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• Coded diffraction patterns: one or two patterns 

• Fixed point algorithms 

• Alternating projections, Douglas-Rachford etc. 

• Fixed point: uniqueness 

• Convergence: local vs. global 

• Simulations
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photon energy of the X-ray pulses was 1.8 keV (6.9-Å wavelength), with
more than 1012 photons per pulse at the sample and pulse durations of
10, 70, and 200 fs (ref. 13). An X-ray fluence of 900 J cm22 was achieved
by focusing the FEL beam to a full-width at half-maximum of 7mm,
corresponding to a sample dose of up to 700 MGy per pulse (calculated

using the program RADDOSE14) and a peak power density in excess of
1016 W cm22 at 70-fs duration. In contrast, the typical tolerable dose in
conventional X-ray experiments is only about 30 MGy (ref. 1). A single
LCLS X-ray pulse destroys any solid material placed in this focus, but
the stream replenishes the vaporized sample before the next pulse.

The front detector module, located close to the interaction region,
recorded high-angle diffraction to a resolution of 8.5 Å, whereas the
rear module intersected diffraction at resolutions in the range of 4,000
to 100 Å. We observed diffraction from crystals smaller than ten unit
cells on a side, as determined by examining the data recorded on the
rear pnCCDs (Fig. 2). A crystal with a side length of N unit cells gives
rise to diffraction features that are finer by a factor of 1/N than the
Bragg spacing (that is, with N 2 2 fringes between neighbouring Bragg
peaks), providing a simple way to determine the projected size of the
nanocrystal. Images of crystal shapes obtained using an iterative phase
retrieval method15,16 are shown in Fig. 2. The 3D Fourier transform of
the crystal shape is repeated on every reciprocal lattice point. However,
the diffraction condition for lattice points is usually not exactly satisfied,
so each recorded Bragg spot represents a particular ‘slice’ of the Ewald
sphere through the shape transform, giving a variety of Bragg spot
profiles in a pattern; these are apparent in Fig. 2. The sum of counts
in each Bragg spot underestimates the underlying structure factor
square modulus, representing a partial reflection.

Figure 3a shows strong single-crystal diffraction to the highest
angles of the front detector. The nanocrystal shape transform is also
apparent in many patterns at the high angles detected by the front
detector, giving significant measured intensities between Bragg peaks
as is noticeable in Supplementary Fig. 3a. These mid-Bragg intensities
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Figure 2 | Coherent crystal diffraction. Low-angle diffraction patterns
recorded on the rear pnCCDs, revealing coherent diffraction from the structure
of the photosystem I nanocrystals, shown using a logarithmic, false-colour
scale. The Miller indices of the peaks in a were identified from the

corresponding high-angle pattern. In c we count seven fringes in the b*
direction, corresponding to nine unit cells, or 250 nm. Insets, real-space images
of the nanocrystal, determined by phase retrieval (using the Shrinkwrap
algorithm15) of the circled coherent Bragg shape transform.
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Figure 1 | Femtosecond nanocrystallography. Nanocrystals flow in their
buffer solution in a gas-focused, 4-mm-diameter jet at a velocity of 10 m s21

perpendicular to the pulsed X-ray FEL beam that is focused on the jet. Inset,
environmental scanning electron micrograph of the nozzle, flowing jet and
focusing gas30. Two pairs of high-frame-rate pnCCD detectors12 record low-
and high-angle diffraction from single X-ray FEL pulses, at the FEL repetition
rate of 30 Hz. Crystals arrive at random times and orientations in the beam, and
the probability of hitting one is proportional to the crystal concentration.
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Diffraction pattern

2From ŷ the object is estimated via pseudo-inverse

x̂ = (A⇤)†ŷ.(1.2)

Let P
1

be the projection onto A⇤X and P
2

the projection onto Y. Then AP is simply the iteration
of the composite map

P
1

P
2

y(1.3)

starting with an initial guess y(1) = A⇤x(1), x(1) 2 X .
The main di↵erence between AP in the classical setting [21, 35, 46] and the current setting is

the non-convexity of the set Y, rendering the convergence issue of the latter much more di�cult to
settle. Indeed, unlike in the standard convex setting, AP for phase retrieval is well known to have
stagnation problems, resulting in practically non-convergent behaviors in reconstruction [30, 31, 39].

In our view, the stagnation problems have a more basic root than non-convexity: the existence
of multiple solutions when only one di↵raction pattern is measured even if additional positivity
constraint is imposed on the object. However, if the di↵raction pattern is measured with a random
mask (a coded di↵raction pattern), then the uniqueness of solution under the positivity constraint
is restored with probability one [27]. In addition, if two independently coded di↵raction patterns
are measured, then the uniqueness of solution holds almost surely without any additional prior
constraint [27].

The goal of the present work is two-fold: i) to prove the local convergence of AP in the unique-
ness framework of [27] (Theorems 3.6, 3.10 and 4.2); ii) to propose a novel method of initialization,
the null vector method, that compensates for the local nature of convergence and renders global
convergence plausible in practice. In addition, we characterize an asymptotic regime for the case
of Gaussian random matrix in which the null vector method alone produces an initialization of
arbitrary accuracy as the sample size increases (Theorem 5.1). Together, AP and the null vector
method produces globally convergent iterates to the true object in practice.

1.1. Set-up. Let us describe our sampling schemes based on [27, 28, 29].
Let x
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whose cardinality is roughly 2d times that of M. Hence by sampling the di↵raction pattern on the
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we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].

A coded di↵raction pattern is measured with a mask whose e↵ect is multiplicative and results
in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
the mask is transparent).

We assume |µ(n)| = 1, 8n which gives rise to a phase mask and an isometric propagation matrix

(1-mask ) A⇤ = c� diag{µ},(1.4)

i.e. AA⇤ = I (with a proper choice of the normalizing constant c), where � is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically � 2 C| ˜M|,|M| is the sub-column matrix
of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

When two phase masks µ
1

, µ
2

are deployed, the propagation matrix A⇤ is the stacked coded
DFTs, i.e.

(2-mask case) A⇤ = c



� diag{µ
1

}
� diag{µ

2

}

�

.(1.5)

With proper normalization, A⇤ is isometric.
We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let

N denote the total number of measured data and hence A 2 Cn,N .
Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

2From ŷ the object is estimated via pseudo-inverse

x̂ = (A⇤)†ŷ.(1.2)
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is restored with probability one [27]. In addition, if two independently coded di↵raction patterns
are measured, then the uniqueness of solution holds almost surely without any additional prior
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Coded diffraction patterns
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Figure 1. Conceptual layout of coherent lensless imaging with a fine-grained mask
(a) before (for random illumination) or (b) behind (for wavefront sensing) the object.
The equivalence of the two imaging geometries provides additional flexibility in
implementation.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Mask e�ect is multiplicative and described as

f̃(n) = f(n)µ(n)

where {µ(n)} is an array of random variables. The mask can be placed before (Fig. 1(a)) or behind
(Fig. 1(b)) the object, giving rise to two equivalent imaging geometries and providing additional
flexibility in implementation. By placing a mask at a distance from the object, one can create
an illuminating (mask before object) or di�racted (mask behind object) field modulated in both
amplitude and phase in a way dependent on the distance [111].

For clarity of subsequent discussion, however, we will focus on the random illumination setup
of Fig. 1 (a) unless we specifically discuss wavefront sensing.

In this proposal, we will mainly concern with the e�ect of random phases {�(n)} in the mask

µ(n) = |µ|(n)ei�(n)
3
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(Fig. 1(b)) the object, giving rise to two equivalent imaging geometries and providing additional
flexibility in implementation. By placing a mask at a distance from the object, one can create
an illuminating (mask before object) or di�racted (mask behind object) field modulated in both
amplitude and phase in a way dependent on the distance [111].

For clarity of subsequent discussion, however, we will focus on the random illumination setup
of Fig. 1 (a) unless we specifically discuss wavefront sensing.

In this proposal, we will mainly concern with the e�ect of random phases {�(n)} in the mask

µ(n) = |µ|(n)ei�(n)
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When the illumination field is only partially coherent and described by a mutual optical intensity
J , the di�raction pattern takes the form |F (ei2⇥!)|2 =

�
n J(n)Cf (n)e�i2⇥n·! where J is typically

a Gaussian function [101]. The presence of a mutual optical intensity does not a�ect the issue of
uniqueness of solution but can make the problem more susceptible to noise, especially when J is
narrowly concentrated, corresponding to highly incoherent illumination.

With the standard oversampling the phase problem amounts to recovering the object from its
autocorrelation. However, the autocorrelation function Cf does not uniquely determine the object
f .

First there are global, obvious ambiguities that yield the same di�raction pattern: global phase
(f(·) �⇥ ei�f(·)), spatial shift (f(·) �⇥ f(· + n)) and conjugate inversion (twin image: f(·) �⇥
f((N1, N2)� ·)) which are called the trivial associates. Then there are hidden, nontrivial ambi-
guities which involve conjugate inversion of some, but not all, of nontrivial (i.e. non-monomial in
z and z�1) irreducible factors of the z-transform F (z), the analytic continuation of the Fourier
transform defined on the unit torus to all z = (z1, z2) ⇤ C2. The twin image is the special case
where all factors undergo the conjugate inversion.

From the works of Bruck, Sodin [9], Bates [1, 2] and Hayes [64, 65] we know that the nontrivial
ambiguities are rare (“almost all” polynomials of two or more variables have no nontrivial factors)
but the trivial ones are inevitable. From Fienup’s pioneering works [54–58] we also learn that the
object can be recovered reasonably well by enforcing positivity and/or a “good” support (e.g. tight
support) constraint. The numerical problems (stagnation, erroneous reconstruction etc) due to
lack of a good support constraint are often attributed to the existence of many local minima due
to non-convexity of the Fourier intensity constraint.

Since a good support constraint may be unavailable, this project seeks an alternative approach.
We intend to work exclusively with the object value constraint such as positivity or the sector
condition which constrains the phases of {f(n)} to a proper sub-interval (called sector) of (��,�]
(see extension in Section 5). For example, in the X-ray spectrum most object transmission functions
have positive real and imaginary parts [75] and hence satisfy the �/2-sector constraint (the first
quadrant of the complex plane).

To fully utilize the object value constraint we introduce a random mask in the Fourier intensity
measurement (see Fig. 1).
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Mask e�ect is multiplicative and a masked measurement produces the di�raction pattern of a
masked object of the form

g(n) = f(n)µ(n)
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we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].

A coded di↵raction pattern is measured with a mask whose e↵ect is multiplicative and results
in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
the mask is transparent).

We assume |µ(n)| = 1, 8n which gives rise to a phase mask and an isometric propagation matrix

(1-mask ) A⇤ = c� diag{µ},(1.4)

i.e. AA⇤ = I (with a proper choice of the normalizing constant c), where � is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically � 2 C| ˜M|,|M| is the sub-column matrix
of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

When two phase masks µ
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, µ
2

are deployed, the propagation matrix A⇤ is the stacked coded
DFTs, i.e.

(2-mask case) A⇤ = c
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}
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}
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.(1.5)

With proper normalization, A⇤ is isometric.

We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let
N denote the total number of measured data and hence A 2 Cn,N .

Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

2) Two-pattern case: A⇤ is given by (1.5), X = Cn (i.e. [x]X = x).

For the two-pattern case, AP for the formulation (1.1) shall be called the parallel AP (PAP)
as the rows of A⇤ and the di↵raction data are treated equally and simultaneously, in contrast to
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1

}
� diag{µ

2

}

�

.(1.5)

With proper normalization, A⇤ is isometric.
We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let

N denote the total number of measured data and hence A 2 Cn,N .
Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

Uniqueness: F. 2012 (1 or 2 oversampled patterns) 
                                    Candes-Li-Soltanolkotabi 2015 (many patterns)

Asymptotic: Chai-Moscoso-Papanicolaou 2011 (large aperture, no mask)
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� y 2 CN

x 2 Cn

������

X

m2M
x0(m)e�i2⇡m·!

������

2

For any given 0 < " < 1� �2, if x

(1)
is su�ciently close to x0

then with probability one x

(k)
converges to x0 geometrically

after global phase adjustment, i.e.

k↵(k+1)
x

(k+1) � x0k  (�2 + ")k↵(k)
x

(k) � x0k, 8k

where ↵

(k) := argmin
↵

{k↵x(k) � x0k : |↵| = 1}.

1

� y 2 CN
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������

X

m2M
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2

For any given 0 < " < 1� �2, if x

(1)
is su�ciently close to x0

then with probability one x

(k)
converges to x0 geometrically

after global phase adjustment, i.e.

k↵(k+1)
x

(k+1) � x0k  (�2 + ")k↵(k)
x

(k) � x0k, 8k

where ↵

(k) := argmin
↵

{k↵x(k) � x0k : |↵| = 1}.

1

where c is an absolute constant and K  �4 ln(1� )/.

A

⇤ = [a⇤
j

]

a

⇤
j

x0 = 0 =) b

j

= |a⇤
j

x0| = a

⇤
j

x0.

If there are su�ciently many rows with

Let �1 � �2 � . . . � �2n � �2n+1 = · · · = �

N

= 0 be the sin-

gular values of B with the corresponding right singular vectors

{⌘
k

2 RN}N
k=1 and left singular vectors {⇠

k

2 R2n}2n
k=1.

Suppose x0 2 Cn

is rank-2. Then �2 < 1 with probability one.

6 The alternating minimization procedure

f(x(k), u(k)) = min
u2U

f(x(k), u),(2.4)

f(x(k+1), u(k)) = min
x2X

f(x, u(k))(2.5)

results in the iteration x(k+1) = F(x(k)) of the map

(2.6) F(x) =



(A⇤)†(b� A⇤x

|A⇤x|)
�

X

where
(A⇤)† = (AA⇤)�1A

is the pseudo-inverse of A⇤. In the case of an isometric A⇤, (A⇤)† = A. In the one-pattern case,
(2.6) is exactly Fienup’s Error Reduction algorithm [30].

The object domain formulation (2.6) is equivalent to the Fourier domain formulation (1.3) by
noting

y = A⇤x, P
1

y = A⇤[(A⇤)†y]X , P
2

y = b� y

|y| .

For an isometric A⇤, PAP can also be formulated as a gradient projection method [33, 36]. Let

r
1

f(x, u) = AA⇤x�A(u� b) = x�A(u� b)

denote the gradient of f with respect to x. Likewise we have

(2.7) rF (x) = A(A⇤x� b� u) = r
1

f(x, u), u = (A⇤x)� |A⇤x|�1.

Hence for an isometric A⇤

F(x) = [x�r
1

f(x, u)]X , u =
A⇤x

|A⇤x|(2.8)

= [x�rF (x)]X .

Due to Eqs. (2.4) and (2.5), PAP method yields a non-increasing cost sequence {F (x(k))}1
k=1

since by (2.3)

(2.9) 0  F (x(k+1)) = f(x(k+1), u(k+1))  f(x(k+1), u(k))  f(x(k), u(k)) = F (x(k)), 8k.

Proposition 2.1. Suppose AA⇤ = I. Then the sequence {x(k)} generated by (2.6) satisfies

(2.10) F (x(k))� F (x(k+1)) � 1

2
kx(k+1) � x(k)k2

and every limit point of {x(k)} is a fixed point of the map F in (2.6).

Proof. Since AA⇤ = I, then f(x, u(k)) satisfies

(2.11) kr
1

f(x, u(k))�r
1

f(x0, u(k))k  kx� x0k.
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whose cardinality is roughly 2d times that of M. Hence by sampling the di↵raction pattern on the
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we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].

A coded di↵raction pattern is measured with a mask whose e↵ect is multiplicative and results
in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
the mask is transparent).

We assume |µ(n)| = 1, 8n which gives rise to a phase mask and an isometric propagation matrix

(1-mask ) A⇤ = c� diag{µ},(1.4)

i.e. AA⇤ = I (with a proper choice of the normalizing constant c), where � is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically � 2 C| ˜M|,|M| is the sub-column matrix
of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

When two phase masks µ
1

, µ
2

are deployed, the propagation matrix A⇤ is the stacked coded
DFTs, i.e.

(2-mask case) A⇤ = c



� diag{µ
1

}
� diag{µ

2

}

�

.(1.5)

With proper normalization, A⇤ is isometric.
We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let

N denote the total number of measured data and hence A 2 Cn,N .
Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

One-pattern N=4n Two-pattern N=8nd=2

8By the uniqueness theorems in [27] for phase retrieval under (1.4) or (1.5), x⇤ = ↵x
0

with |↵| = 1.

Proposition 2.2 says that the criterion kx⇤k = kbk can be used to select a solution of phase
retrieval.

