Fixed Point Algorithms for Phase Retrieval

Albert Fannjiang, UC Davis

Collaborators: Pengwen Chen (NCHU), Gi-Ren Liu (NTHU)

Stanford, Feb 3, 2016

Outline

- Coded diffraction patterns: one or two patterns
- Fixed point algorithms
- Alternating projections, Douglas-Rachford etc.
- Fixed point: uniqueness
- Convergence: local vs. global
- Simulations

Coherent X-ray diffraction

Chapman et al. 2011

Diffract before destruct

Neutze et al. 2000

Diffraction pattern

Let $x_{0}(\mathbf{n})$ be a discrete object function with $\mathbf{n}=\left(n_{1}, n_{2}, \cdots, n_{d}\right) \in \mathbb{Z}^{d}$. We assume $d \geq 2$. $\mathcal{M}=\left\{0 \leq m_{1} \leq M_{1}, 0 \leq m_{2} \leq M_{2}, \cdots, 0 \leq m_{d} \leq M_{d}\right\}$

Diffraction pattern

$$
\begin{gathered}
\left|\sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}) e^{-\mathrm{i} 2 \pi \mathbf{m} \cdot \boldsymbol{\omega}}\right|^{2}=\sum_{\mathbf{n}=-\mathbf{M}}^{\mathbf{M}} \sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}+\mathbf{n}) \overline{x_{0}(\mathbf{m})} e^{-i 2 \pi \mathbf{n} \cdot \mathbf{w}} \\
\mathbf{w}=\left(w_{1}, \cdots, w_{d}\right) \in[0,1]^{d}, \quad \mathbf{M}=\left(M_{1}, \cdots, M_{d}\right)
\end{gathered}
$$

Autocorrelation

$$
\begin{gathered}
R(\mathbf{n})=\sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}+\mathbf{n}) \overline{x_{0}(\mathbf{m})} . \\
\widetilde{\mathcal{M}}=\left\{\left(m_{1}, \cdots, m_{d}\right) \in \mathbb{Z}^{d}:-M_{1} \leq m_{1} \leq M_{1}, \cdots,-M_{d} \leq m_{d} \leq M_{d}\right\} \\
\text { Oversampling ratio }=2^{\wedge} \mathrm{d}
\end{gathered}
$$

Phase information

$$
\begin{array}{cc}
x_{L}=\text { Lena } & x_{B}=\text { Barbara } \\
y_{L}(\mathbf{w})=\left|y_{L}(\mathbf{w})\right| e^{\mathrm{i} \theta_{L}(\mathbf{w})} & y_{B}(\mathbf{w})=\left|y_{B}(\mathbf{w})\right| e^{\mathrm{i} \theta_{B}(\mathbf{w})} \\
y_{1}(\mathbf{w})=\left|y_{B}(\mathbf{w})\right| e^{\mathrm{i} \theta_{L}(\mathbf{w})} & y_{2}(\mathbf{w})=\left|y_{L}(\mathbf{w})\right| e^{\mathrm{i} \theta_{B}(\mathbf{w})} \\
x_{1}=\left|\Phi^{*} y_{1}\right| & x_{2}=\left|\Phi^{*} y_{2}\right|
\end{array}
$$

Phase= Face

$$
\begin{gathered}
y_{1}(\mathbf{w})=\left|y_{B}(\mathbf{w})\right| e^{\mathrm{i} \theta_{L}(\mathbf{w})} \\
x_{1}=\left|\mathbf{\Phi}^{*} y_{1}\right|
\end{gathered}
$$

$$
\begin{gathered}
y_{2}(\mathbf{w})=\left|y_{L}(\mathbf{w})\right| e^{\mathrm{i} \theta_{B}(\mathbf{w})} \\
x_{2}=\left|\mathbf{\Phi}^{*} y_{2}\right|
\end{gathered}
$$

Coded diffraction patterns

Mask function $\quad\{\mu(\mathbf{n})\}$

Masked object
 $\tilde{x}_{0}(\mathbf{n})=x_{0}(\mathbf{n}) \mu(\mathbf{n})$

Phase mask $\quad e^{i \phi(\mathbf{n})}$
(1-mask) $\quad A^{*}=c \Phi \operatorname{diag}\{\mu\}$
(2-mask case) $\quad A^{*}=c\left[\begin{array}{ll}\Phi & \operatorname{diag}\left\{\mu_{1}\right\} \\ \Phi & \operatorname{diag}\left\{\mu_{2}\right\}\end{array}\right]$
With proper normalization, A^{*} is isometric.

