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Introduction and motivation: Phase retrieval vs. ptychography.
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Phase retrieval

@ Mask/probe 1 + propagation F + intensity measurement:

data = diffraction pattern = |F(f @ u)|?, F = Fourier transform.



Ptychography: extended objects

Hoppe (1969): electron microscopy.
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@ Inverse problem with windowed Fourier intensities.



Fourier ptychography

Zheng et al. (2013): Convolution in the Fourier domain.
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Fourier ptychography

Zheng et al. (2014)
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Mask /probe retrieval

Thibault et al. (08/09) - Lensless coherent diffractive imaging
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o Relative residual reduces (from 32% to 18%) after mask recovery

routine is turned on.
@ Simultaneous recovery of the mask and the object?



Maiden et al. 2017
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@ A randomly masked aperture of approximately the same size as the
true probe was used as an initial probe estimate and free-space was
used as the initial object estimate.

@ Overlap ratio 70 — 80%.



Twin image ambiguity: Chen & F (2017)

Fresnel mask  10(k) := exp {iﬂp\k|2/m}

No uniqueness for certain p even if the mask_.is known!
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Notation & set-up

e 7 all the shifts t € Z? involved in the measurement.

o 0 the initial mask; ut the t-shifted mask

o MO =72; M" the domain of ut.

o M = Uger Mt

o ft: the object restricted to M*

o Twin(f!): 180°-rotation of ft around the center of M"
o f = Vift C M and refer to each f* as a part of f.

The original object is broken up into a set of overlapping object parts,
each of which produces a coded diffraction pattern (coded by ut).
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Linear phase ambiguity

Consider the probe and object estimates
0 _ 0 co 0
v'(n) = p’(n)exp(—ia—iw-n), neM
g(n) = f(n)exp(ib+iw-n), nec7Z?
for any a,b € R and w € R?. For any t, we have the following calculation
v'(n) = 1O(n—t)

= p%(n —t)exp(—iw - (n — t)) exp(—ia)
— () exp(—iw - (n — 1)) exp(ia)

and hence forallne Mt tc T
vi(n)gt(n) = p'(n)f*(n)exp(i(b — a)) exp(iw - t)

implying g and 1° produce the same ptychographic data as f and u° since
for each t, v* © gt is a constant phase factor times ut © ft.
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Measurement scheme

e M" = nodes
@ Two nodes are s-connected if | Mt N MY N supp(f)| > s.
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Block phase

Theorem (F & Chen 2018)

Let the scheme be s-connected and each ft is a non-line object. Suppose
that some f* has a tight support in Mt and that i° # 0 has independently
distributed random phases over at least the range of length .

Suppose that 1° with

(MPC) a%[ﬁ(n)y,o(n)} >0, Vne MO,

and an arbitrary object g = U,g" produce the same ptychographic data as
f and ;0. Then with probability at least 1 — c°, ¢ < 1,

ntogt=e*tfort vieT,

where ¢ depends on the mask phase distribution.

0y = block phases depending on t but not n.



Object support constraint (OSC)

f* has a tight support in Mt M?" is the smallest rectangle containing f*.

OSC is a relaxation of the tight support condition.
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OSC counter-example

Let m = 2n/3 t=(m/2, 0) fO =10, 7] and £t = [f},0] with 0 = f.

leeWIse u [uo,ul] = [, 1]
Let 10 = 10 vt = 1t and g° = [g0,0],g* = [0, g ] where

g’(n) = FN—n)i°(N—-n)/p’(n), VneM°
gt(n) = fY(N+2t—n)g"(N+2t—n)/p(n), Vnec M

Hence g% ® 1 and gt ® it produce the same diffraction patterns as
fO® u0 and £ ® pt but

gO ® MO 7& ei@g fO o MO
gt ® Mt 7& ei@g ft ® Mt

even when the mask estimate is perfectly accurate.
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Mask phase constraint (MPC)

o Let 10 be a nonvanishing random mask with phase at each pixel
continuously and independently distributed according to a
nonvanishing probability density function p, on (—y7, 7] with a
constant v < 1.