3. Local convergence of PAP. We begin by defining some notation needed in the subsequent
analysis.

The vector space Cn = Rn �R iRn is isomorphic to R2n via the map

(3.1) G(v) :=



<(v)
=(v)

�

, 8v 2 Cn

and endowed with the real inner product

hu, vi := <(u⇤v) = G(u)>G(v), u, v 2 Cn.

We say u and v are (real-)orthogonal to each other (denoted by u ? v) i↵ hu, vi = 0. The same
isomorphism exists between CN and R2N .

Define

B
x

= A diag



A⇤x

|A⇤x|

�

(3.2)

B
x

=



<(B
x

)
=(B

x

)

�

.(3.3)

When x = x
0

, we will drop the subscript x and write simply B and B.
Let

rF (x) :=
@F (x)

@<(x) + i
@F (x)

@=(x)
and

r2F (x)⇣ := rhrF (x), ⇣i(3.4)

=
@hrF (x), ⇣i

@<(x) + i
@hrF (x), ⇣i

@=(x) , 8⇣ 2 Cn.

Proposition 3.1. For all ⇣ 2 Cn, we have

(3.5) hrF (x), ⇣i = <(x⇤⇣)� b><(B⇤
x

⇣),

and

h⇣,r2F (x)⇣i = k⇣k2 � h= (B⇤
x

⇣) , ⇢
x

�= (B⇤
x

⇣)i
= k⇣k2 � hB>

x

G(�i⇣), ⇢
x

� B>
x

G(�i⇣)i

where

⇢
x

=
b

|A⇤x| .
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we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].

A coded di↵raction pattern is measured with a mask whose e↵ect is multiplicative and results
in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
the mask is transparent).

We assume |µ(n)| = 1, 8n which gives rise to a phase mask and an isometric propagation matrix

(1-mask ) A⇤ = c� diag{µ},(1.4)

i.e. AA⇤ = I (with a proper choice of the normalizing constant c), where � is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically � 2 C| ˜M|,|M| is the sub-column matrix
of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

When two phase masks µ
1

, µ
2

are deployed, the propagation matrix A⇤ is the stacked coded
DFTs, i.e.

(2-mask case) A⇤ = c



� diag{µ
1

}
� diag{µ

2

}

�

.(1.5)

With proper normalization, A⇤ is isometric.
We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let

N denote the total number of measured data and hence A 2 Cn,N .
Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

One-mask case
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we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].

A coded di↵raction pattern is measured with a mask whose e↵ect is multiplicative and results
in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
the mask is transparent).

We assume |µ(n)| = 1, 8n which gives rise to a phase mask and an isometric propagation matrix

(1-mask ) A⇤ = c� diag{µ},(1.4)

i.e. AA⇤ = I (with a proper choice of the normalizing constant c), where � is the oversampled d-

dimensional discrete Fourier transform (DFT). Specifically � 2 C| ˜M|,|M| is the sub-column matrix
of the standard DFT on the extended grid M̃ where |M| is the cardinality of M.

When two phase masks µ
1

, µ
2

are deployed, the propagation matrix A⇤ is the stacked coded
DFTs, i.e.

(2-mask case) A⇤ = c



� diag{µ
1

}
� diag{µ

2

}

�

.(1.5)

With proper normalization, A⇤ is isometric.
We convert the d-dimensional (d � 2) grid into an ordered set of index and let n = |M|. Let

N denote the total number of measured data and hence A 2 Cn,N .
Let the solution space X be a nonempty closed convex set in Cn and let

(1.6) [x]X = arg min
x

02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

Two-mask case4 2) Two-pattern case: A⇤ is given by (1.5), X = Cn (i.e. [x]X = x).

For the two-pattern case, AP for the formulation (1.1) shall be called the parallel AP (PAP)
as the rows of A⇤ and the di↵raction data are treated equally and simultaneously, in contrast to
the serial AP (SAP) which splits the di↵raction data into two blocks according to the masks and
treated alternatively (Section 4).

The main assumption on the object is the Rank-2 property: x
0

is rank-2 (or higher) if the
convex hull of supp{x

0

} is two (or higher) dimensional.
Phasing solution is unique only up to a constant of modulus one no matter how many coded

di↵raction patterns are measured. Thus the proper error metric for an estimate x̂ of the true
solution x

0

is given by

(1.8) min
✓2R

ke�i✓x
0

� x̂k = min
✓2R

kei✓x̂� x
0

k.

Our framework and methods can be extended to more general, non-isometric measurement
matrix A⇤ as follows. Let A⇤ = QR be the QR-decomposition of A⇤ where Q is isometric and R is
upper-triangular. We have

(1.9) Q⇤ = A⇤(AA⇤)�1/2

if A (and hence R) is full-rank. Now we can adopt Q as the new isometric measurement matrix
and Rx as the new unknown.

1.2. Other literature. Literature on AP abounds. We only mention the most relevant and
refer the reader to the reviews [6, 24] for a more complete list of references. Von Neumann’s
convergence theorem [46] for AP of two closed subspaces is extended to the setting of closed convex
sets in [20, 10] and, starting with [32], the application of AP to the non-convex setting of phase
retrieval has been extensively studied [30, 31, 7, 8, 39].

In [37] in particular, local convergence theorems were developed for AP for non-convex problems.
However, the technical challenge in applying the theory in [37] to phase retrieval lies precisely in
verifying the main assumption of linear regular intersection therein.

In contrast, what guarantees the geometric convergence and gives an often sharp bound on the
convergence rate in the present work is the spectral gap condition which can be readily verified
under our uniqueness framework [27] (Propositions 3.4 and 3.8).

As pointed out above, there are more than one way of formulating phase retrieval, especially
with two (or more) di↵raction patterns, as a feasibility problem. The formulation (1.1) leads
to the parallel AP (PAP) as all the rows of A⇤ and the di↵raction data are treated equally and
simultaneously. If the rows of A⇤ and the di↵raction data in the two pattern case are split into
two blocks according to the individual masks and treated alternatively, then we end up with the
serial AP (SAP) (Section 4). While PAP is analogous to Cimmino’s approach to AP [21], SAP
is closer in spirit to Kaczmarz’s [35]. Surprisingly, SAP performs significantly better than PAP in
our simulations (Section 6). In Sections 3 and 4 we prove that both schemes are locally convergent
to the true solution with sharp bounds on their geometric rates of convergence. For phase retrieval
with a Gaussian random matrix local convergence for PAP was proved in [44].

Even though a convex minimization approach to coded-aperture phase retrieval [12, 15, 14,
16] is appealing, the tremendous increase in dimension of the convex setting renders numerical
computation prohibitive. Recently, new non-convex approaches become popular again because of
their computational e�ciency among other benefits [13, 43, 44].
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1. Introduction. With wide-ranging applications in science and technology, phase retrieval
has recently attracted a flurry of activities in the mathematics community (see a recent review [51]
and references therein).Chief among these applications is the coherent X-ray di↵ractive imaging
of a single particle using a coherent, high-intensity source such as synchrotrons and free-electron
lasers.

In the so-called di↵ract-before-destruct approach, the structural information of the sample par-
ticle is captured by an ultra-short and ultra-bright X-ray pulse and recorded by a CCD camera
[18, 17, 52]. To this end, reducing the radiation exposure and damage is crucial. Due to the high
frequency of the illumination field, the recorded data are the intensity of the di↵racted field whose
phase needs to be recovered by mathematical and algorithmic techniques. This is where the phase
retrieval problem comes from.

The earliest algorithm of phase retrieval for a non-periodic object (such as a single molecule)
is the Gerchberg-Saxton algorithm [32] and its variant, Error Reduction [30]. The basic idea is
Alternating Projections (AP), going back all the way to the works of von Neuman, Kaczmarz and
Cimmino in the 1930s [21, 35, 46].

In a nutshell, phase retrieval is to solve the equation of the form b = |A⇤x
0

| 2 RN where
x
0

2 X ✓ Cn represents the unknown object, A⇤ 2 CN,n the di↵raction/propagation process and
b2 2 CN the di↵raction pattern(s). The subset X represents all prior constraints on the object
and is typically convex. Also, the number of data N is typically greater than the number n of
components in x

0

.

Phase retrieval can be formulated as the following feasibility problem

Find ŷ 2 A⇤X \ Y, Y := {y 2 CN : |y| = b}.(1.1)
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phase needs to be recovered by mathematical and algorithmic techniques. This is where the phase
retrieval problem comes from.

The earliest algorithm of phase retrieval for a non-periodic object (such as a single molecule)
is the Gerchberg-Saxton algorithm [32] and its variant, Error Reduction [30]. The basic idea is
Alternating Projections (AP), going back all the way to the works of von Neuman, Kaczmarz and
Cimmino in the 1930s [21, 35, 46].

In a nutshell, phase retrieval is to solve the equation of the form b = |A⇤x
0

| 2 RN where
x
0

2 X ✓ Cn represents the unknown object, A⇤ 2 CN,n the di↵raction/propagation process and
b2 2 CN the di↵raction pattern(s). The subset X represents all prior constraints on the object
and is typically convex. Also, the number of data N is typically greater than the number n of
components in x

0

.

Phase retrieval can be formulated as the following feasibility problem

Find ŷ 2 A⇤X \ Y, Y := {y 2 CN : |y| = b}.(1.1)
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1

2From ŷ the object is estimated via pseudo-inverse

x̂ = (A⇤)†ŷ.(1.2)

Let P
1

be the projection onto A⇤X and P
2

the projection onto Y. Then AP is simply the iteration
of the composite map

P
1

P
2

y(1.3)

starting with an initial guess y(1) = A⇤x(1), x(1) 2 X .

The main di↵erence between AP in the classical setting [21, 35, 46] and the current setting is
the non-convexity of the set Y, rendering the convergence issue of the latter much more di�cult to
settle. Indeed, unlike in the standard convex setting, AP for phase retrieval is well known to have
stagnation problems, resulting in practically non-convergent behaviors in reconstruction [30, 31, 39].

In our view, the stagnation problems have a more basic root than non-convexity: the existence
of multiple solutions when only one di↵raction pattern is measured even if additional positivity
constraint is imposed on the object. However, if the di↵raction pattern is measured with a random
mask (a coded di↵raction pattern), then the uniqueness of solution under the positivity constraint
is restored with probability one [27]. In addition, if two independently coded di↵raction patterns
are measured, then the uniqueness of solution holds almost surely without any additional prior
constraint [27].

The goal of the present work is two-fold: i) to prove the local convergence of AP in the unique-
ness framework of [27] (Theorems 3.6, 3.10 and 4.2); ii) to propose a novel method of initialization,
the null vector method, that compensates for the local nature of convergence and renders global
convergence plausible in practice. In addition, we characterize an asymptotic regime for the case
of Gaussian random matrix in which the null vector method alone produces an initialization of
arbitrary accuracy as the sample size increases (Theorem 5.1). Together, AP and the null vector
method produces globally convergent iterates to the true object in practice.

1.1. Set-up. Let us describe our sampling schemes based on [27, 28, 29].

Let x
0

(n) be a discrete object function with n = (n
1

, n
2

, · · · , n
d

) 2 Zd. Consider the object
space consisting of all functions supported in

M = {0  m
1

 M
1

, 0  m
2

 M
2

, · · · , 0  m
d

 M
d

}.

We assume d � 2.

Only the intensities of the Fourier transform, called the di↵raction pattern, are measured

M
X

n=�M

X

m+n2M
x
0

(m+ n)x
0

(m)e�i2⇡n·w, w = (w
1

, · · · , w
d

) 2 [0, 1]d, M = (M
1

, · · · ,M
d

)

which is the Fourier transform of the autocorrelation

R(n) =
X

m2M
x
0

(m+ n)x
0

(m).

Here and below the over-line means complex conjugacy.

11
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Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance
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between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set
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(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =� convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?
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Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance
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between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set
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(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =� convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?

19Friday, November 29, 2013

von Neuman 1933

Cheney-Goldstein 1959 
Bergman 1965

Non convex: local convergence?

19

Error Reduction (Gerchberg-Saxton)
144 SOLIJTIONS OF LINEAR EQUATIONS

Fig. 4.3-2 The relation between angle o and the iterates.
convergence.

Or, equivalently,

Furthermore,

and

Combining Eqs. (4.3-6) and (4.3-7) yields

A small value of a leads to slow

(4.3-s)

Q.3-6)

9.3'7)

@.3-8)

l l * r+t  -  * . l l  :  cos2 0.
l l * r  -  * . l l

ll*n+' -Xp" 
: ll;;,'|r,5:li,l."

r**-xr ':" I rT:.iL-:;;l
\cos"  0  /

l lx r+r  -  * t l l  :  cos2 a.
l l * r  -  xr - r  l l

Equations (4.3-5) and (4.3-8) show that the iteration converges at a constant linear
rate which is determined only by rr. Indeed, Eq. (a.3-5) indicates that the distance

CONVERGENCE ANALYSIS

between the iterates and the converging point is always reduced by cos2 rr i
after each iteration. Furthermore, the convergence speed increases as the an1
increases from 0o to 90o, as illustrated by examples in Fig. 4.3-3.

Notice that the acute angle c is determined by the coefficient vectors r
(orr,,orr)' and a2 : (azr,azz)T through the following relation:

cos' - ,l1"i,' l ')1,, (4
l ia r  l i  l l az  l l

It is clear that when the two coefficient vectors are nearly parallel, i.e., when
close to 0o, the algorithm in Eq. @.2-17) will converge very slowly, since c<
is close to L We can see this from Eq. (4.3-5), where the remaining error
k + I iterations is essentially the same as that after k iterations, i.e., there is
progress toward the solution x* when a is close to 0o. In this case, the iter
will go through a long "tunnel" before the final solution is reached. This beha
of course, is undesirable in practical applications. On the other hand, when the
coefficient vectors are nearly orthogonal, i.e., when o is close to g0o, the algor
will converge very rapidly, since its convergence rate cos2 o is close to 0.

An interesting case is that when a is exactly equal to g0o,Eq. (4.3-5) indi,
that the solution will be reached in just a single iteration! This is indeed the cas
illustrated in Fig. 4.3-4. Moreover, this result holds in a higher-dimensional v,
space. Indeed, we can state the following theorem:

Theorem 4.3-l If all the row vectors in a system of linear equations are muti
orthogonal, the projection algorithm in Eq. (4.2-17) will reach its solution
single iteration.

Pn.oop: Let x', ,xL,. . . ,x;. denote the iterates generated by successively proje
onto the sets C1 , Cz, '. . , and C-., starting from an arbitrary starting point xo. I
Eq. @.2-12) it is clear that the projection Pg of an arbitrary vector y onto C.
be written as Piy - y - Baai for some scalar pi, which depends on y. Thus
have the following

:  P i x o - X s - F t a t
: Pz x\ - x', - 7zaz
: Xs - {Jrat - {Jzaz
: Ps xL - xi - lsas
: Xs - 1tat - 1zaz - 1zas

:
x!- : P-, x|'.-t : x!-._t - 0*a-,

m,

:  . r . : X 6 - \ , i l n ^ l .

i : l

xi
x!,

x'3
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+

+
l,rr",.r(")>o

. [ , r r " , / ( r ) ( o

l f  ( r )  -  y( r ) l2dr

l f  ( " )  -  y( r ) l 'd ,* , (s.4-2e)

where we used the condition ,Sz C Sr. Since minimizing ll/ - yll2 with respect to
all functions 37 € C1 is equivalent to minimizing each integral on the right-hand side
of Eq. (5.4-29) independently of the others, we immediately obtain Eq. (5.a-28)
for the function A € Ct that minimizes ll/ - yll2. I

Nevertheless, there are times when the restriction to 'm, :2 does become a sig-
nificant problem. For example, in the filter design problem discussed in Chapter 6
(Section 6.4), we seek a solution in the intersection of many non-convex sets. In
that case, the theory of generalized projections in a product space can be used to
advantage. We discuss this approach in Section 5.7.

5.5 TRAPS AND TUNNELS

In Section 5.1 we introduced the idea of a trap. As the reader already knows, a trap
represents a point where the SDE has a local minimum. We revisit the idea of a
trap here, as well as another undesirable phenomenon known as tunnel. We define
a trap as a fixed pointT of the composition operator T17.2"'T-., which is not a
fixed point of every individual Tr : 1,." ,Tn,, i.e., a point which fails to satisfy
one or more of the a priori constraints yet satisfies

fn,+r : TzTz' "T- fn : fr..

Fig. 5.5-1 A tunnel is a region where set boundaries are nearly parallel and convergence
is very slow. Tunnels can occur with convex or non-convex sets.

demonstration is furnished for some restricted cases. One can infer a trap when
.I*( fn+t)  > 0 and l l  f , , * t  -  / , l l  :  0. t

( i i )  I f  Pr  i s l inearandPlTz f , - :  f , , ,  then thecor rec tso lu t ion / l ies inahyperp lane
orthogonal to the vector Pzf, - f".