Asymptotic: Chai-Moscoso-Papanicolaou 2011 (large aperture, no mask)
Uniqueness: F. 2012 (1 or 2 oversampled patterns)
Candes-Li-Soltanolkotabi 2015 (many patterns)

Notation

We convert the d-dimensional $(d \geq 2)$ grid into an ordered set of index and let $n=|\mathcal{M}|$. Let N denote the total number of measured data and hence $A \in \mathbb{C}^{n, N}$.

$\mathrm{d}=2 \quad$ One-pattern $\mathrm{N}=4 \mathrm{n} \quad$ Two-pattern $\mathrm{N}=8 \mathrm{n}$

$$
\mathbb{C}^{n}=\mathbb{R}^{n} \oplus_{\mathbb{R}} i \mathbb{R}^{n} \text { is isomorphic to } \mathbb{R}^{2 n} \text { via the map }
$$

$$
G(v):=\left[\begin{array}{c}
\Re(v) \\
\Im(v)
\end{array}\right], \quad \forall v \in \mathbb{C}^{n}
$$

real inner product

Phase retrieval

$$
b=\left|A^{*} x\right|, \quad x \in \mathcal{X}
$$

One-mask case $\quad \mathcal{X}=\mathbb{R}^{n}$ or \mathbb{R}_{+}^{n}
Two-mask case $\quad \mathcal{X}=\mathbb{C}^{n}$

$$
\begin{array}{r}
\text { Find } \quad \hat{y} \in A^{*} \mathcal{X} \cap \mathcal{Y}, \\
\mathcal{Y}:=\left\{y \in \mathbb{C}^{N}:|y|=b\right\}
\end{array}
$$

$$
\hat{x}=\left(A^{*}\right)^{\dagger} \hat{y}
$$

Fixed point algorithms

von Neuman 1933

Cheney-Goldstein 1959
Bergman 1965

Non convex: local convergence?

Alternating projection

Let P_{1} be the projection onto $A^{*} \mathcal{X}$ and P_{2} the projection onto \mathcal{Y}.

$$
P_{1} P_{2} y
$$

initial guess $y^{(1)}=A^{*} x^{(1)}, x^{(1)} \in \mathcal{X}$

Non-convex optimization

$$
\begin{aligned}
& f(x, u)=\frac{1}{2}\left\|A^{*} x-u \odot b\right\|^{2} \\
& f\left(x^{(k)}, u^{(k)}\right)=\min _{u \in U} f\left(x^{(k)}, u\right), \\
& f\left(x^{(k+1)}, u^{(k)}\right)=\min _{x \in \mathcal{X}} f\left(x, u^{(k)}\right)
\end{aligned}
$$

Parallel AP (PAP)

$$
\begin{gathered}
x^{(k+1)}=\mathcal{F}\left(x^{(k)}\right) \\
\mathcal{F}(x)=\left[\left(A^{*}\right)^{\dagger}\left(b \odot \frac{A^{*} x}{\left|A^{*} x\right|}\right)\right]_{\mathcal{X}} \quad\left(A^{*}\right)^{\dagger}=\left(A A^{*}\right)^{-1} A \\
\text { (2-mask case) } \quad A^{*}=c\left[\begin{array}{cc}
\Phi & \operatorname{diag}\left\{\mu_{1}\right\} \\
\Phi & \operatorname{diag}\left\{\mu_{2}\right\}
\end{array}\right]
\end{gathered}
$$

Fact every limit point of $\left\{x^{(k)}\right\}$ is a fixed point of the map \mathcal{F}

Proposition A fixed point preserves the total signal strength, iff it is the true solution up to a global phase.

$$
\left\|A^{*} x_{*}\right\|=\|b\| \quad \text { iff } \quad x_{*}=\alpha x_{0} \text { with }|\alpha|=1
$$

Serial AP (SAP)

Find $\quad \hat{y} \in \cap_{l=1}^{2}\left(A_{l}^{*} \mathcal{X} \cap \mathcal{Y}_{l}\right), \quad \mathcal{Y}_{l}:=\left\{y_{l} \in \mathbb{C}^{N / 2}:\left|y_{l}\right|=b_{l}\right\}$
$\mathbf{S A P} \quad \mathcal{F}_{2} \mathcal{F}_{1}(x)$

$$
\mathcal{F}_{l}(x)=A_{l}\left(b_{l} \odot \frac{A_{l}^{*} x}{\left|A_{l}^{*} x\right|}\right), \quad l=1,2,
$$