@ Suppose our mask estimate is 0. Write the relative mask error as
a(n) explio(n)] = 1°(n)/u°(n), a(n) > 0.
o F. & Chen (2018): 10 satisfies MPC if
|p(n) — ¢o| < min{vy,1/2} mod 27,

for a constant ¢y, i.e. 1°(n) is pointing in the half plane in C with
the normal vector ;°(n) for all n.

Counter-examples exist!
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Raster scan

Raster scan: ty = 7(k, /), k,| € Z where 7 is the step size.
M =172, M® =72 n> m, with the periodic boundary condition.
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Block phase

Theorem (F 2018)

Let T = {tx} be a v-generated cyclic group of order q and M* the
ti-shifted mask domain. Suppose that

vk(n)gk(n) = &% X (n)fX(n), forallne M* andt, e T.

If

MK M A supp(F) N (supp(F) & v) # 0,  Vk

then {6o,01,...,0q—1} form an arithmetic progression.



Non-APA ambiguity

For g =3,7=m/2, let

foo  fio  fo0 foo 23y 3
f=1|f1 A1 fu|, &= |e?/3fy e*/3f, f1
foo f2 f2 /3y fi2 235,

be the object and its reconstruction, respectively, where f;;, g;; € Cr/3xn/3,
Let
Kl Kl kI —i27/3, ki
P [ R i | PRPNEL ST
b — —_ ) ) b b b
Hor  HM11 e~i2r/ por € ™/ H11

be the probe and its estimate, respectively, where ,uf}l, ij-’ e Cn/3%n/3,

It is verified straightforwardly that v¥ ® gi = e/(it)27/3 i & i
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Periodic ambiguity (raster grid pathology)

(7 = m/2) ty-shifted probes pX' and v¥ can be written as
Let
e = [a(n)exp(ig(n))], ¢! = [a7"(n)exp(~ip(n))] € CT7.
Consider the two objects
foo ... fq-10

f=| + i | e=[Tof
fog-1 ... fq-1,9-1

Two exit waves pK' @ f¥ and ¥ @ gk are identical. But the estimates are
far off.
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e Rank-one perturbation ty = 7(k,/) + (6, 0?).
e Full-rank perturbation ty = 7(k, /) + (0%, 0%)).
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Global uniqueness

Theorem

Suppose f does not vanish in 7Z2. Let aj’: = 251’-'+1'— 51’: — (5j+2 and let {5}k}
be the subset of perturbations satisfying ged) {|a} |} =1, i =1,2, and

T 2 max{la|+ 01— 9}
2r < m-— E?E{éj’-kﬁ —6;}, (> 50% overlap)
m—T1 >

1+ max max{|a; | + 041 — G-
Then APA and SF are the only ambiguities, i.e. for some explicit r

g(n)/f(n) = a *(0)exp(in-r),
VO(n)/i(n) = a(0)exp(id(0) — in - v)
O = 0Ooo+ty-r.



Theorem (F & Chen 2018)
If T satisfies the mixing property, then

g(n)/f(n) = a '(0)exp(in-r),
V(m)/ion) = a(0) exp(ié(0) — in 1)
0 = Og+t-r.



Alternating minimization

|F(u, f)] = b : the ptychographic data. Define Agh := F(ux, h),
Bkn = ]'-(77, fk+1). We have Akf;'+1 = Bj,uk.
O Initial guess us.

@ Update the object estimate  fi 1 = argmin L(A;g)
ge(Can

© Update the probe estimate  ju,41 = argmin £(B}v)

V€Cm><m
@ Terminate when || B} k41| — bl| is less than tolerance or stagnates. If
not, go back to step 2 with kK — k + 1.