Remark (ii) is especially useful. It tells us that when we are in a trap or a tunnel
we have to look for a solution along a direction orthogonal to the vector Pzf,,- f,..
More research is needed in order to use this fact to improve the algorithm and avoid
traps and tunnels. If P1 is not linear, then the solution does not necessarily lie on an
orthogonal direction to P2f n, - f n.,, but we can look at this result as approximately
true.T of course, how good this approximation is depends on Pl , P2, and f n..

Finally, when dealing with sets that are non-convex or set configurations that
have tunnels, the optimization of the relaxation parameters );,,,. in Eq. (5.4-12) can
have significant impact on the performance of the algorithm. This important point
is discussed by Levi in [3, 4]. Examples of generalized projection applications
appear in phase retrieval (Chapter 7), neural nets (Chapter 8), and image synthesis
(Chapter 9).

5.6 PROOF OF THEOREM 5.4.2

From the definition of the generalized projection operatoq we obtain

(s.s-l)

We say that a point f , is in a tunnel if Eq. (5.5-1) is almost satisfied, which means
that the change in f n from one iteration to the next is negligible. Traps and tunnels
are i l lustrated in Fig.5.l-l and Fig.5.5-1, respectively. In general, when at least
one nonconvex set is involved, traps may exist as demonstrated in Fig. 5.4-1. Since
Eq. (5.4-ll) can exhibit SDE convergence only when rrl:2, let us consider this
case only. In t3l the following remarks, of practical utility, are demonstrated. We
state them here without proof.

(i) The SDE J(/,') can be used to detect traps. By this we mean that a trap can be
detected when we observe no chang e in ,I (f ,,) ) 0 from iteration to iteration. To
determine the existence of a trap from observations on the SDE, we must show
that J*(f,+t) : J(f,) implies that fn.1y : fn, and vice versa; the asterisk
denotes the minimum of J(f.+t) with respect to )1 and )2. In [3, 4] such a

tReminder: the fixed point r of an operator tr is the point for which Lr : z. In engineering, the point
r is, typically, a function of n argurnents, e.9., a waveform (n : 1) or an image (n:2).

and similarly

I On a computer, however, it is not always easy to distinguish between traps and tunnels. Finite word
l.ength and./or numerical errors may mask the fact that fn+t * /. (a tunnel).
+Unless the morphologies of the non-convex sets are bizarre.

l lPrTzf. - Tzfnll < l ls - Tzf,l l  for arr y e C1,

llPzTzf". - Tzfnll < llh - Tzfnll for ail h, e Cz.

(s.6-1)

(s.6-2)
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( a ) ( b )

Fig. 5.1-l (a) Non-convexity of Ct results in convergence to a trap point x2,
not a feasible solution. (b) A different starting point results in convergence to a
solution. A feasible solution is any point in Co.

which is
feasible

B

Fig. 5.1-2 All starting points, except those on line segment AB lead to feasible solutions
yr or y2. Starting points on line AB lead to traps x? or xi. f the starting point is chosen
randomly it is unlikely to fall on AB and, hence, the algorithm is unlikely to converge to a
trap.

5.2 CONVEX VERSUS NON-CONVEX SETS

We recall from Chapter 2 that in a convex set, the line connecting any two points
in the set resides wholly within the set. This fundamental property of convexity is
expressed mathematically as follows: with x denoting any point on the line segment
between x1 and x2, clearly x - X2 : p(xr - xz) €ig. 5.2-l(a)). Then it follows
that

x : l r x r + ( 1  - p ) x z ,  0 < 1 t !  1 . 6.2-t)
Non-convex sets do not obey this property for every pair of points in the set. For
example, in Fig. 5.2-1(b), the points x1 and x2 satisfy Eq. (5.2-1) but points xs
and xa do not. Hence the set is not convex.

A set C consisting of a single point x is convex since px+ (1 - p)* e C'

Consider the set C e {x :  ( r t , rz) :0 (  r r  12,0 l  nz <2}.  This convex set
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(a)

Fig. 5.2-1 (a) A convex set.

(b)

(b) A non-convex set.

describes the simply connected region shown in Fig. 5.2-2(a). However, the set in
f

F i g . 5 . 2 - 2 ( b )  C  =  { *  :  ( r t , n z ) : 0  (  r r  1 2 a n d } < - r z  1 2 ,  o r , 3  (  r r  (
4 and 3 I rz < 4) does not describe a simply-connected region and clearly is not
convex. Sets formed from the union of several closed disjoint sets are generally
not convex. Certain important sets consist of points which are n-tuples whose
components take binary values such as *1. Such sets are also non-convex. They
occur in certain types of neural nets and we shall encounter them in Chapter 8.

(a)

Fig. 5.2-2 (a) A convex ser.
non-convex.

(b)

(b) The union of disjoint closed convex sets is generally

Bregman 65: convex constraints =� convergence to a feasible

solution.

Fourier magnitude data are a non-convex constraint!

Nonconvexity or nonuniqueness ?

19Friday, November 29, 2013



Alternating projection

13

2From ŷ the object is estimated via pseudo-inverse

x̂ = (A⇤)†ŷ.(1.2)

Let P
1

be the projection onto A⇤X and P
2

the projection onto Y. Then AP is simply the iteration
of the composite map

P
1

P
2

y(1.3)

starting with an initial guess y(1) = A⇤x(1), x(1) 2 X .

The main di↵erence between AP in the classical setting [21, 35, 46] and the current setting is
the non-convexity of the set Y, rendering the convergence issue of the latter much more di�cult to
settle. Indeed, unlike in the standard convex setting, AP for phase retrieval is well known to have
stagnation problems, resulting in practically non-convergent behaviors in reconstruction [30, 31, 39].

In our view, the stagnation problems have a more basic root than non-convexity: the existence
of multiple solutions when only one di↵raction pattern is measured even if additional positivity
constraint is imposed on the object. However, if the di↵raction pattern is measured with a random
mask (a coded di↵raction pattern), then the uniqueness of solution under the positivity constraint
is restored with probability one [27]. In addition, if two independently coded di↵raction patterns
are measured, then the uniqueness of solution holds almost surely without any additional prior
constraint [27].

The goal of the present work is two-fold: i) to prove the local convergence of AP in the unique-
ness framework of [27] (Theorems 3.6, 3.10 and 4.2); ii) to propose a novel method of initialization,
the null vector method, that compensates for the local nature of convergence and renders global
convergence plausible in practice. In addition, we characterize an asymptotic regime for the case
of Gaussian random matrix in which the null vector method alone produces an initialization of
arbitrary accuracy as the sample size increases (Theorem 5.1). Together, AP and the null vector
method produces globally convergent iterates to the true object in practice.

1.1. Set-up. Let us describe our sampling schemes based on [27, 28, 29].

Let x
0

(n) be a discrete object function with n = (n
1

, n
2

, · · · , n
d

) 2 Zd. Consider the object
space consisting of all functions supported in

M = {0  m
1

 M
1

, 0  m
2

 M
2

, · · · , 0  m
d

 M
d

}.

We assume d � 2.

Only the intensities of the Fourier transform, called the di↵raction pattern, are measured

M
X

n=�M

X

m+n2M
x
0

(m+ n)x
0

(m)e�i2⇡n·w, w = (w
1

, · · · , w
d

) 2 [0, 1]d, M = (M
1

, · · · ,M
d

)

which is the Fourier transform of the autocorrelation

R(n) =
X

m2M
x
0

(m+ n)x
0

(m).

Here and below the over-line means complex conjugacy.
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5One purpose of the present work is to compare these newer approaches with AP, arguably
the simplest of all non-convex approaches. An important di↵erence of the measurement schemes
in these papers from ours is that their coded di↵raction patterns are not oversampled. In this
connection, we emphasize that reducing the number of coded di↵raction patterns is crucial for the
di↵ract-before-destruct approach and, in our view, oversampling is a small price to pay with current
sensor technologies. Another di↵erence is that these newer iterative schemes such as the Wirtinger
Flow (WF) [13] are not of the projective type. In Section 6, we provide a detailed numerical
comparison between PAP/SAP and WF.

Recently we proved local convergence of the Douglas-Rachford (DR) algorithm for coded-
aperture phase retrieval [19]. The present work extends the method of [19] to the alternating
projection method. It is important to note that although AP and DR are iterative projection
schemes and both rely on the spectral gap condition to succeed, their behaviors are di↵erent and
the proof of convergence requires separate treatments.

More important, to compensate for the local nature of convergence we develop a novel procedure,
the null vector method, for initializing any iterative schemes for phase retrieval. We prove that the
initialization produced by the null vector method is asymptotically close to the true object in the
Gaussian case (Section 5). The analogous result for coded di↵raction patterns remains open. The
null vector method is significantly di↵erent from the initialization schemes proposed in [44, 13, 11].
In Section 6 we provide a detailed comparison between these initialization schemes. In particular,
the initialization with the null vector method is much more accurate than that with the spectral
vector method and SAP with the null vector initialization has a comparable performance to the
Douglas-Rachford algorithm studied in [19].

The rest of the paper is organized as follows. In Section 2, we discuss the convergence property
of PAP. In Section 3, we prove the convergence to the true solution for PAP in the one-pattern and
two-pattern cases. In Section 4 we analyze the serial version of AP and prove its local convergence.
In Section 5, we discuss the null vector method and prove global convergence of the method in a
general limit for phase retrieval with a Gaussian random matrix. In Section 6, we give numerical
examples and compare the performance of our approach with that of [13, 11].

2. The parallel AP. First we introduce some notation and convention that are frequently
used in the subsequent analysis. Let y � y0 and y/y0 be the component-wise multiplication and
division between two vectors y, y0, respectively. For any y 2 CN define the phase vector ! 2 CN

with !(j) = y(j)/|y(j)| where |y(j)| 6= 0. When |y(j)| = 0 the phase can be assigned arbitrarily
and we set !(j) = 1 unless otherwise specified.

Let

f(x, u) =
1

2
kA⇤x� u� bk2,(2.1)

F (x) =
1

2
k|A⇤x|� bk2 = f(x, u), u = (A⇤x)� |A⇤x|�1.(2.2)

Hence

F (x) = min{f(x, u) : u = (u(i)) 2 CN , |u(i)| = 1, 8i}.(2.3)

6 The alternating minimization procedure

f(x(k), u(k)) = min
u2U

f(x(k), u),(2.4)

f(x(k+1), u(k)) = min
x2X

f(x, u(k))(2.5)

results in the iteration x(k+1) = F(x(k)) of the map

(2.6) F(x) =



(A⇤)†(b� A⇤x

|A⇤x|)
�

X

where
(A⇤)† = (AA⇤)�1A

is the pseudo-inverse of A⇤. In the case of an isometric A⇤, (A⇤)† = A. In the one-pattern case,
(2.6) is exactly Fienup’s Error Reduction algorithm [30].

The object domain formulation (2.6) is equivalent to the Fourier domain formulation (1.3) by
noting

y = A⇤x, P
1

y = A⇤[(A⇤)†y]X , P
2

y = b� y

|y| .

For an isometric A⇤, PAP can also be formulated as a gradient projection method [33, 36]. Let

r
1

f(x, u) = AA⇤x�A(u� b) = x�A(u� b)

denote the gradient of f with respect to x. Likewise we have

(2.7) rF (x) = A(A⇤x� b� u) = r
1

f(x, u), u = (A⇤x)� |A⇤x|�1.

Hence for an isometric A⇤

F(x) = [x�r
1

f(x, u)]X , u =
A⇤x

|A⇤x|(2.8)

= [x�rF (x)]X .

Due to Eqs. (2.4) and (2.5), PAP method yields a non-increasing cost sequence {F (x(k))}1
k=1

since by (2.3)

(2.9) 0  F (x(k+1)) = f(x(k+1), u(k+1))  f(x(k+1), u(k))  f(x(k), u(k)) = F (x(k)), 8k.

Proposition 2.1. Suppose AA⇤ = I. Then the sequence {x(k)} generated by (2.6) satisfies

(2.10) F (x(k))� F (x(k+1)) � 1

2
kx(k+1) � x(k)k2

and every limit point of {x(k)} is a fixed point of the map F in (2.6).

Proof. Since AA⇤ = I, then f(x, u(k)) satisfies

(2.11) kr
1

f(x, u(k))�r
1

f(x0, u(k))k  kx� x0k.
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= [x�rF (x)]X .

Due to Eqs. (2.4) and (2.5), PAP method yields a non-increasing cost sequence {F (x(k))}1
k=1

since by (2.3)
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Proposition 2.1. Suppose AA⇤ = I. Then the sequence {x(k)} generated by (2.6) satisfies
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Proof. Since AA⇤ = I, then f(x, u(k)) satisfies

(2.11) kr
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is the pseudo-inverse of A⇤. In the case of an isometric A⇤, (A⇤)† = A. In the one-pattern case,
(2.6) is exactly Fienup’s Error Reduction algorithm [30].
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, · · · , w
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j
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o

we can recover the autocorrelation function by the inverse Fourier transform. This is the standard
oversampling with which the di↵raction pattern and the autocorrelation function become equivalent
via the Fourier transform [41, 42].
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in a masked object of the form x̃

0

(n) = x
0

(n)µ(n) where {µ(n)} is an array of random variables
representing the mask. In other words, a coded di↵raction pattern is just the plain di↵raction
pattern of a masked object.

We will focus on the e↵ect of random phases �(n) in the mask function µ(n) = |µ|(n)ei�(n)
where �(n) are independent, continuous real-valued random variables and |µ|(n) 6= 0, 8n 2 M (i.e.
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1

, µ
2
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
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2
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�

.(1.5)

With proper normalization, A⇤ is isometric.
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02X
kx0 � xk

the projection onto X .
Phase retrieval is to find a solution x to the equation

b = |A⇤x|, x 2 X .(1.7)

We focus on the case with the following two cases.

1) One-pattern case: A⇤ is given by (1.4), X = Rn or Rn

+

.

Fact

6 The alternating minimization procedure

f(x(k), u(k)) = min
u2U

f(x(k), u),(2.4)

f(x(k+1), u(k)) = min
x2X

f(x, u(k))(2.5)

results in the iteration x(k+1) = F(x(k)) of the map

(2.6) F(x) =



(A⇤)†(b� A⇤x

|A⇤x|)
�

X

where
(A⇤)† = (AA⇤)�1A

is the pseudo-inverse of A⇤. In the case of an isometric A⇤, (A⇤)† = A. In the one-pattern case,
(2.6) is exactly Fienup’s Error Reduction algorithm [30].

The object domain formulation (2.6) is equivalent to the Fourier domain formulation (1.3) by
noting

y = A⇤x, P
1

y = A⇤[(A⇤)†y]X , P
2

y = b� y

|y| .

For an isometric A⇤, PAP can also be formulated as a gradient projection method [33, 36]. Let

r
1

f(x, u) = AA⇤x�A(u� b) = x�A(u� b)

denote the gradient of f with respect to x. Likewise we have

(2.7) rF (x) = A(A⇤x� b� u) = r
1

f(x, u), u = (A⇤x)� |A⇤x|�1.

Hence for an isometric A⇤

F(x) = [x�r
1

f(x, u)]X , u =
A⇤x

|A⇤x|(2.8)

= [x�rF (x)]X .

Due to Eqs. (2.4) and (2.5), PAP method yields a non-increasing cost sequence {F (x(k))}1
k=1

since by (2.3)

(2.9) 0  F (x(k+1)) = f(x(k+1), u(k+1))  f(x(k+1), u(k))  f(x(k), u(k)) = F (x(k)), 8k.

Proposition 2.1. Suppose AA⇤ = I. Then the sequence {x(k)} generated by (2.6) satisfies

(2.10) F (x(k))� F (x(k+1)) � 1

2
kx(k+1) � x(k)k2

and every limit point of {x(k)} is a fixed point of the map F in (2.6).

Proof. Since AA⇤ = I, then f(x, u(k)) satisfies

(2.11) kr
1

f(x, u(k))�r
1

f(x0, u(k))k  kx� x0k.
Proposition

7The descent lemma (Proposition A.24, [9]) yields

(2.12) f(x(k+1), u(k))  f(x(k), u(k)) + hx(k+1) � x(k),r
1

f(x(k), u(k))i+ 1

2
kx(k+1) � x(k)k2.

Since x(k+1) = [x(k) �r
1

f(x(k), u(k))]X ,

(2.13) hx(k) �r
1

f(x(k), u(k))� x(k+1), x� x(k+1)i  0 for all x 2 X .

Set x = x(k) in Eq. (2.13) and we have

(2.14) kx(k) � x(k+1)k2  hr
1

f(x(k), u(k)), x(k) � x(k+1)i.