PAP $\quad \mathcal{F}(x)=A\left(b \odot \frac{A^{*} x}{\left|A^{*} x\right|}\right)=\frac{1}{2}\left(\mathcal{F}_{1}(x)+\mathcal{F}_{2}(x)\right)$

Gradient representation

$$
B:=A \operatorname{diag}\left\{\frac{A^{*} x_{0}}{\left|A^{*} x_{0}\right|}\right\} \quad \mathcal{B}:=\left[\begin{array}{c}
\Re[B] \\
\Im[B]
\end{array}\right] \in \mathbb{R}^{2 n, N}
$$

$$
G(-i d \mathcal{F} \xi)=\mathcal{B B}^{\top} G(-i \xi), \quad \forall \xi \in \mathbb{C}^{n}
$$

Isomorphism $\quad G(-i v):=\left[\begin{array}{c}\Im(v) \\ -\Re(v)\end{array}\right], \quad \forall v \in \mathbb{C}^{n}$

Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{2 n} \geq \lambda_{2 n+1}=\cdots=\lambda_{N}=0$ be the singular values of \mathcal{B} with the corresponding right singular vectors $\left\{\eta_{k} \in \mathbb{R}^{N}\right\}_{k=1}^{N}$ and left singular vectors $\left\{\xi_{k} \in \mathbb{R}^{2 n}\right\}_{k=1}^{2 n}$.

Proposition

We have $\xi_{1}=G\left(x_{0}\right), \xi_{2 n}=G\left(-i x_{0}\right), \lambda_{1}=1, \lambda_{2 n}=0$ and $\eta_{1}=\left|A^{*} x_{0}\right|$.

$$
u^{(k)}:=-i\left(\alpha^{(k)} x^{(k)}-x_{0}\right) \quad \xi_{1} \perp G\left(u^{(k)}\right), \quad \forall k
$$

Spectral gap (two patterns)

$$
\begin{aligned}
\lambda_{2} & =\max \left\{\left\|\Im\left[B^{*} u\right]\right\|: u \in \mathbb{C}^{n}, i u \perp x_{0},\|u\|=1\right\} \\
& =\max \left\{\left\|\mathcal{B}^{\top} u\right\|: u \in \mathbb{R}^{2 n}, u \perp \xi_{1},\|u\|=1\right\} .
\end{aligned}
$$

Proposition

Suppose $x_{0} \in \mathbb{C}^{n}$ is rank-2. Then $\lambda_{2}<1$ with probability one.

Uniqueness theorem for magnitude retrieval If

$$
\measuredangle A^{*} \widehat{x}= \pm \measuredangle A^{*} x_{0}
$$

where the \pm sign may be pixel-dependent, then almost surely $\widehat{x}=c x_{0}$ for some constant $c \in \mathbb{R}$.

One random mask suffices !

Local convergence (PAP)

Theorem (PAP)

For any given $0<\varepsilon<1-\lambda_{2}^{2}$, if $x^{(1)}$ is sufficiently close to x_{0} then with probability one the PAP iterates $x^{(k)}$ converges to x_{0} geometrically after global phase adjustment, i.e.

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\lambda_{2}^{2}+\varepsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|, \quad \forall k
$$

where $\alpha^{(k)}:=\arg \min _{\alpha}\left\{\left\|\alpha x^{(k)}-x_{0}\right\|:|\alpha|=1\right\}$.

Local convergence (SAP)

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\|\mathcal{D}\|_{\perp}+\epsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|
$$

Convergence rate $\quad\|\mathcal{D}\|_{\perp} \leq\left(\lambda_{2}^{(2)} \lambda_{2}^{(1)}\right)^{2}$.

$$
\lambda_{2}^{(l)}=\max \left\{\left\|\Im\left[B_{l}^{*} u\right]\right\|: u \in \mathbb{C}^{n}, i u \perp x_{0},\|u\|=1\right\}, \quad l=1,2
$$

Local convergence (one pattern)

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\tilde{\lambda}_{2}^{2}+\epsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|, \quad \forall k
$$

Convergence rate $\quad \tilde{\lambda}_{2} \leq \lambda_{2}$
$\tilde{\lambda}_{2}:=\max \left\{\left\|\Im\left(B^{*}\right) u\right\|: u \in \mathbb{R}^{n},\left\langle u, x_{0}\right\rangle=0,\|u\|=1\right\}$