Two non-convex log-likelihood functions:

Poisson: L(y) = Z \y[f]\z — bz[i] In |Y["]‘2

. 1
Gaussian: L(y) = E\Hy\—sz.

The Gaussian is non-differentiable and the hight SNR and near critical

limit of the Poisson.
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Initialization

e Mask/probe initialization

pa(n) = 1°(n) exp[ip(n)],

where ¢(n) i.i.d. uniform on (—7/2,7/2) =

%[m(n),ﬁ(n)} >0, Vne M,

Relative error of the mask estimate

1 [ 2
/ lei® — 1|2dp = 1/2(1 — =) ~ 0.8525
T _7r/2 Vs

@ Object initialization: f; = constant or random phase object.
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Douglas-Rachford splitting (DRS)

Each minimization can be cast into the form:

arg n?cln L(ALg) = arg min K(u)+ L(u)
E nxn

where
= Indicator function of {Ajx:x € C™"}.
DRS is defined by the following iteration for / =1,2,3---

y"t = prox ,(u);

1 = proxg,(2y 1 — u)

AR AR NS

zZ
u

where
prox /(1) = AL(AR)Tu

proxg,,(u) = argmin L(x) + ng —ul)?.
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Fixed point algorithm with Gaussian log-likelihood

e p=1
@ Reflectors: Ry = 2P, — 1,5, =2Q — I.
o Gaussian:
41 1 | 1b L R |
u = EukJrE @sgn( kUk)
1 1
v,i+1 = 3 ,i—&—ib@sgn(skv,i).
@ Poisson:
1 1
utt = Syl - SRl +f Riul |2 + 24b2 ® sgn( Reu,
Uy Uk~ 3 k k k
1 1
vt o= Evk 35k k—i—f\/\Skvk\2+24b2@sgn(Skvk>
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Fixed-point analysis

Proposition

Let p > 1. Let (u,v) be a linearly stable fixed point. Then fs, := Alou and
foo = Bl.v are a solution to blind ptychography, i.e. |F(tioo, foo)| = b.

Proposition

Let (u,v) be the true solution. Then ||Ja(n)|l2 < [nll2, [[I8(&)]l2 < |I€]]2
for all n,& € CN and the equality holds in the direction +1b/||b|| (and
possibly elsewhere on the unit sphere).



Test objects and error metric

29 /39



correlation length ¢ = 0,0.4m,0.7m,1m
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Scanning schemes

e Rank-one perturbation tg = 30(k, /) + (0}, 6?) where &} and 62
are randomly selected integers in [—4,4].

o Full-rank perturbation tx = 30(k, /) + (6},,62,) where 6%, and 62,
are randomly selected integers in [—4, 4] .

@ The adjacent probes overlap by roughly 50%.

@ Boundary conditions:

Periodic BC ﬁ
Dark-field (enforced or not) :
Bright-field (enforced or not)
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Dark-field vs. periodic BC

Figure: (Left) Reconstructed moduli with dark-field BC & 30 inner iterations;
(right) Reconstructed phase error with periodic BC & 80 inner iterations
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Experiment: Rank-one vs. full-rank

—/\—Rank-one Poisson
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--@)- Full-Rank Gaussian
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Experiment: Independent vs. correlated mask
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Noise robustness
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Boundary conditions
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(a) CiB with PPC(0, 0, 0.5) (b) RPP with PPC(0, 0, 0.4)

Full-rank scheme
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Boundary conditions
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(c) CiB with PPC(0, 0, 0.5) (d) RPP with PPC(0, 0, 0.4)

Rank-1 scheme
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Conclusion

© Theory: blind ptychography can recover simultaneously the object

and the probe/mask up to an affine phase factor and a constant
amplitude offset.

— Mixing schemes

— Raster scan pathology
@ Algorithm: MPC Initialization + AMDRS (Convergence proof?)
© Position uncertainty ?

o000

o000
o000
GO0
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