From Eq. (2.9), Eq. (2.12) and Eq. (2.14), we have

F (x(k))� F (x(k+1)) � f(x(k), u(k))� f(x(k+1), u(k))

� hx(k) � x(k+1),r
1

f(x(k), u(k))i � 1

2
kx(k+1) � x(k)k2

� 1

2
kx(k+1) � x(k)k2.

As a nonnegative and non-increasing sequence, {F (x(k))}1
k=1

converges, implying

lim
k!1

kx(k+1) � x(k)k = 0.(2.15)

Let {x(kj)}1
j=1

be a convergent subsequence whose limit is x⇤. The result (2.15) implies that

limx(kj+1) = x⇤.

Now passing to the limit in F(x(kj)) = x(kj+1) we get F(x⇤) = x⇤.

Unfortunately, it is not clear if every fixed point is a phase retrieval solution. Nevertheless, just
one additional condition forces a fixed point to be a phase retrieval solution.

Proposition 2.2. Let A⇤ be given by (1.4) or (1.5). If a fixed point x⇤ of F satisfies kx⇤k =
kbk, then x⇤ = ↵x

0

with |↵| = 1. On the other hand, if x⇤ is not a phase retrieval solution, then
kx⇤k < kbk.

Proof. Any fixed point x⇤ of F satisfies

A⇤x⇤ = A⇤PXAy
⇤, y⇤ :=

A⇤x⇤
|A⇤x⇤|

� b, PX (x) := [x]X .

We claim that A⇤PXA is an orthogonal projection. To check, we note that A⇤PXA is self-adjoint
and that (A⇤PXA)2 = A⇤PXA by the isometry of A⇤.

From the claim it follows that

kx⇤k = kA⇤x⇤k  ky⇤k = kbk.

If, however, kA⇤x⇤k = kbk, then y⇤ must be a fixed point of A⇤PXA and hence

A⇤x⇤ =
A⇤x⇤
|A⇤x⇤|

� b =) |A⇤x⇤| = b.(2.16)
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A fixed point preserves the total  signal strength, 
 iff it is the true solution up to a global phase. 

8By the uniqueness theorems in [27] for phase retrieval under (1.4) or (1.5), x⇤ = ↵x
0

with |↵| = 1.

Proposition 2.2 says that the criterion kx⇤k = kbk can be used to select a solution of phase
retrieval.

3. Local convergence of PAP. We begin by defining some notation needed in the subsequent
analysis.

The vector space Cn = Rn �R iRn is isomorphic to R2n via the map

(3.1) G(v) :=



<(v)
=(v)

�

, 8v 2 Cn

and endowed with the real inner product

hu, vi := <(u⇤v) = G(u)>G(v), u, v 2 Cn.

We say u and v are (real-)orthogonal to each other (denoted by u ? v) i↵ hu, vi = 0. The same
isomorphism exists between CN and R2N .

Define

B
x

= A diag



A⇤x

|A⇤x|

�

(3.2)

B
x

=



<(B
x

)
=(B

x

)

�

.(3.3)

When x = x
0

, we will drop the subscript x and write simply B and B.
Let

rF (x) :=
@F (x)

@<(x) + i
@F (x)

@=(x)
and

r2F (x)⇣ := rhrF (x), ⇣i(3.4)

=
@hrF (x), ⇣i

@<(x) + i
@hrF (x), ⇣i

@=(x) , 8⇣ 2 Cn.

Proposition 3.1. For all ⇣ 2 Cn, we have

(3.5) hrF (x), ⇣i = <(x⇤⇣)� b><(B⇤
x

⇣),

and

h⇣,r2F (x)⇣i = k⇣k2 � h= (B⇤
x

⇣) , ⇢
x

�= (B⇤
x

⇣)i
= k⇣k2 � hB>

x

G(�i⇣), ⇢
x

� B>
x

G(�i⇣)i

where

⇢
x

=
b

|A⇤x| .

iff
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13where
�̃
2

(�) := max{k=(B⇤
�

)uk : u 2 Rn, hu, �i = 0, kuk = 1}.

Now we have the following convergence theorem analogous to Theorem 3.6.

Theorem 3.10. (The one-pattern PAP) Let A⇤ be given by (1.4) and let x
0

2 Rn (or Rn

+

)

be rank-2 and satisfy F (x
0

) = 0. For any given 0 < ✏ < 1 � �̃2

2

, if x(1) is su�ciently close to
x
0

then with probability one the PAP iterates x(k) converges to x
0

geometrically after global phase
adjustment, i.e.

(3.25) k↵(k+1)x(k+1) � x
0

k  (�̃2

2

+ ✏)k↵(k)x(k) � x
0

k, 8k

where ↵(k) := argmin
↵=±1

{k↵x(k) � x
0

k} and ↵(k) = 1 if x
0

2 Rn

+

.

Proof.

From the definition of ↵(k+1), we have

k↵(k+1)x(k+1) � x
0

k  k↵(k)x(k+1) � x
0

k(3.26)

Recall the gradient projection method (2.8)

x(k+1) =
h

x(k) �rF (x(k))
i

X

and the fixed point property x
0

= [x
0

�rF (x
0

)]X .

By the properties of linear projection,

↵(k)x(k+1) =
h

↵(k)x(k) �rF (↵(k)x(k))
i

X
(3.27)

and hence the right hand side of (3.26) equals

k[↵(k)x(k) �rF (↵(k)x(k))]X � [x
0

�rF (x
0

)]X k
 k↵(k)x(k) �rF (↵(k)x(k))� x

0

+rF (x
0

)k.(3.28)

The rest of the proof follows verbatim that of Theorem 3.6 from (3.17) onward, except with �
2

replaced by �̃
2

.

4. The serial AP. Let A⇤
l

2 CN/2,n, l = 1, 2, be the coded measurement matrices properly
normalized to be isometric (hence A = 1p

2

[A
1

, A
2

]) and b
l

= |A⇤
l

x
0

| 2 RN/2, l = 1, 2 the correspond-

ing data. Let y 2 CN be written as y = [y>
1

, y>
2

]> where y
l

2 CN/2, l = 1, 2. Instead of (1.1), we
now formulate the two-pattern case as the following feasibility problem

Find ŷ 2 \2

l=1

(A⇤
l

X \ Y
l

) , Y
l

:= {y
l

2 CN/2 : |y
l

| = b
l

}.(4.1)

As the projection onto the non-convex set A⇤
l

X \Y
l

is not exactly known, we use the approximation
instead

(4.2) F
l

(x) = A
l

✓

b
l

�
A⇤

l

x

|A⇤
l

x|

◆

, l = 1, 2,
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4. The serial AP. Let A⇤
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ing data. Let y 2 CN be written as y = [y>
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]> where y
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now formulate the two-pattern case as the following feasibility problem

Find ŷ 2 \2
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:= {y
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2 CN/2 : |y
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}.(4.1)

As the projection onto the non-convex set A⇤
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is not exactly known, we use the approximation
instead
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A⇤

l

x

|A⇤
l

x|

◆

, l = 1, 2,
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F
2

F
1

(x)

proposed in [28] . In contrast PAP is the iteration of

(4.3) F(x) = A

✓

b� A⇤x

|A⇤x|

◆

=
1

2
(F

1

(x) + F
2

(x)).

By repeating the proof of Theorem 3.6 for F
1

and F
2

, we immediately get the bound

(4.4) k↵(k+1)x(k+1) � x
0

k  ((�(2)

2

�
(1)

2

)2 + ✏)k↵(k)x(k) � x
0

k, 8k,

where

�
(l)

2

= max{k=[B⇤
l

u]k : u 2 Cn, iu ? x
0

, kuk = 1}, l = 1, 2

and

B
l

= A
l

diag

⇢

A⇤
l

x
0

|A⇤
l

x
0

|

�

, l = 1, 2.

But we can do better.

Similar to the calculation in Proposition 3.1, the derivative dF
l

of F
l

in the notation of (3.1),
(3.2),(3.3) can be derived as

G(dF
l

⇠) = G(iB
l

=(B⇤
l

⇠))

=



�=(B
l

)
<(B

l

)

�

B>
l

G(�i⇠), 8⇠ 2 Cn.

Hence, by the isomorphism Cn ⇠= R2n via G(�i⇠), we can represent the action of dF
l

on R2n by the
real matrix

B
l

B>
l

=



<(B
l

)
=(B

l

)

�

h

<(B>
l

) =(B>
l

)
i

(4.5)

and hence the action of d(F
2

F
1

) by

D := B
2

B>
2

B
1

B>
1

.

Define

kDk? := max{kD⇠k : ⇠ 2 R2n, ⇠ ? ⇠
1

, k⇠k = 1}.(4.6)

We have the following bound.

Proposition 4.1.

kDk?  (�(2)

2

�
(1)

2

)2.

Proof. Since ⇠
1

= x
0

is the fixed point for both B
1

B>
1

and B
2

B>
2

, the set {⇠ 2 R2n : ⇠ ? ⇠
1

} is
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l

)

�

h

<(B>
l

) =(B>
l

)
i

(4.5)

and hence the action of d(F
2

F
1

) by

D := B
2

B>
2

B
1

B>
1

.

Define

kDk? := max{kD⇠k : ⇠ 2 R2n, ⇠ ? ⇠
1

, k⇠k = 1}.(4.6)

We have the following bound.

Proposition 4.1.

kDk?  (�(2)

2

�
(1)

2

)2.

Proof. Since ⇠
1

= x
0

is the fixed point for both B
1

B>
1

and B
2

B>
2

, the set {⇠ 2 R2n : ⇠ ? ⇠
1

} is

PAP
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Gradient representation

whereas ODR (15) becomes

(30) S(x) = x+

"

Ã

 

2b � Ã⇤x

|Ã⇤x|

!

� x

#

n

� Ã

 

b � Ã⇤x

|Ã⇤x|

!

.

However, we make no assumption about the number of di↵raction patterns which can well
be one.
The main result is local, geometric convergence of the reduced version of FDR algorithm.

Theorem 5.1. Let x0 2 Cn and A⇤ any isometric N ⇥ n matrix. Suppose N � 2n and

�2 = max
u2Cn

iu?x0

kuk�1k=(B⇤u)k < 1, B := A diag

⇢

A⇤x0

|A⇤x0|

�

.(31)

Let y(k) = (A⇤ASf)k�1A⇤x(1) and x(k) := Ay(k), k = 1, 2, 3 · · · . For any given 0 < ✏ <
1 � �2, if x(1) is su�cient close to x0, then

(32) k↵(k)x(k) � x0k  (�2 + ✏)k�1kx(1) � x0k, k = 2, 3, · · ·
and

(33) ↵(k) := argmin
↵

{k↵x(k) � x0k : |↵| = 1,↵ 2 C}.

Remark 5.2. In view of (16) and Theorem 5.1, the same error bound (32) holds for the
ODR iterates x(k) = [Ãy(k)]

n

with ñ = N .

Remark 5.3. Theorem 5.1 is about the algebraic structure of FDR and does not assume
oversampled di↵raction patterns. For example, one oversampled di↵raction pattern (N ⇡ 4n)
or two unoversampled di↵raction patterns (N = 2n) are su�cient.
However, as shown in Theorem 6.3, the spectral gap condition (31) requires one (and only

one) oversampled coded di↵raction pattern.

Remark 5.4. When the propagation matrix A⇤ is not isometric, we apply QR-decomposition
to obtain A⇤ = QR, where Q is isometric, and treat Q as the new propagation matrix and
Rx0 as the unknown.

To this end, we derive and analyze the local approximation of FDR as follows.

5.1. Local analysis. First note that

(34) hA(↵(k)y(k) � y0), x0i = h↵(k)y(k) � y0, y0i = hv(k), |y0|i
with

v(k) = ⌦⇤
0(↵

(k)y(k) � y0), ⌦0 = diag(!0), !0 =
y0

|y0|
.

This motivates the following analysis of the Jacobian operator Jf .

Proposition 5.5. Let y 2 CN , ! = y/|y| and ⌦ = diag(!).
Then

(35) Sf(y + ✏⌘) � Sf(y) = ✏⌦Jfv + o(✏)

where

(36) Jfv = (I � B⇤B)v + i(2B⇤B � I) diag



b

|y|

�

=(v),

11

with

B = A ⌦, v = ⌦⇤⌘.(37)

In particular, if |y| = b, then (36) becomes

(38) Jfv = (I � B⇤B)<(v) + iB⇤B=(v)

Proof. Let

!
✏

=
y + ✏⌘

|y + ✏⌘| , ⌦
✏

= diag(!
✏

).

Reorganizing (29), we have

(39) Sf(y) = y � A⇤Ay + (2A⇤A � I)⌦b.

and hence

Sf(y + ✏⌘) � Sf(y) = ✏(I � A⇤A)⌘ + (2A⇤A � I)(⌦
✏

� ⌦)b

= ✏(I � ⌦B⇤B⌦⇤)⌘ + (2⌦B⇤B⌦⇤ � I)(⌦
✏

� ⌦)b(40)

We next give a first order approximation to (⌦
✏

� ⌦)b in terms of ⌘.
Using the first order Taylor expansion we have

!
✏

� ! = i⌦=
h

⌦⇤(!
✏

� !)
i

+ o(✏) = i✏⌦=


⌦⇤ ⌘

|y|

�

+ o(✏),

and hence

(⌦
✏

� ⌦)b = i✏⌦ diag



b

|y|

�

=(⌦⇤⌘) + o(✏).(41)

Finally, substituting (41) into (40) we obtain

Sf(y + ✏⌘) � Sf(y) = ✏(I � ⌦B⇤B⌦⇤)⌘ + i✏(2⌦B⇤B � ⌦) diag(b/|y|)=(⌦⇤⌘) + o(✏).

Multiplying ⌦⇤ on both sides and using the definition of v we complete the proof. ⇤

Note that Jf is a real, but not complex, linear map since Jf(cv) 6= cJfv, c 2 C in general.
Define the real form of the matrix B:

(42) B :=



<[B]
=[B]

�

2 R2n,N .

Note that


<[B>] =[B>]
�=[B>] <[B>]

�

is real isometric because B⇤ is complex isometric.
From (9) we have

G(B⇤u) =



B>G(u)
B>G(�iu)

�

, u 2 Cn.(43)

For the rest of the paper, B denotes the matrix (37) with ⌦ = ⌦0, i.e.

B = A⌦0, ⌦0 = diag[!0], !0 =
y0

|y0|
(44)

unless otherwise specified.
12

16

G(dF⇠) = G(iB=(B⇤
⇠))

=

"
�=(B)
<(B)

#

B>
G(�i⇠), 8⇠ 2 Cn

.

G(�idF⇠) = BBT
G(�i⇠), 8⇠ 2 Cn

.

Hence, by the isomorphism Cn

⇠= R2n via G(�i⇠), we can rep-

resent the action of dF on R2n by the real matrix

BB> =

"
<(B)
=(B)

# h
<(B>) =(B>)

i

G(�iv) :=

"
=(v)
�<(v)

#

, 8v 2 Cn

1

Let �1 � �2 � . . . � �2n � �2n+1 = · · · = �

N

= 0 be the sin-

gular values of B with the corresponding right singular vectors

{⌘
k

2 RN}N
k=1 and left singular vectors {⇠

k

2 R2n}2n
k=1.

G(dF⇠) = G(iB=(B⇤
⇠))

=

"
�=(B)
<(B)

#

B>
G(�i⇠), 8⇠ 2 Cn

.

G(�idF⇠) = BBT
G(�i⇠), 8⇠ 2 Cn

.

Hence, by the isomorphism Cn

⇠= R2n via G(�i⇠), we can rep-

resent the action of dF on R2n by the real matrix

BB> =

"
<(B)
=(B)

# h
<(B>) =(B>)

i1

9Proof. Writing

F (x) =
1

2
kA⇤xk2 � |A⇤x|>b+ 1

2
kbk2(3.6)

=
1

2
kA⇤xk2 �

N

X

j=1

f
j

(x) +
1

2
kbk2, f

j

(x) := b(j)|a⇤
j

x|,

we analyze the derivatives of each term on the right hand side of (3.6).

Since AA⇤ = I, the gradient and the Hessian of kA⇤xk2/2 are x and I, respetively.

First of all, (3.5) follows immediately from (2.7).

For f
j

, we have Taylor’s expansion

(3.7) f
j

(x+ ✏⇣) = f
j

(x) + ✏hrf
j

(x), ⇣i+ ✏2

2
h⇣,r2f

j

(x)⇣i+O(✏3)

where

(3.8) hrf
j

(x), ⇣i = b(j)

|a⇤
j

x|ha
⇤
j

x, a⇤
j

⇣i

and

1

2
h⇣,r2f

j

(x)⇣i = b(j)

2|a⇤
j

x|

�

�

�

�

�

<(a⇤
j

x)

|a⇤
j

x| =(a⇤
j

⇣)�
=(a⇤

j

x)

|a⇤
j

x| <(a⇤
j

⇣)

�

�

�

�

�

2

.