Convergence rate

(a) One-pattern PAP: $\tilde{\lambda}_{2}^{2}=0.9084$

(b) SAP $\|\mathcal{D}\|_{\perp}=0.7946 ;$ PAP $\lambda_{2}^{2}=0.9086$

$$
\mathrm{RE}=\min _{\theta \in[0,2 \pi)}\left\|x_{0}-e^{i \theta} x\right\| /\left\|x_{0}\right\|
$$

Initial guess

$$
\begin{aligned}
& \quad A^{*}=\left[a_{j}^{*}\right] \\
& a_{j}^{*} x_{0}=0 \quad \longrightarrow b_{j}=\left|a_{j}^{*} x_{0}\right|=a_{j}^{*} x_{0} .
\end{aligned}
$$

If there are sufficiently many data that are small, then the unique null vector of the row sub-matrix may be a good bet.

$$
x_{\text {null }}:=\arg \min \left\{\sum_{i \in I}\left\|a_{i}^{*} x\right\|^{2}: x \in \mathcal{X},\|x\|=\left\|x_{0}\right\|\right\}
$$

$x_{\text {dual }}:=\arg \max \left\{\left\|A_{I_{c}}^{*} x\right\|^{2}: x \in \mathcal{X},\|x\|=\left\|x_{0}\right\|\right\}$
Isometry $\quad\left\|A_{I}^{*} x\right\|^{2}+\left\|A_{I_{c}}^{*} x\right\|^{2}=\|x\|^{2}$

$$
x_{\text {null }}=x_{\text {dual }} \quad \text { power method }
$$

Null vector method

Theorem

Let $A \in \mathbb{C}^{n \times N}$ be an i.i.d. complex Gaussian matrix. Let $\kappa<1$ be a fixed constant. Suppose

$$
\sigma=\frac{|I|}{N} \leq \kappa<1, \quad \nu=\frac{n}{|I|}<1
$$

Then for any $\varepsilon \in(0,1), \delta>0$ and $t \in\left(0, \nu^{-1 / 2}-1\right)$ the following error bound

$$
\begin{aligned}
\left\|x_{0} x_{0}^{*}-x_{\text {null }} x_{\text {null }}^{*}\right\|^{2} \leq & \left(\left(2+\frac{t}{1-\epsilon}\right) \sigma+\varepsilon(-2 \ln (1-\sigma)+\delta)\right) \\
& (1-(1+t) \sqrt{\nu})^{-2}
\end{aligned}
$$

holds with probability at least

$$
\begin{aligned}
& 1-2 \exp \left(-c \min \left(N t^{2} / K^{2}, N t / K\right)\right)-4 \exp \left(-n t^{2} / 2\right) \\
& -2 \exp \left(-N \delta^{2} e^{-\delta}|1-\sigma|^{2} / 2\right)-2 \exp \left(-4 \varepsilon^{2}|1-\sigma|^{2} \sigma^{2} N\right)
\end{aligned}
$$

where c is an absolute constant and $K \leq-4 \ln (1-\kappa) / \kappa$.
Scaling
ϵ and t fixed,

$$
n \gg 1, \quad \frac{n}{|I|}<1, \quad \frac{|I|}{N} \ll 1, \quad \frac{|I|^{2}}{N} \gg 1
$$

Let $\mathbf{1}_{c}$ be the characteristic function of the complementary index I_{c} with $\left|I_{c}\right|=\gamma N$.

```
Algorithm 1: The null vector method
    Random initialization: \(x_{1}=x_{\text {rand }}\)
    Loop:
    for \(k=1: k_{\text {max }}-1\) do
    \begin{tabular}{l|l}
\(\mathbf{4}\) & \(x_{k}^{\prime} \leftarrow A\left(\mathbf{1}_{c} \odot A^{*} x_{k}\right) ;\) \\
\(x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}^{\prime}\)
\end{tabular}
    6 end
    Output: \(x_{\text {null }}=x_{k_{\max }}\).
```

```
Algorithm 2: The spectral vector method
    1 Random initialization: \(x_{1}=x_{\text {rand }}\)
    2 Loop:
    3 for \(k=1: k_{\text {max }}-1\) do
    \begin{tabular}{l|l}
\(\mathbf{4}\) & \(\frac{x_{k}^{\prime} \leftarrow A\left(|b|^{2} \odot A^{*} x_{k}\right) ;}{x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}^{\prime}}\)
\end{tabular}
    6 end
7 Output: \(x_{\text {spec }}=x_{k_{\max }}\).
7 Output: \(x_{\text {spec }}=x_{k_{\text {max }}}\).
```


