \\
v_{k}^{I+1} & =\frac{1}{2} v_{k}^{\prime}+\frac{1}{2} b \odot \operatorname{sgn}\left(S_{k} v_{k}^{\prime}\right) .
\end{aligned}
$$

- Poisson:

$$
\begin{aligned}
u_{k}^{I+1} & =\frac{1}{2} u_{k}^{\prime}-\frac{1}{3} R_{k} u_{k}^{\prime}+\frac{1}{6} \sqrt{\left|R_{k} u_{k}^{\prime}\right|^{2}+24 b^{2}} \odot \operatorname{sgn}\left(R_{k} u_{k}^{\prime}\right) \\
v_{k}^{I+1} & =\frac{1}{2} v_{k}^{\prime}-\frac{1}{3} S_{k} v_{k}^{\prime}+\frac{1}{6} \sqrt{\left|S_{k} v_{k}^{\prime}\right|^{2}+24 b^{2}} \odot \operatorname{sgn}\left(S_{k} v_{k}^{\prime}\right)
\end{aligned}
$$

Fixed-point analysis

Proposition

Let $\rho \geq 1$. Let (u, v) be a linearly stable fixed point. Then $f_{\infty}:=A_{\infty}^{\dagger} u$ and $\mu_{\infty}:=B_{\infty}^{\dagger} v$ are a solution to blind ptychography, i.e. $\left|\mathcal{F}\left(\mu_{\infty}, f_{\infty}\right)\right|=b$.

Proposition

Let (u, v) be the true solution. Then $\left\|J_{A}(\eta)\right\|_{2} \leq\|\eta\|_{2},\left\|J_{B}(\xi)\right\|_{2} \leq\|\xi\|_{2}$ for all $\eta, \xi \in \mathbb{C}^{N}$ and the equality holds in the direction $\pm \imath b /\|b\|$ (and possibly elsewhere on the unit sphere).

Test objects and error metric

$$
\operatorname{RE}(k)=\min _{\alpha \in \mathbb{C}, \mathbf{k} \in \mathbb{R}^{2}} \frac{\left\|f(\mathbf{r})-\alpha e^{-\imath \frac{2 \pi}{n} \mathbf{k} \cdot \mathbf{r}} f_{k}(\mathbf{r})\right\|_{2}}{\|f\|_{2}}
$$

Masks

correlation length $c=0,0.4 m, 0.7 m, 1 m$

Scanning schemes

- Rank-one perturbation $\quad \mathbf{t}_{k l}=30(k, l)+\left(\delta_{k}^{1}, \delta_{l}^{2}\right)$ where δ_{k}^{1} and δ_{l}^{2} are randomly selected integers in $[-4,4]$.
- Full-rank perturbation $\mathbf{t}_{k l}=30(k, l)+\left(\delta_{k l}^{1}, \delta_{k l}^{2}\right)$ where $\delta_{k l}^{1}$ and $\delta_{k l}^{2}$ are randomly selected integers in $[-4,4]$.
- The adjacent probes overlap by roughly 50%.
- Boundary conditions:

Periodic BC
Dark-field (enforced or not)
Bright-field (enforced or not)

Dark-field vs. periodic BC

Figure: (Left) Reconstructed moduli with dark-field BC \& 30 inner iterations; (right) Reconstructed phase error with periodic BC \& 80 inner iterations

Experiment: Rank-one vs. full-rank

Experiment: Independent vs. correlated mask

Noise robustness

Boundary conditions

(a) CiB with $\operatorname{PPC}(0,0,0.5)$

(b) RPP with $\operatorname{PPC}(0,0,0.4)$

Full-rank scheme

Boundary conditions

(c) CiB with $\operatorname{PPC}(0,0,0.5)$

(d) RPP with $\operatorname{PPC}(0,0,0.4)$

Rank-1 scheme

Conclusion

(1) Theory: blind ptychography can recover simultaneously the object and the probe/mask up to an affine phase factor and a constant amplitude offset.
\rightarrow Mixing schemes
\rightarrow Raster scan pathology
(2) Algorithm: MPC Initialization + AMDRS (Convergence proof?)
(3) Position uncertainty ?

References

(1) Chen \& F (2017), "Coded-aperture ptychography: Uniqueness and reconstruction," Inverse Problems 34, 025003.
(2) F \& Chen (2018), "Blind ptychography: Uniqueness \& ambiguities," arXiv: 1806.02674.
(3) F \& Zhang (2018), "Blind Ptychography by Douglas-Rachford Splitting," arXiv: 1809.00962
(9) F (2018): "Raster Grid Pathology and the Cure" arXiv: 1810.00852

Thank you!