Observe that
N

X

j=1

b(j)

|a⇤
j

x|ha
⇤
j

x, a⇤
j

⇣i = b><(B⇤
x

⇣)

and
N

X

j=1

<(a⇤
j

x)

|a⇤
j

x| =(a⇤
j

⇣)�
=(a⇤

j

x)

|a⇤
j

x| <(a⇤
j

⇣) = =(B⇤
x

⇣) = B>
x

G(�i⇣)

which yield the desired results.

Next we investigate the conditions under which r2F (x
0

) is positive definite.

3.1. The two-pattern case. Let �
1

� �
2

� . . . � �
2n

� �
2n+1

= · · · = �
N

= 0 be the
singular values of B with the corresponding right singular vectors {⌘

k

2 RN}N
k=1

and left singular
vectors {⇠

k

2 R2n}2n
k=1

.

Proposition 3.2. We have ⇠
1

= G(x
0

), ⇠
2n

= G(�ix
0

), �
1

= 1,�
2n

= 0 and ⌘
1

= |A⇤x
0

|.
Proof. Since

B⇤x = ⌦⇤A⇤x

we have

<[B⇤x
0

] = B>⇠
1

= |A⇤x
0

|, =[B⇤x
0

] = B>⇠
2n

= 0(3.9)

and hence the results.

Proposition

15Proof. Since ⇠
1

= x
0

is the fixed point for both B
1

B>
1

and B
2

B>
2

, the set {⇠ 2 R2n : ⇠ ? ⇠
1

} is
invariant under both. Hence, by the calculation

kB
2

B>
2

B
1

B>
1

⇠k = kB
2

B>
2

⇠0k
 (�(2)

2

)2k⇠0k

 (�(2)

2

)2(�(1)

2

)2k⇠k

the proof is complete.

By Proposition 3.8, �(l)

2

< 1, l = 1, 2, and hence kDk? < 1, by Proposition 4.1, which ensures
the local, geometric convergence of SAP.

Theorem 4.2. (SAP with two patterns) Let A⇤ be given by (1.5) and let x
0

2 Cn be rank-2 and
satisfy F

2

F
1

(x
0

) = x
0

. For any given 0 < ✏ < 1� kDk, if x(1) is su�ciently close to x
0

then with
probability one the SAP iterates x(k) converges to x

0

geometrically after global phase adjustment,
i.e.

(4.7) k↵(k+1)x(k+1) � x
0

k  (kDk? + ✏)k↵(k)x(k) � x
0

k, 8k

where ↵(k) := argmin
↵

{k↵x(k) � x
0

k : |↵| = 1}.
Proof.

At the optimal phase ↵(k) adjustment for x(k), we have

=(x⇤
0

↵(k)x(k)) = 0

and hence

(4.8) h↵(k)x(k) � x
0

, ix
0

i = h↵(k)x(k), ix
0

i = <((↵(k)x(k))⇤ix
0

) = 0

which implies that
u(k) := �i(↵(k)x(k) � x

0

)

is orthogonal to the leading right singular vector ⇠
1

= G(x
0

) of B⇤
l

, l = 1, 2:

⇠
1

? G(u(k)), 8k(4.9)

cf. Proposition 3.2.

We have for k = 1, 2, 3, · · ·

k↵(k+1)F
2

F
1

(x(k))� x
0

k  k↵(k)F
2

F
1

(x(k))� x
0

k
= kF

2

F
1

(↵(k)x(k))� F
2

F
1

(x
0

)k
= kDG(u(k))k+ o(ku(k)k)
 max

⇠?⇠
1

k⇠k=1

kD⇠kku(k)k+ o(ku(k)k)

and hence

ku(k+1)k  kDk?ku(k)k+ o(ku(k)k).(4.10)

15Proof. Since ⇠
1

= x
0

is the fixed point for both B
1

B>
1

and B
2

B>
2

, the set {⇠ 2 R2n : ⇠ ? ⇠
1

} is
invariant under both. Hence, by the calculation

kB
2

B>
2

B
1

B>
1

⇠k = kB
2

B>
2

⇠0k
 (�(2)

2

)2k⇠0k

 (�(2)

2

)2(�(1)

2

)2k⇠k

the proof is complete.

By Proposition 3.8, �(l)

2

< 1, l = 1, 2, and hence kDk? < 1, by Proposition 4.1, which ensures
the local, geometric convergence of SAP.

Theorem 4.2. (SAP with two patterns) Let A⇤ be given by (1.5) and let x
0

2 Cn be rank-2 and
satisfy F

2

F
1

(x
0

) = x
0

. For any given 0 < ✏ < 1� kDk, if x(1) is su�ciently close to x
0

then with
probability one the SAP iterates x(k) converges to x

0

geometrically after global phase adjustment,
i.e.

(4.7) k↵(k+1)x(k+1) � x
0

k  (kDk? + ✏)k↵(k)x(k) � x
0

k, 8k

where ↵(k) := argmin
↵

{k↵x(k) � x
0

k : |↵| = 1}.
Proof.

At the optimal phase ↵(k) adjustment for x(k), we have

=(x⇤
0

↵(k)x(k)) = 0

and hence

(4.8) h↵(k)x(k) � x
0

, ix
0

i = h↵(k)x(k), ix
0

i = <((↵(k)x(k))⇤ix
0

) = 0

which implies that
u(k) := �i(↵(k)x(k) � x

0

)

is orthogonal to the leading right singular vector ⇠
1

= G(x
0

) of B⇤
l

, l = 1, 2:

⇠
1

? G(u(k)), 8k(4.9)

cf. Proposition 3.2.

We have for k = 1, 2, 3, · · ·

k↵(k+1)F
2

F
1

(x(k))� x
0

k  k↵(k)F
2

F
1

(x(k))� x
0

k
= kF

2

F
1

(↵(k)x(k))� F
2

F
1

(x
0

)k
= kDG(u(k))k+ o(ku(k)k)
 max

⇠?⇠
1

k⇠k=1

kD⇠kku(k)k+ o(ku(k)k)

and hence

ku(k+1)k  kDk?ku(k)k+ o(ku(k)k).(4.10)

G(dF⇠) = G(iB=(B⇤
⇠))

=

"
�=(B)
<(B)

#

B>
G(�i⇠), 8⇠ 2 Cn

.

Hence, by the isomorphism Cn

⇠= R2n via G(�i⇠), we can rep-

resent the action of dF on R2n by the real matrix

BB> =

"
<(B)
=(B)

# h
<(B>) =(B>)

i

G(�iv) :=

"
=(v)
�<(v)

#

, 8v 2 Cn

Let x(n) 2 R, n = 0, ..., N (and zero outside) be the real-valued

signal to be encoded and later recovered.

1

Isomorphism



Spectral gap (two patterns)10
Proposition 3.3.

�
2

= max{k=[B⇤u]k : u 2 Cn, iu ? x
0

, kuk = 1}(3.10)

= max{kB>uk : u 2 R2n, u ? ⇠
1

, kuk = 1}.

Proof. Note that
=[B⇤u] = B>G(�iu).

The orthogonality condition iu ? x
0

is equivalent to

G(x
0

) ? G(�iu).

Hence, by Proposition 3.2, ⇠
2

is the maximizer of the right hand side of (3.10), yielding the desired
value �

2

.

We recall the spectral gap property, proved in [19], that is a key to the local convergence
theorems.

Proposition 3.4. [19] Suppose x
0

2 Cn is rank-2. For the two-pattern case with A⇤ given by
(1.5), we have �

2

< 1 with probability one.

Proposition 3.5. Let

(3.11) �
2

(x) = max{k=(B⇤
x

u)k : u 2 Cn, hu, xi = 0, kuk = 1}.

Let � be a convex combination of x and x
0

with hx
0

, xi > 0. Then

(3.12) k=(B⇤
�

(x� x
0

))k  �
2

(�)kx� x
0

k.

Proof. Since hx
0

, xi > 0,

(3.13) c
1

:= k�k�2h�, x
0

i > 0, c
2

:= k�k�2h�, xi > 0

and we can write the orthogonal decomposition

(3.14) x
0

= c
1

� + �
1

, x = c
2

� + �
2

with some vectors �
1

, �
2

satisfying h�
1

, �i = h�
2

, �i = 0.

By (3.2),
=(B⇤

�

�) = =(|A⇤�|) = 0

and hence

=(B⇤
�

(x� x
0

)) = =(B⇤
�

(�
2

� �
1

))

from which it follows that

kx� x
0

k�1k=(B⇤
�

(x� x
0

))k  k�
2

� �
1

k�1k=(B⇤
�

(�
2

� �
1

))k  �
2

(�)

by the definition (3.11). The main result is the local convergence of PAP.

Let �1 � �2 � . . . � �2n � �2n+1 = · · · = �

N

= 0 be the sin-

gular values of B with the corresponding right singular vectors

{⌘
k

2 RN}N
k=1 and left singular vectors {⇠

k

2 R2n}2n
k=1.

Suppose x0 2 Cn

is rank-2. Then �2 < 1 with probability one.

G(dF
⇠

) = G(iB=(B⇤
⇠))

=

"
�=(B)
<(B)

#

B>
G(�i⇠), 8⇠ 2 Cn

.

G(�idF
l

⇠) = B
l

BT
l

G(�i⇠), 8⇠ 2 Cn

.

1

Proposition

Let �1 � �2 � . . . � �2n � �2n+1 = · · · = �

N

= 0 be the sin-

gular values of B with the corresponding right singular vectors

{⌘
k

2 RN}N
k=1 and left singular vectors {⇠

k

2 R2n}2n
k=1.

Suppose x0 2 Cn

is rank-2. Then �2 < 1 with probability one.

If

]A⇤
x̂ = ±]A⇤

x0

where the ± sign may be pixel-dependent, then almost surely

x̂ = cx0 for some constant c 2 R.

1

Uniqueness theorem for magnitude retrieval

17

One random mask suffices !
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For any given 0 < " < 1� �

2
2, if x

(1)
is su�ciently close to x0

then with probability one the PAP iterates x

(k)
converges to

x0 geometrically after global phase adjustment, i.e.

k↵(k+1)
x

(k+1) � x0k  (�22 + ")k↵(k)
x

(k) � x0k, 8k

where ↵

(k) := argmin
↵

{k↵x(k) � x0k : |↵| = 1}.

|I|
N

⌧ 1,
|I|2

N

� 1,
n

|I|
< 1, n � 1.

Let A 2 Cn⇥N

be an i.i.d. complex Gaussian matrix. Let  < 1

be a fixed constant. Suppose

� =
|I|
N

  < 1, ⌫ =
n

|I|
< 1.

Then for any " 2 (0,1), � > 0 and t 2 (0, ⌫�1/2�1) the following

1

Theorem (PAP)

Local convergence (PAP)
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14and consider the serial AP (SAP)
F
2

F
1

(x)

proposed in [28] . In contrast PAP is the iteration of

(4.3) F(x) = A

✓

b� A⇤x

|A⇤x|

◆

=
1

2
(F

1

(x) + F
2

(x)).

By repeating the proof of Theorem 3.6 for F
1

and F
2

, we immediately get the bound

(4.4) k↵(k+1)x(k+1) � x
0

k  ((�(2)

2

�
(1)

2

)2 + ✏)k↵(k)x(k) � x
0

k, 8k,

where

�
(l)

2

= max{k=[B⇤
l

u]k : u 2 Cn, iu ? x
0

, kuk = 1}, l = 1, 2

and

B
l

= A
l

diag

⇢

A⇤
l

x
0

|A⇤
l

x
0

|

�

, l = 1, 2.

But we can do better.
Similar to the calculation in Proposition 3.1, the derivative dF

l

of F
l

in the notation of (3.1),
(3.2),(3.3) can be expressed as

G(dF
l

⇠) = G(iB
l

=(B⇤
l

⇠))

=



�=(B
l

)
<(B

l

)

�

B>
l

G(�i⇠), 8⇠ 2 Cn.

Equivalently, we have

G(�idF
l

⇠) = B
l

BT

l

G(�i⇠), 8⇠ 2 Cn.

Hence, by the isomorphism Cn ⇠= R2n via G(�i⇠), we can represent the action of dF
l

on R2n by the
real matrix

B
l

B>
l

=



<(B
l

)
=(B

l

)

�

h

<(B>
l

) =(B>
l

)
i

(4.5)

and the action of d(F
2

F
1

) by

D := B
2

B>
2

B
1

B>
1

.

Define

kDk? := max{kD⇠k : ⇠ 2 R2n, ⇠ ? ⇠
1

, k⇠k = 1}.(4.6)

We have the following bound.
Proposition 4.1.

kDk?  (�(2)

2

�
(1)

2

)2.

15Proof. Since ⇠
1

= x
0

is the fixed point for both B
1

B>
1

and B
2

B>
2

, the set {⇠ 2 R2n : ⇠ ? ⇠
1

} is
invariant under both. Hence, by the calculation

kB
2

B>
2

B
1

B>
1

⇠k = kB
2

B>
2

⇠0k
 (�(2)

2

)2k⇠0k

 (�(2)

2

)2(�(1)

2

)2k⇠k

the proof is complete.

By Proposition 3.8, �(l)

2

< 1, l = 1, 2, and hence kDk? < 1, by Proposition 4.1, which ensures
the local, geometric convergence of SAP.

Theorem 4.2. (SAP with two patterns) Let A⇤ be given by (1.5) and let x
0

2 Cn be rank-2 and
satisfy F

2

F
1

(x
0

) = x
0

. For any given 0 < ✏ < 1� kDk, if x(1) is su�ciently close to x
0

then with
probability one the SAP iterates x(k) converges to x

0

geometrically after global phase adjustment,
i.e.

(4.7) k↵(k+1)x(k+1) � x
0

k  (kDk? + ✏)k↵(k)x(k) � x
0

k, 8k

where ↵(k) := argmin
↵

{k↵x(k) � x
0

k : |↵| = 1}.
Proof.

At the optimal phase ↵(k) adjustment for x(k), we have

=(x⇤
0

↵(k)x(k)) = 0

and hence

(4.8) h↵(k)x(k) � x
0

, ix
0

i = h↵(k)x(k), ix
0

i = <((↵(k)x(k))⇤ix
0

) = 0

which implies that
u(k) := �i(↵(k)x(k) � x

0

)

is orthogonal to the leading right singular vector ⇠
1

= G(x
0

) of B⇤
l

, l = 1, 2:

⇠
1

? G(u(k)), 8k(4.9)

cf. Proposition 3.2.

We have for k = 1, 2, 3, · · ·

k↵(k+1)F
2

F
1

(x(k))� x
0

k  k↵(k)F
2

F
1

(x(k))� x
0

k
= kF

2

F
1

(↵(k)x(k))� F
2

F
1

(x
0

)k
= kDG(u(k))k+ o(ku(k)k)
 max

⇠?⇠
1

k⇠k=1

kD⇠kku(k)k+ o(ku(k)k)

and hence

ku(k+1)k  kDk?ku(k)k+ o(ku(k)k).(4.10)

14and consider the serial AP (SAP)
F
2

F
1

(x)

proposed in [28] . In contrast PAP is the iteration of

(4.3) F(x) = A

✓

b� A⇤x

|A⇤x|

◆

=
1

2
(F

1

(x) + F
2

(x)).

By repeating the proof of Theorem 3.6 for F
1

and F
2

, we immediately get the bound

(4.4) k↵(k+1)x(k+1) � x
0

k  ((�(2)

2

�
(1)

2

)2 + ✏)k↵(k)x(k) � x
0

k, 8k,

where

�
(l)

2

= max{k=[B⇤
l

u]k : u 2 Cn, iu ? x
0

, kuk = 1}, l = 1, 2

and

B
l

= A
l

diag

⇢

A⇤
l

x
0

|A⇤
l

x
0

|

�

, l = 1, 2.

But we can do better.
Similar to the calculation in Proposition 3.1, the derivative dF

l

of F
l

in the notation of (3.1),
(3.2),(3.3) can be expressed as

G(dF
l

⇠) = G(iB
l

=(B⇤
l

⇠))

=



�=(B
l

)
<(B

l

)

�

B>
l

G(�i⇠), 8⇠ 2 Cn.

Equivalently, we have

G(�idF
l

⇠) = B
l

BT

l

G(�i⇠), 8⇠ 2 Cn.