Truncated spectral vector

$$
x_{\mathrm{t} \text { tspec }}=\arg \max _{\|x\|=1} \frac{\left\|A\left(\mathbf{1}_{\tau} \odot|b|^{2} \odot A^{*} x\right)\right\|}{\left\{i:\left|A^{*} x(i)\right| \leq \tau\|b\|\right\}}
$$

Candes-Chen 2015

(b) $\left|x_{\text {null }}\right|(\gamma=0.5)$

(b) $\left|\operatorname{Re}\left(x_{\text {null }}\right)\right|(\gamma=0.5)$
(a) $\left|\operatorname{Re}\left(x_{\text {t-spec }}\right)\right|\left(\tau^{2}=5\right)$
(d) $\left|\operatorname{Im}\left(x_{\text {t-spec }}\right)\right|\left(\tau^{2}=5\right)$
(a) $\left|x_{t-\text { spec }}\right|\left(\tau^{2}=5\right)$

(e) $\left|\operatorname{Im}\left(x_{\text {null }}\right)\right|(\gamma=0.5)$

(c) $\left|x_{\text {null }}\right|(\gamma=0.6)$

(c) $\left|\operatorname{Re}\left(x_{\text {null }}\right)\right|(\gamma=0.63)$

(f) $\left|\operatorname{Im}\left(x_{\text {null }}\right)\right|(\gamma=0.63)$

One-pattern

WF (Wirtinger Flow): Candes-Li-Soltanolkotabi 2015 WF run with an optimized constant step size.

PAP vs SAP

Two-pattern

Fourier Douglas-Rachford

$$
R_{1}=2 P_{1}-I \quad R_{2}=2 P_{2}-I
$$

Averaged Alternating Reflection

$$
\begin{aligned}
y^{(k+1)} & :=\frac{1}{2}\left(I+R_{1} R_{2}\right) y^{(k)} \\
& =y^{(k)}+P_{1}\left(2 P_{2}-I\right) y^{(k)}-P_{2} y^{(k)}, \quad k=1,2,3 \cdots
\end{aligned}
$$

$$
S_{\mathrm{f}}(y)=y+A^{*}\left[A\left(2 b \odot \frac{y}{|y|}-y\right)\right]_{\mathcal{X}}-b \odot \frac{y}{|y|}
$$

Gradient $\quad J_{\mathrm{f}} v=\left(I-B^{*} B\right) \Re(v)+i B^{*} B \Im(v)$
J_{f} is a real, but not complex, linear map

Convergence to unique fixed point

$$
S_{\mathrm{f}}\left(y_{\infty}\right)=y_{\infty}, \quad x_{\infty}=A y_{\infty}
$$

$$
\begin{gathered}
y_{\infty}=e^{i \theta}\left(\left|y_{0}\right|+v\right) \odot \frac{y_{0}}{\left|y_{0}\right|} \\
\left|y_{0}\right|+v \text { has all nonnegative components } \\
v \in \operatorname{null}_{\mathbb{R}}(\mathcal{B}) \subset \mathbb{R}^{N}
\end{gathered}
$$

Theorem (two-pattern)
Almost surely $\hat{x}=x_{\infty}=e^{i \theta} x_{0}$ for some constant $\theta \in \mathbb{R}$.

Local convergence

Theorem (two-pattern)

For any given $0<\varepsilon<1-\lambda_{2}$, if $x^{(1)}$ is sufficiently close to x_{0} then with probability one $x^{(k)}$ converges to x_{0} geometrically after global phase adjustment, i.e.

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\lambda_{2}+\varepsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|, \quad \forall k
$$

where $\alpha^{(k)}:=\arg \min _{\alpha}\left\{\left\|\alpha x^{(k)}-x_{0}\right\|:|\alpha|=1\right\}$.

TCB

(a) TCB

(b) RPP

Figure 7. Relative error versus iteration with 3 patterns (a)-(d) and 4 patterns (e)-(h) (without oversampling in each pattern).

Relative Error vs. Noise-to-Signal Ratio

(a) RPP

(b) TCB

$$
\mathrm{NSR}=\frac{\|\epsilon\|}{\left\|A^{*} x_{0}\right\|} .
$$

Conclusions

- Alternating Projections (PAP/SAP) of the Null Vector
- Fourier Domain Douglas-Rachford (FDR)
- Performance guarantee: Local convergence, global convergence of the null vector method, uniqueness of fixed point.
- Global convergence for FDR?
- Noise stability
- Single molecule imaging: extremely noisy measurements.