Hence, by the isomorphism Cn ⇠= R2n via G(�i⇠), we can represent the action of dF
l

on R2n by the
real matrix

B
l

B>
l

=



<(B
l

)
=(B

l

)

�

h

<(B>
l

) =(B>
l

)
i

(4.5)

and the action of d(F
2

F
1

) by

D := B
2

B>
2

B
1

B>
1

.

Define

kDk? := max{kD⇠k : ⇠ 2 R2n, ⇠ ? ⇠
1

, k⇠k = 1}.(4.6)

We have the following bound.
Proposition 4.1.

kDk?  (�(2)

2

�
(1)

2

)2.Convergence rate

Local convergence (SAP)
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Local convergence (one pattern)

12 For any ✏ > 0, if x(1) is su�ciently close to x
0

, then by continuity

(3.20) sup
t2(0,1)

�2

2

(�(t))  �2

2

+ ✏/2, sup
t2(0,1)

k⇢
�(t)

� 1k1  ✏/2,

and we have from above estimate

k↵(2)x(2) � x
0

k  (�2

2

+ ✏)k↵(1)x(1) � x
0

k.

By induction, we have

k↵(k+1)x(k+1) � x
0

k  (�2

2

+ ✏)k↵(k)x(k) � x
0

k

from which (3.15) follows.

3.2. The one-pattern case. In the case of x
0

, x 2 Rn (or Rn

+

), we adopt the new definition

�̃
2

:= max{k=(B⇤)uk : u 2 Rn, hu, x
0

i = 0, kuk = 1}(3.21)

where the di↵erence from the definition (3.11) of �
2

is that u has all real components. Clearly we
have �̃

2

 �
2

of the one-pattern case.

From the isometry property of B⇤ and that u 2 Rn, it follows that

�̃2

2

= 1�min{k<(B⇤)uk2 : u 2 Rn, hu, x
0

i = 0, kuk = 1}.(3.22)

By Proposition 3.2 and x
0

2 Rn,

⇠
1

=



x
0

0

�

and hence x
0

is the leading singular vector of <(B⇤) over Rn. Therefore, we can remove the
condition hu, x

0

i = 0 in (3.22) and write

�̃2

2

= 1� min
u2Rn

kuk=1

k<(B⇤)uk2(3.23)

= max
u2Rn

kuk=1

k=(B⇤)uk2

= k=(B⇤)k2.

The spectral gap property holds even with just one coded di↵raction pattern for any complex
object.

Proposition 3.8. [19] Let x
0

2 Cn be rank-2. For the one-pattern case with A⇤ given by (1.4),
�
2

< 1 (and hence �̃
2

< 1) with probability one.

Following verbatim the proof of Proposition 3.5, we have the similar result.

Proposition 3.9. Let x
0

, x 2 Rn (or Rn

+

) with hx
0

, xi > 0. Let � be a convex combination of
x and x

0

. Then

(3.24) k=(B⇤
�

(x� x
0

))k  �̃
2

(�)kx� x
0

k

12 For any ✏ > 0, if x(1) is su�ciently close to x
0

, then by continuity

(3.20) sup
t2(0,1)

�2

2

(�(t))  �2

2

+ ✏/2, sup
t2(0,1)

k⇢
�(t)

� 1k1  ✏/2,

and we have from above estimate

k↵(2)x(2) � x
0

k  (�2

2

+ ✏)k↵(1)x(1) � x
0

k.

By induction, we have

k↵(k+1)x(k+1) � x
0

k  (�2

2

+ ✏)k↵(k)x(k) � x
0

k

from which (3.15) follows.

3.2. The one-pattern case. In the case of x
0

, x 2 Rn (or Rn

+

), we adopt the new definition

�̃
2

:= max{k=(B⇤)uk : u 2 Rn, hu, x
0

i = 0, kuk = 1}(3.21)

where the di↵erence from the definition (3.11) of �
2

is that u has all real components. Clearly we
have �̃

2

 �
2

of the one-pattern case.

From the isometry property of B⇤ and that u 2 Rn, it follows that

�̃2

2

= 1�min{k<(B⇤)uk2 : u 2 Rn, hu, x
0

i = 0, kuk = 1}.(3.22)

By Proposition 3.2 and x
0

2 Rn,

⇠
1

=



x
0

0

�

and hence x
0

is the leading singular vector of <(B⇤) over Rn. Therefore, we can remove the
condition hu, x

0

i = 0 in (3.22) and write

�̃2

2

= 1� min
u2Rn

kuk=1

k<(B⇤)uk2(3.23)

= max
u2Rn

kuk=1

k=(B⇤)uk2

= k=(B⇤)k2.

The spectral gap property holds even with just one coded di↵raction pattern for any complex
object.

Proposition 3.8. [19] Let x
0

2 Cn be rank-2. For the one-pattern case with A⇤ given by (1.4),
�
2

< 1 (and hence �̃
2

< 1) with probability one.

Following verbatim the proof of Proposition 3.5, we have the similar result.

Proposition 3.9. Let x
0

, x 2 Rn (or Rn

+

) with hx
0

, xi > 0. Let � be a convex combination of
x and x

0

. Then

(3.24) k=(B⇤
�

(x� x
0

))k  �̃
2

(�)kx� x
0

k

13where
�̃
2

(�) := max{k=(B⇤
�

)uk : u 2 Rn, hu, �i = 0, kuk = 1}.

Now we have the following convergence theorem analogous to Theorem 3.6.

Theorem 3.10. (The one-pattern PAP) Let A⇤ be given by (1.4) and let x
0

2 Rn (or Rn

+

)

be rank-2 and satisfy F (x
0

) = 0. For any given 0 < ✏ < 1 � �̃2

2

, if x(1) is su�ciently close to
x
0

then with probability one the PAP iterates x(k) converges to x
0

geometrically after global phase
adjustment, i.e.

(3.25) k↵(k+1)x(k+1) � x
0

k  (�̃2

2

+ ✏)k↵(k)x(k) � x
0

k, 8k

where ↵(k) := argmin
↵=±1

{k↵x(k) � x
0

k} and ↵(k) = 1 if x
0

2 Rn

+

.

Proof.

From the definition of ↵(k+1), we have

k↵(k+1)x(k+1) � x
0

k  k↵(k)x(k+1) � x
0

k(3.26)

Recall the gradient projection method (2.8)

x(k+1) =
h

x(k) �rF (x(k))
i

X

and the fixed point property x
0

= [x
0

�rF (x
0

)]X .

By the properties of linear projection,

↵(k)x(k+1) =
h

↵(k)x(k) �rF (↵(k)x(k))
i

X
(3.27)

and hence the right hand side of (3.26) equals

k[↵(k)x(k) �rF (↵(k)x(k))]X � [x
0

�rF (x
0

)]X k
 k↵(k)x(k) �rF (↵(k)x(k))� x

0

+rF (x
0

)k.(3.28)

The rest of the proof follows verbatim that of Theorem 3.6 from (3.17) onward, except with �
2

replaced by �̃
2

.

4. The serial AP. Let A⇤
l

2 CN/2,n, l = 1, 2, be the coded measurement matrices properly
normalized to be isometric (hence A = 1p

2

[A
1

, A
2

]) and b
l

= |A⇤
l

x
0

| 2 RN/2, l = 1, 2 the correspond-

ing data. Let y 2 CN be written as y = [y>
1

, y>
2

]> where y
l

2 CN/2, l = 1, 2. Instead of (1.1), we
now formulate the two-pattern case as the following feasibility problem

Find ŷ 2 \2

l=1

(A⇤
l

X \ Y
l

) , Y
l

:= {y
l

2 CN/2 : |y
l

| = b
l

}.(4.1)

As the projection onto the non-convex set A⇤
l

X \Y
l

is not exactly known, we use the approximation
instead

(4.2) F
l

(x) = A
l

✓

b
l

�
A⇤

l

x

|A⇤
l

x|

◆

, l = 1, 2,

Convergence rate
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(a) One-pattern PAP: �̃2

2

= 0.9084
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(b) SAP kDk? = 0.7946; PAP �

2

2

= 0.9086

Figure 11. RE on the semi-log scale for PAP and SAP with (a) one pattern and (b) two patterns, where the
blue curves for SAP converge faster than the red curves for PAP.

Proof. Without loss of generality, let kx
0

k = 1 and let

� := |x⇤
0

x
null

|.(A.2)

Since x
null

is optimally phase-adjusted we can write

x
0

= �x
null

+
p

1� �2 z

with some unit vector z⇤x
null

= 0. Then

x? := �(1� �2)1/2x
null

+ �z(A.3)

is a unit vector satisfying x⇤
0

x? = 0. Since x
null

a singular vector and z belongs in another singular
subspace, we have

kA⇤
I

x
0

k2 = �2kA⇤
I

x
null

k2 + (1� �2)kA⇤
I

zk2,
kA⇤

I

x?k2 = (1� �2)kA⇤
I

x
null

k2 + �2kA⇤
I

zk2

from which it follows that

(2� �2)kA⇤
I

x
0

k2 � (1� �2)kA⇤
I

x?k2(A.4)

= kA⇤
I

x
null

k2 + 2(1� �2)2
�

kA⇤
I

zk2 � kA⇤
I

x
null

k2
�

� 0.

By (A.4), (5.5) and kb
I

k = kA⇤x
0

k, we also have

kb
I

k2

kA⇤
I

x?k2
� 1� �2

2� �2

� 1

2
(1� �2) =

1

2
kx

0

x⇤
0

� x
null

x⇤
null

k2.(A.5)

.

Proposition A.2. Let A 2 Cn,N be an i.i.d. complex Gaussian random matrix. Then for any
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18

(a) x

spec

(b) x

t-spec

(⌧2 = 4.6) (c) x

null

(� = 0.5) (d) x

null

(� = 0.74)

Figure 2. Initialization of the Phantom with one pattern: (a) RE(x
spec

) = 0.9604, (b) RE(x
t-spec

) = 0.7646, (c)
RE(x

null

) = 0.5119, (d) RE(x
null

) = 0.4592.

6. Simulations. In the following simulations, we use the relative error (RE)

RE = min
✓2[0,2⇡)

kx
0

� ei✓xk/kx
0

k

as the figure of merit and the relative residual ( RR)

RR = kb� |A⇤x|k/kx
0

k

as a metric for determining the stopping rule of the iterations.
Let 1

c

be the characteristic function of the complementary index I
c

with |I
c

| = �N . Note that
� + � = 1 with � given by (5.6).

Algorithm 1: The null vector method

1 Random initialization: x
1

= x
rand

2 Loop:
3 for k = 1 : k

max

� 1 do
4 x0

k

 A(1
c

�A⇤x
k

);

5 x
k+1

 
h

x
0
k

i

X
/k

h

x
0
k

i

X
k

6 end
7 Output: x

null

= x
k

max

.

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting x

null

.
The key di↵erence between the null vector method and the spectral vector method is the

di↵erent weights used in step 4 where the null vector method uses 1
c

and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) x
t-spec

= argmax
kxk=1

kA
�

1
⌧

� |b|2 �A⇤x
�

k

where 1
⌧

is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}
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If there are sufficiently many data that are small, then the 
unique null vector of the row sub-matrix may be a good bet.

16By induction on k with u(1) su�ciently small, we have the desired result (4.7).

5. The null vector method. For a nonconvex minimization problem such as phase retrieval,
the accuracy of the initialization as the estimate of the object has a great impact on the performance
of any iterative schemes.

The following observation motivates our approach to e↵ective initialization. Let I be an index
set and I

c

its complement such that b(i)  b(j) for all i 2 I, j 2 I
c

. Let |I| be the cardinality of the
set I. Then {a

i

}
i2I is a set of sensing vectors nearly orthogonal to x

0

if |I|/N is su�ciently small
(see Remark 5.2). This suggests the following constrained least squares solution

x
null

:= argmin

(

X

i2I
ka⇤

i

xk2 : x 2 X , kxk = kx
0

k
)

may be a reasonable initialization. Note that x
null

is not uniquely defined as ↵x
null

, with |↵| = 1,
is also a null vector. Hence we should consider the global phase adjustment for a given null vector
x
null

min
↵2C, |↵|=1

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2max
|↵|=1

<(x⇤
0

↵x
null

).

In what follows, we always assume x
null

to be optimally adjusted so that

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2|x⇤
0

x
null

|(5.1)

Denote the sub-column matrices consisting of {a
i

}
i2I and {a

j

}
j2Ic by A

I

and A
Ic , respectively,

and, by reshu✏ing the row index, write A = [A
I

, A
Ic ] 2 Cn,N .

Define the dual vector

x
dual

:= argmax
�

kA⇤
Ic
xk2 : x 2 X , kxk = kx

0

k
 

(5.2)

5.1. Isometric A⇤. In the case of isometric A⇤, we have

kA⇤
I

xk2 + kA⇤
Ic
xk2 = kxk2

and hence

x
null

= x
dual

,(5.3)

i.e. the null vector is self-dual in the case of isometric A⇤. Eq. (5.3) can be used to construct the
null vector from A

IcA
⇤
Ic

by the power method.

5.2. Non-isometric A⇤. When A⇤ is non-isometric such as a Gaussian random matrix (see
below), the power method is still applicable with the following modification.

For a full rank A, let A⇤ = QR be the QR-decomposition of A⇤ where Q is isometric and R is a
full-rank, upper-triangular square matrix. Let z = Rx, z

0

= Rx
0

and z
null

= Rx
null

. Clearly, z
null

is the null vector for the isometric phase retrieval problem b = |Qz|.
Let I and I

c

be the index sets as above. Let

ẑ = arg max
kzk=1

kQ
Iczk.(5.4)

16By induction on k with u(1) su�ciently small, we have the desired result (4.7).

5. The null vector method. For a nonconvex minimization problem such as phase retrieval,
the accuracy of the initialization as the estimate of the object has a great impact on the performance
of any iterative schemes.

The following observation motivates our approach to e↵ective initialization. Let I be an index
set and I

c

its complement such that b(i)  b(j) for all i 2 I, j 2 I
c

. Let |I| be the cardinality of the
set I. Then {a

i

}
i2I is a set of sensing vectors nearly orthogonal to x

0

if |I|/N is su�ciently small
(see Remark 5.2). This suggests the following constrained least squares solution

x
null

:= argmin

(

X

i2I
ka⇤

i

xk2 : x 2 X , kxk = kx
0

k
)

may be a reasonable initialization. Note that x
null

is not uniquely defined as ↵x
null

, with |↵| = 1,
is also a null vector. Hence we should consider the global phase adjustment for a given null vector
x
null

min
↵2C, |↵|=1

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2max
|↵|=1

<(x⇤
0

↵x
null

).

In what follows, we always assume x
null

to be optimally adjusted so that

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2|x⇤
0

x
null

|(5.1)

Denote the sub-column matrices consisting of {a
i

}
i2I and {a

j

}
j2Ic by A

I

and A
Ic , respectively,

and, by reshu✏ing the row index, write A = [A
I

, A
Ic ] 2 Cn,N .

Define the dual vector

x
dual

:= argmax
�

kA⇤
Ic
xk2 : x 2 X , kxk = kx

0

k
 

(5.2)

5.1. Isometric A⇤. In the case of isometric A⇤, we have

kA⇤
I

xk2 + kA⇤
Ic
xk2 = kxk2

and hence

x
null

= x
dual

,(5.3)

i.e. the null vector is self-dual in the case of isometric A⇤. Eq. (5.3) can be used to construct the
null vector from A

IcA
⇤
Ic

by the power method.

5.2. Non-isometric A⇤. When A⇤ is non-isometric such as a Gaussian random matrix (see
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ẑ = arg max
kzk=1

kQ
Iczk.(5.4)

16By induction on k with u(1) su�ciently small, we have the desired result (4.7).

5. The null vector method. For a nonconvex minimization problem such as phase retrieval,
the accuracy of the initialization as the estimate of the object has a great impact on the performance
of any iterative schemes.

The following observation motivates our approach to e↵ective initialization. Let I be an index
set and I

c

its complement such that b(i)  b(j) for all i 2 I, j 2 I
c

. Let |I| be the cardinality of the
set I. Then {a

i

}
i2I is a set of sensing vectors nearly orthogonal to x

0

if |I|/N is su�ciently small
(see Remark 5.2). This suggests the following constrained least squares solution

x
null

:= argmin

(

X

i2I
ka⇤

i

xk2 : x 2 X , kxk = kx
0

k
)

may be a reasonable initialization. Note that x
null

is not uniquely defined as ↵x
null

, with |↵| = 1,
is also a null vector. Hence we should consider the global phase adjustment for a given null vector
x
null

min
↵2C, |↵|=1

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2max
|↵|=1

<(x⇤
0

↵x
null

).

In what follows, we always assume x
null

to be optimally adjusted so that

k↵x
null

� x
0

k2 = 2kx
0

k2 � 2|x⇤
0

x
null

|(5.1)

Denote the sub-column matrices consisting of {a
i

}
i2I and {a

j

}
j2Ic by A

I

and A
Ic , respectively,

and, by reshu✏ing the row index, write A = [A
I

, A
Ic ] 2 Cn,N .

Define the dual vector

x
dual

:= argmax
�

kA⇤
Ic
xk2 : x 2 X , kxk = kx

0

k
 

(5.2)

5.1. Isometric A⇤. In the case of isometric A⇤, we have

kA⇤
I

xk2 + kA⇤
Ic
xk2 = kxk2

and hence

x
null

= x
dual

,(5.3)

i.e. the null vector is self-dual in the case of isometric A⇤. Eq. (5.3) can be used to construct the
null vector from A

IcA
⇤
Ic

by the power method.

5.2. Non-isometric A⇤. When A⇤ is non-isometric such as a Gaussian random matrix (see
below), the power method is still applicable with the following modification.

For a full rank A, let A⇤ = QR be the QR-decomposition of A⇤ where Q is isometric and R is a
full-rank, upper-triangular square matrix. Let z = Rx, z

0

= Rx
0

and z
null

= Rx
null

. Clearly, z
null

is the null vector for the isometric phase retrieval problem b = |Qz|.
Let I and I

c

be the index sets as above. Let
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Theorem
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5.3. Gaussian random matrices . Although we are unable to provide a rigorous justification
of the null vector method in the Fourier case, we shall do so for the complex Gaussian case A =
<(A) + i=(A), where the entries of <(A),=(A) are i.i.d. standard normal random variables. In
terms of the closely related error metric
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we have the following estimate.
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Remark 5.2. To unpack the implications of Theorem 5.1, consider the following asymptotic:

With ✏ and t fixed, let

n � 1,
n

|I| < 1,
|I|
N

⌧ 1,
|I|2

N
� 1.

The right hand side of (5.7) is no greater than C� for a moderate constant C while (5.8) is close
to unity.

The proof of Theorem 5.1 is given in Appendix A.

6. Simulations. In the following simulations, we use the relative error (RE)

RE = min
✓2[0,2⇡)

kx
0

� ei✓xk/kx
0

k

as the figure of merit and the relative residual ( RR)

RR = kb� |A⇤x|k/kx
0

k

as a metric for determining the stopping rule of the iterations.
Let 1

c

be the characteristic function of the complementary index I
c

with |I
c

| = �N . Note that
� + � = 1 with � given by (5.6).

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
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Algorithm 1: The null vector method

1 Random initialization: x
1

= x
rand

2 Loop:
3 for k = 1 : k

max

� 1 do
4 x0

k

 A(1
c

�A⇤x
k

);

5 x
k+1

 
h

x
0
k

i

X
/k

h

x
0
k

i

X
k

6 end
7 Output: x

null

= x
k

max

.

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting x

null

.
The key di↵erence between the null vector method and the spectral vector method is the

di↵erent weights used in step 4 where the null vector method uses 1
c

and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting
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Figure 3. RR and RE versus iteration for the Cameraman with one pattern.

with an adjustable parameter ⌧ . As we see below the choice of weight significantly a↵ects the
quality of initialization, with the null vector method as the best performer.

6.1. Test images. Let C,B and P denote the 256⇥ 256 non-negatively valued Cameraman,
Barbara and Phantom images, respectively.

For one-pattern simulation, we use C and P for test images. For the two-pattern simulations,
we use the complex-valued images, Randomly Signed Cameraman-Barbara (RSCB) and Randomly
Phased Phantom (RPP), constructed as follows.
RSCB Let the components of µ

R

and µ
I

be i.i.d Bernoulli random variables of ±1. Let

x
0

= µ
R

� C + iµ
I

�B.

RPP Let the components of � be i.i.d. uniform random variables over [0, 2⇡] and let

x
0

= P � ei�.

6.2. The one-pattern case. Fig. 1 and 2 show that the null vector x
null

is more accurate
than the spectral vector x

spec

and the truncated spectral vector x
t-spec

in approximating the true
images. For the Cameraman (resp. the Phantom) RR(x

null

) can be minimized by setting � ⇡ 0.70
(resp. � ⇡ 0.74). The optimal parameter ⌧2 for x

t�spec

in (6.1) is about 4.1 (resp. 4.6).
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less than 3%.

Fig. 7 shows the convergence behaviors of PAP and WF with the null vector initialization.
PAP converges rapidly for both images while WF converges for RSCB (up to about 150 iterations)
but not RPP.
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Figure 9. Reconstructions of RPP (in absolute value) by PAP and WF with two patterns (� = 0.4, ⇢ = 1.96).
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Figure 10. RE versus iteration of PAP and SAP with the null vector method (� = 0.5) in the two-pattern case.

6.5. SAP versus PAP. Finally we compare the performances of PAP and SAP in the two
pattern case. As Fig. 10 shows, it takes SAP about half the number of iterations than PAP to
converge to the object. In terms of the speed of convergence, SAP with the null vector initialization
is comparable to the Douglas-Rachford algorithm, cf. [19, Fig. 5(a)(c)].

Fig. 11 shows the RE versus iteration on a semi-log scale (a) the one-pattern and (b) two-
pattern cases. The dotted lines represent the geometric series {�̃2k
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}200
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}200
k=1

and kDkk? (the
pink in (a) and the red and blue in (b)), which track well the actual iterates (the black-solid in (a)
and the blue- and red-solid curves in (b)), consistent with the predictions of Theorems 3.6, 3.10
and 4.2. In particular, SAP has a significantly faster rate of convergence than PAP.

Appendix A. Proof of Theorem 5.1. The proof is based on the following two propositions.

Proposition A.1. There exists x? 2 Cn with x⇤?x0 = 0 and kx?k = kx
0

k such that
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� x
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6.3. The two-pattern case. We use the complex images, RSCB and RPP, for the two-pattern
simulations.

Fig. 5 and 6 show that x
null

is more accurate than the x
spec

and x
t�spec

in approximating x
0

.
The di↵erence in RE between the initializations with the median value and the optimal values is
less than 3%.

Fig. 7 shows the convergence behaviors of PAP and WF with the null vector initialization.
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Figure 2. Initialization of the Phantom with one pattern: (a) RE(x
spec

) = 0.9604, (b) RE(x
t-spec

) = 0.7646, (c)
RE(x

null

) = 0.5119, (d) RE(x
null

) = 0.4592.

6. Simulations. In the following simulations, we use the relative error (RE)

RE = min
✓2[0,2⇡)

kx
0

� ei✓xk/kx
0

k

as the figure of merit and the relative residual ( RR)

RR = kb� |A⇤x|k/kx
0

k

as a metric for determining the stopping rule of the iterations.
Let 1

c

be the characteristic function of the complementary index I
c

with |I
c

| = �N . Note that
� + � = 1 with � given by (5.6).

Algorithm 1: The null vector method

1 Random initialization: x
1

= x
rand

2 Loop:
3 for k = 1 : k

max

� 1 do
4 x0

k

 A(1
c

�A⇤x
k

);

5 x
k+1

 
h

x
0
k

i

X
/k

h

x
0
k

i

X
k

6 end
7 Output: x

null

= x
k

max

.

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting x

null

.
The key di↵erence between the null vector method and the spectral vector method is the

di↵erent weights used in step 4 where the null vector method uses 1
c

and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) x
t-spec

= argmax
kxk=1

kA
�

1
⌧

� |b|2 �A⇤x
�

k

where 1
⌧

is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}

One-pattern
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loop to optimize the parameter � by tracking and minimizing the RR of the resulting x
null

.

The key di↵erence between the null vector method and the spectral vector method is the
di↵erent weights used in step 4 where the null vector method uses 1

c

and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) x
t-spec

= argmax
kxk=1

kA
�

1
⌧

� |b|2 �A⇤x
�

k

where 1
⌧

is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}

with an adjustable parameter ⌧ . As we see below the choice of weight significantly a↵ects the
quality of initialization, with the null vector method as the best performer.

6.1. Test images. Let C,B and P denote the 256⇥ 256 non-negatively valued Cameraman,
Barbara and Phantom images, respectively.

For one-pattern simulation, we use C and P for test images. For the two-pattern simulations,
we use the complex-valued images, Randomly Signed Cameraman-Barbara (RSCB) and Randomly
Phased Phantom (RPP), constructed as follows.
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Figure 9. Reconstructions of RPP (in absolute value) by PAP and WF with two patterns (� = 0.4, ⇢ = 1.96).
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Figure 10. RE versus iteration of PAP and SAP with the null vector method (� = 0.5) in the two-pattern case.

6.5. SAP versus PAP. Finally we compare the performances of PAP and SAP in the two
pattern case. As Fig. 10 shows, it takes SAP about half the number of iterations than PAP to
converge to the object. In terms of the speed of convergence, SAP with the null vector initialization
is comparable to the Douglas-Rachford algorithm, cf. [19, Fig. 5(a)(c)].

Fig. 11 shows the RE versus iteration on a semi-log scale (a) the one-pattern and (b) two-
pattern cases. The dotted lines represent the geometric series {�̃2k

2

}200
k=1

, {�2k

2

}200
k=1

and kDkk? (the
pink in (a) and the red and blue in (b)), which track well the actual iterates (the black-solid in (a)
and the blue- and red-solid curves in (b)), consistent with the predictions of Theorems 3.6, 3.10
and 4.2. In particular, SAP has a significantly faster rate of convergence than PAP.

Appendix A. Proof of Theorem 5.1. The proof is based on the following two propositions.

Proposition A.1. There exists x? 2 Cn with x⇤?x0 = 0 and kx?k = kx
0

k such that

1

2
kx

0

x⇤
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� x
null

x⇤
null

k2  kb
I
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kA⇤
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x?k2
.(A.1)

Two-pattern
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A plausible measurement scheme is to guide the transmitted field (the transmission func-
tion [11]) from a planar illumination through a beam splitter [51], generating two copies
of the transmitted field which are then measured separately as a coded di↵raction pattern
and a plain di↵raction pattern. In this set-up, the object function is the transmitted field
behind the particle and the phase retrieval problem becomes the wave-front reconstruction
problem [11, 35]. In practice beam splitters and the masks (or any measurement devices)
should be used as sparingly as possible to avoid introducing excessive measurement noises.
With two di↵raction patterns, the uniqueness of solution (in the above sense) is restored

almost surely without the sector constraint (see Proposition 4.2 and Remark 4.4).
With the uniqueness-ensuring sampling schemes (Section 1.1), ad hoc combinations of

members of ITA (such as HIO and ER) can be devised to recover the true solution [29, 30].
There is, however, no convergence proof for these algorithms.
The main goal of the paper is to prove the local, geometric convergence of the Douglas-

Rachford (DR) algorithm to a unique fixed point in the case of one or two oversampled
di↵raction patterns (Theorems 5.1, 6.3 and 4.3) and demonstrate global convergence numer-
ically (Section 7).
DR has the following general form: Let P1 and P2 be the projections onto the two con-

straint sets, respectively. For phase retrieval, P1 describes the projection onto the set of
di↵racted fields (instead of di↵raction patterns) and P2 the data fitting. Let R1 = 2P1 � I
and R2 = 2P2 � I be the respective reflection operators. The Douglas-Rachford (DR) algo-
rithm is defined by the iteration scheme [25,40]

y(k+1) :=
1

2
(I +R1R2)y

(k)(1)

= y(k) + P1(2P2 � I)y(k) � P2y
(k), k = 1, 2, 3 · · ·

Closely related to HIO, DR also belongs to the ITA family (Section 3). ITA are computa-
tionally e�cient thanks to the fast Fourier transform (FFT) and explicit nature of P1, P2

(see (11) below).

1.1. Oversampled di↵raction patterns. Next we describe our sampling schemes before
we can properly introduce P1, P2 and the Douglas-Rachford algorithm for phase retrieval
(Section 3).
Let f(n) be a discrete object function with n = (n1, n2, · · · , nd

) 2 Zd. Consider the object
space consisting of all functions supported in M = {0  m1  M1, 0  m2  M2, · · · , 0 
m

d

 M
d

}. We assume d � 2.
With a coherent illumination under the Fraunhofer approximation, the free-space prop-

agation between the object plane and the sensor plane can be described by the Fourier
transform [11] (with the proper coordinates and normalization). However, only the intensi-
ties of the Fourier transform are measured on the sensor plane and constitute the so called
di↵raction pattern given by

M
X

n=�M

X

m+n2M

f(m+ n)f(m)e�i2⇡n·w, w = (w1, · · · , wd

) 2 [0, 1]d, M = (M1, · · · ,Md

)

which is the Fourier transform of the autocorrelation

R
f

(n) =
X

m2M

f(m+ n)f(m).
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Averaged Alternating Reflection

1) One-pattern case: A⇤ is given by (2), [x]X is given by (6).

2) Two-pattern case: A⇤ is given by (3) or (4), X = Cn.

Phasing solution is unique only up to a constant of modulus one no matter how many
coded di↵raction patterns are measured. Thus the proper error metric for an estimate x̂ of
the true solution x0 is given by

(8) min
✓2R

ke�i✓x0 � x̂k = min
✓2R

kei✓x̂ � x0k.

Throughout the paper, we assume the canonical embedding

Cn ✓ Cñ ✓ CN , n  ñ  N.

For example, if x 2 Cn, then the embedded vector in Cñ or CN , still denoted by x, has zero
components x(j) = 0 for j � n+1. This is referred to as zero padding and ñ/n is the padding
ratio. Conversely, if x 2 Cñ or CN , then [x]

n

2 Cn denotes the projected vector onto Cn.
Clearly, [x]Cn = [x]

n

.
The vector space CN = RN �R iRN is isomorphic to R2N via the map

(9) G(v) :=



<(v)
=(v)

�

, 8v 2 CN

and endowed with the real inner product

hu, vi := <(u⇤v) = G(u)>G(v), u, v 2 CN .

We say u and v are orthogonal to each other (denoted by u ? v) i↵ hu, vi = 0.
With a slight abuse of notation, we will use G(u) to denote the conversion of a complex-

valued vector u in Cn,Cñ or CN to its real-valued version.

Phase vector: Let y � y0 and y/y0 be the component-wise multiplication and division
between two vectors y, y0, respectively. For any y 2 CN define the phase vector ! 2 CN with
!(j) = y(j)/|y(j)| where |y(j)| 6= 0. When |y(j)| = 0 the phase can be assigned arbitrarily
and we set !(j) = 1 unless otherwise specified.

3. Douglas-Rachford algorithm

Phase retrieval can be formulated as the following feasibility problem in the Fourier domain

Find ŷ 2 A⇤X \ Y , Y := {y 2 CN : |y| = b}.(10)

Let P1 be the projection onto A⇤X and P2 the projection onto Y :

P1y = A⇤[Ay]X , P2y = b � y

|y|(11)

Then DR (1) becomes y(k+1) = Sf(y(k)) with

Sf(y) = y + A⇤


A

✓

2b � y

|y| � y

◆�

X
� b � y

|y|(12)

which we call the Fourier-domain DR (FDR) to contrast with the following object domain
version.

7

with

B = A ⌦, v = ⌦⇤⌘.(37)

In particular, if |y| = b, then (36) becomes

(38) Jfv = (I � B⇤B)<(v) + iB⇤B=(v)

Proof. Let

!
✏

=
y + ✏⌘

|y + ✏⌘| , ⌦
✏

= diag(!
✏

).

Reorganizing (29), we have

(39) Sf(y) = y � A⇤Ay + (2A⇤A � I)⌦b.

and hence

Sf(y + ✏⌘) � Sf(y) = ✏(I � A⇤A)⌘ + (2A⇤A � I)(⌦
✏

� ⌦)b

= ✏(I � ⌦B⇤B⌦⇤)⌘ + (2⌦B⇤B⌦⇤ � I)(⌦
✏

� ⌦)b(40)

We next give a first order approximation to (⌦
✏

� ⌦)b in terms of ⌘.
Using the first order Taylor expansion we have

!
✏

� ! = i⌦=
h

⌦⇤(!
✏

� !)
i

+ o(✏) = i✏⌦=


⌦⇤ ⌘

|y|

�

+ o(✏),

and hence

(⌦
✏

� ⌦)b = i✏⌦ diag



b

|y|

�

=(⌦⇤⌘) + o(✏).(41)
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Multiplying ⌦⇤ on both sides and using the definition of v we complete the proof. ⇤

Note that Jf is a real, but not complex, linear map since Jf(cv) 6= cJfv, c 2 C in general.
Define the real form of the matrix B:

(42) B :=



<[B]
=[B]

�

2 R2n,N .

Note that


<[B>] =[B>]
�=[B>] <[B>]

�

is real isometric because B⇤ is complex isometric.
From (9) we have

G(B⇤u) =



B>G(u)
B>G(�iu)

�

, u 2 Cn.(43)

For the rest of the paper, B denotes the matrix (37) with ⌦ = ⌦0, i.e.

B = A⌦0, ⌦0 = diag[!0], !0 =
y0

|y0|
(44)

unless otherwise specified.
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Convergence to unique fixed point

30

Let Ã⇤ = [A⇤, A⇤
?] 2 CN,ñ be a complex isometric extension of A⇤, implying that A?A

⇤
? =

I, AA⇤
? = A?A

⇤ = 0. Then the phase retrieval problem can be more generally formulated as
|Ã⇤x| = b, x 2 X . Consider the feasibility problem

Find x̂ 2 X \ X̃ , X̃ :=
n

x 2 Cñ : |Ã⇤x| = b
o

.(13)

Let P1 be the projection onto X , i.e. P1x = [x]X , and P2 the projection onto X̃ . When
ñ = N (hence Ã is unitary),

P2x = Ã

 

b � Ã⇤x

|Ã⇤x|

!

(14)

and (12) is equivalent to

(15) S(x) = x+

"

Ã

 

2b � Ã⇤x

|Ã⇤x|

!

� x

#

X

� Ã

 

b � Ã⇤x

|Ã⇤x|

!

.

In this case, we have

Ã⇤SÃ = Sf , for ñ = N.(16)

In the 1-pattern case with the standard oversampling N = ñ ⇡ 4n, Ã = A is unitary and
(15) is also known as the Hybrid-Input-Output (HIO) algorithm (with the HIO parameter
set to one) [8, 31].
For ñ < N (as with two oversampled patterns N ⇡ 8n with the standard padding ñ ⇡ 4n),

the precise form of P2 is not known explicitly. For the purpose of contrasting with (12) and
for lack of a better term we shall call (15) (with ñ  N) the generalized Object-domain
Douglas-Rachford algorithm (ODR for short). The ODR family is an interpolation between
the HIO and FDR.
While ODR depends explicitly on ñ, FDR is independent of ñ in the sense that

(17) Sf(y) = y + Ã⇤


Ã

✓

2b � y

|y| � y

◆�

X
� b � y

|y|
since [Ãy]X = [Ay]X 2 Cn and Ã⇤[Ãy]X = A⇤[Ay]X .

4. Uniqueness of fixed point

Let y1 be a fixed point of FDR (12), i.e.

Sf(y1) = y1, x1 = Ay1.

Let !1 = y1/|y1| be the phase factor of the fixed point. Let

x̂ = [A (2b � !1 � y1)]X = [2A(b � !1) � x1]X ,(18)

where X represents the sector condition in the 1-pattern case and X = Cn in the 2-pattern
case.
We have from (12)

A⇤x̂ = b � !1(19)

which implies the following results.

8

Proposition 4.1.

|A⇤x̂| = |A⇤x0|(20)

]A⇤x̂ = ]y1.(21)

The significance of Proposition 4.1 is this: Eq. (20) is related to phase retrieval and eq.
(21) magnitude retrieval problem.
Now we recall the uniqueness of phase retrieval.

Proposition 4.2. [28] (Uniqueness of Fourier phase retrieval) Let the assumptions of The-
orem 6.3 hold. Let x be a solution of of the phase retrieval problem (7).

1) One-mask case ` = 1. Suppose, in addition, that ]x0(j) 2 [�↵⇡, �⇡], 8j. Then
x = ei✓x0 for some constant ✓ 2 R with a high probability which has a simple, lower bound

1 � n

�

�

�

�

� + ↵

2

�

�

�

�

TS/2U
(22)

if µ is uniformly distributed on the unit circle, where S is the sparsity of the image and
TS/2U the greatest integer less than or equal to S/2.

2) Two-mask case ` = 2. Suppose, in addition, that both masks are independently and
continuously distributed on the unit circle and independent from each other. Then x = ei✓x0

for some constant ✓ 2 R with probability one.

The proof of Proposition 4.2 is given in [28] where more general uniqueness theorems can
be found, including the 11

2
-mask case.

Theorem 4.3. (Uniqueness of fixed point) In the set-up of Proposition 4.2, the following
statements hold for the phase retrieval problem (7).

(i) One-mask case. With probability at least given in (22), x̂ = ei✓x0 for some ✓ 2 R.

(ii) Two-mask case. Almost surely x̂ = x1 = ei✓x0 for some constant ✓ 2 R.

Remark 4.4. With a slightly stronger assumption ( [28], Theorem 6), the two-mask case in
Proposition 4.2 and hence Theorem 4.3 hold for the 11

2
-mask case (4).

Proof. By Proposition 4.2 (20) implies that x̂ = ei✓x0 for some constant ✓ 2 R, with the
only di↵erence between case (i) and case (ii) being the probability with which this statement
holds. To complete the proof, we only need to consider case 2) and show x̂ = x1.

By (18) x̂ 2 X and by Proposition 4.2 (20) implies that with probability no less than (22)
x̂ = ei✓x0 for some constant ✓ 2 R. Hence, by (21), we have

ei✓!0 = !1.(23)

Substituting (23) into (18) we obtain

2ei✓x0 = x̂+ x1 = ei✓x0 + x1

and hence ei✓x0 = x1. In other words,

x1 = x̂ = ei✓x0.
9
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⇤

On the other hand, for case (i), x̂ = ei✓x0 and (21) imply ei✓!0 = !1 and hence

ei✓y0 = ei✓b � !0 = b � !1.

This and (18) only lead to

x̂ = [2ei✓x0 � x1]X = [2x̂ � x1]X .

Corollary 4.5. Any fixed point y1 shares the same phase as y0 up to a global constant, i.e.
]y1 = ✓ + ]y0 for some constant ✓ 2 R.
In addition, in the two-mask case (Theorem 4.3 (ii)), y1 can be expressed as

y1 = ei✓(|y0| + v) � y0

|y0|
(24)

where

v 2 nullR(B) ⇢ RN(25)

and |y0| + v has all nonnegative components.

Proof. By (21) and Theorem 4.3,

]y1 = ✓ + ]A⇤x0 = ✓ + ]y0(26)

and hence

y1 = ei✓p � y0(27)

where p 2 RN has all nonnegative components.
By (18) and Theorem 4.3 (ii)

A (2b � !1 � y1) = ei✓Ay0

and hence by (27)

2ei✓y0 = 2b � !1 = y1 + ei✓(y0 + y0)(28)

where Ay0 = 0. Solving for y0 from (28) and (27) we obtain y0 = (1 � p) � y0.
Let v = (p � 1) � |y0| 2 RN and write y0 = v � y0/|y0|. Since Ay0 = 0, we have Bv = 0

which is equivalent to Bv = 0 for v 2 RN .
⇤

5. Local convergence

For simplicity, we shall analyze FDR (12) without the sector condition:

(29) Sf(y) := y + A⇤A

✓

2b � y

|y| � y

◆

� b � y

|y|
whereas ODR (15) becomes

(30) S(x) = x+

"

Ã

 

2b � Ã⇤x

|Ã⇤x|

!

� x

#

n

� Ã

 

b � Ã⇤x

|Ã⇤x|

!

.
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⇤

On the other hand, for case (i), x̂ = ei✓x0 and (21) imply ei✓!0 = !1 and hence

ei✓y0 = ei✓b � !0 = b � !1.

This and (18) only lead to

x̂ = [2ei✓x0 � x1]X = [2x̂ � x1]X .

Corollary 4.5. Any fixed point y1 shares the same phase as y0 up to a global constant, i.e.
]y1 = ✓ + ]y0 for some constant ✓ 2 R.
In addition, in the two-mask case (Theorem 4.3 (ii)), y1 can be expressed as

y1 = ei✓(|y0| + v) � y0

|y0|
(24)

where v 2 RN such that the sum vector |y0| + v has all nonnegative components and

A



y0

|y0|
� v

�

= 0.(25)

Remark 4.6. In the two-mask case, the fixed point set for each ✓ 2 R can be identified with
the intersection of the convex cone {|y0|+v � 0} and the subspace defined by (25) and hence
is convex for any fixed ✓ 2 R.

Proof. By (21) and Theorem 4.3,

]y1 = ✓ + ]A⇤x0 = ✓ + ]y0(26)

and hence

y1 = ei✓p � y0(27)

where p 2 RN has all nonnegative components.
By (18) and Theorem 4.3 (ii)

A (2b � !1 � y1) = ei✓Ay0

and hence by (27)

2ei✓y0 = 2b � !1 = y1 + ei✓(y0 + y0)(28)

where Ay0 = 0. Solving for y0 from (28) and (27) we obtain y0 = (1 � p) � y0.
Let v = (p � 1) � |y0| 2 RN and write y0 = v � y0/|y0|. Since Ay0 = 0, we have (25).

⇤

5. Local convergence

For simplicity, we shall analyze FDR (12) without the sector condition:

(29) Sf(y) := y + A⇤A

✓

2b � y

|y| � y

◆

� b � y

|y|
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Theorem (two-pattern)

For any given 0 < " < 1� �2, if x

(1)
is su�ciently close to x0

then with probability one x

(k)
converges to x0 geometrically

after global phase adjustment, i.e.

k↵(k+1)
x

(k+1) � x0k  (�2 + ")k↵(k)
x

(k) � x0k, 8k

where ↵

(k) := argmin
↵

{k↵x(k) � x0k : |↵| = 1}.

|I|
N

⌧ 1,
|I|2

N

� 1,
n

|I|
< 1, n � 1.

Let A 2 Cn⇥N

be an i.i.d. complex Gaussian matrix. Let  < 1

be a fixed constant. Suppose

� =
|I|
N

  < 1, ⌫ =
n

|I|
< 1.

Then for any " 2 (0,1), � > 0 and t 2 (0, ⌫�1/2�1) the following

1



Figure 2. The original phantom without phase randomization (left), the
truncated cameraman (middle) and the truncated Barbara (right).

Also, the uniqueness theorem, Proposition 6.2, clearly holds as long as there is at least
one oversampled coded di↵raction pattern.
Now Proposition 6.1 says that (73) holds if (71) has a unique solution up to a real constant

and Proposition 6.2 says that (71) indeed has a unique solution up to a real constant. The
proof is complete. ⇤

We have the following corollary from Theorems 5.1 and 6.3.

Corollary 6.4. Let the assumptions of Theorem 6.3 be satisfied. Then the local, geometric
convergence (32)-(33) holds for phase retrieval with (72) as the propagation matrix.

7. Numerical simulations

7.1. Test images. For test images x0 we consider the Randomly Phased Phantom (RPP)
Fig. 2 (left) and the deterministic image, hereby called the Truncated Cameraman-Barbara
(TCB), whose real part is the truncated cameraman, Fig. 2 (middle) and whose imaginary
part is the truncated Barbara, Fig. 2 (right). The purpose of truncation is to create an
unknown, loose support (dark margins) which makes the image more di�cult to recover.
RPP has a loose support without additional truncation. Likewise, we randomize the original
phantom in order to make its reconstruction more challenging. In general, a random object
such as RPP is more di�cult to recover than a deterministic object such as TCB (see, e.g.
Fig. 5 and 7). The size n of both images is 256 ⇥ 256, including the margins.
The propagation matrix is primarily based on either (2) or (4) unless specified otherwise.

7.2. Local convergence rate. First we simulate the local convergence rate of the 11
2
-mask

case and compare them with �2.
The initial condition x(1) is chosen su�ciently close to the true object x0, which is a

unit vector. Fig. 3 shows the error k↵(k)[x(k)]
n

� x0k on the log scale versus the iteration
counter in the case of two oversampled di↵raction patterns. The oscillation in the blue
curve (FDR) is due to the complex eigenvalues of Jf . The magenta line shows the geometric
sequence {�k

2}100
k=1. The �2 value is computed via the power method, �2 = 0.9505 for TCB
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Figure 3. Error (on the log-scale) versus iteration for TCB (left) and RPP (right).
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Figure 4. Relative error versus iteration in the 1-pattern case with two dif-
ferent sector constraints: [0, ⇡/2] for (a)-(d) and [0, ⇡] for (e)-(h).

and �2 = 0.9533 for RPP. Note that the FDR curve (red) decays slightly faster than the
�2-curve (magenta), which decays still faster than the black curve (ODR with ñ ⇡ 4n).

7.3. Initialization. For global convergence behaviors, we test two di↵erent initializations:
the Random Initialization (RI), where each pixel value is selected randomly and indepen-
dently, and the Constant Initialization (CI), where each pixel value is set to unity.
The relative error of the estimate x̂ with the optimal phase adjustment is given by

(75)
kei✓̂x̂ � x0k

kx0k
, ✓̂ = argmin

✓2R
kei✓x̂ � x0k.
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Figure 5. Relative error versus iteration in the 11
2
-mask case.

7.4. One-pattern case. Fig. 5 (a)-(d) shows the results of the 1-pattern case for which the
sector condition is imposed (ODR is equivalent to FDR as N = ñ).
To test the e↵ect of the sector constraint, the phase of RPP is uniformly distributed in

two di↵erent intervals: [0, ⇡/2] and [0, ⇡]. While FDR/ODR global convergence regardless
the initialization is evident, the rate of convergence decreases as the sector enlarges. When
the sector constraint is absent, the iteration ceases to converge in general.

7.5. 11
2
-mask case. For two- or multi-pattern case, we let the phase of RPP be uniformly

distributed in [0, 2⇡] (i.e. no sector constraint). Fig. 5 (e)-(h) shows the results of the 11
2
-

mask case for which ODR is implemented with ñ ⇡ 4n < N ⇡ 8n and hence not equivalent
to FDR. We see that the performances of ODR and FDR are drastically di↵erent: While
FDR converges to the true images regardless the initialization within 100 iterations, ODR
does so only for the deterministic image TCB.
Fig. 6 shows the relative error versus noise-to-signal ratio (NSR) when noise ✏ is present

in the data where

NSR =
k✏k

kA⇤x0k
.

We note that for NSR 2 [0, 20%] there is essentially no di↵erence between the results with
the maximum number of iterations set to 100 and 200 and this segment of error-noise curves
is approximately the same straight line (slope ⇡ 2.2). For a higher NSR, increasing the
maximum number of iterations reduces the error so with even greater number of iterations
the straight line segment can be extended to NSR greater than 20%.

7.6. Multi-mask case. To test how DR performs in the setting of multiple patterns with-
out oversampling [15,16] we simulate the 3-pattern and 4-pattern cases with the propagation
matrices

A⇤ = c

2

6

6

4

� diag{µ1}
· · ·

� diag{µ
`�1}

�

3

7

7

5

, ` = 3, 4,(76)
20
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distributed in [0, 2⇡] (i.e. no sector constraint). Fig. 5 (e)-(h) shows the results of the 11
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mask case for which ODR is implemented with ñ ⇡ 4n < N ⇡ 8n and hence not equivalent
to FDR. We see that the performances of ODR and FDR are drastically di↵erent: While
FDR converges to the true images regardless the initialization within 100 iterations, ODR
does so only for the deterministic image TCB.
Fig. 6 shows the relative error versus noise-to-signal ratio (NSR) when noise ✏ is present

in the data where

NSR =
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.

We note that for NSR 2 [0, 20%] there is essentially no di↵erence between the results with
the maximum number of iterations set to 100 and 200 and this segment of error-noise curves
is approximately the same straight line (slope ⇡ 2.2). For a higher NSR, increasing the
maximum number of iterations reduces the error so with even greater number of iterations
the straight line segment can be extended to NSR greater than 20%.

7.6. Multi-mask case. To test how DR performs in the setting of multiple patterns with-
out oversampling [15,16] we simulate the 3-pattern and 4-pattern cases with the propagation
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Figure 6. Relative error versus NSR in the 11
2
-mask case (both oversampled)

with the maximum number of iteration set to 100 or 200.
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Figure 7. Relative error versus iteration with 3 patterns (a)-(d) and 4 pat-
terns (e)-(h) (without oversampling in each pattern).

where � is the standard (unoversampled) discrete Fourier transform.
Figure 7 shows the result with three patterns (a)-(d) and four patterns (e)-(h), both

without oversampling, i.e. N = 3|M| and N = 4|M|, respectively. Note that the number of
data with four patterns is half of that with 2 oversampled patterns and yet the performance
of the former is almost as good as that of the latter.
Going from three patterns (Fig. 7 (a)-(b)) to four patterns (Fig. 7 (e)-(f)) reduces the

number of iterations by almost an order of magnitude when RPP is the unknown image.
The case with TCB has less room for improvement.

7.7. Padding ratio. Finally we test the e↵ect of the padding ratio ñ/n on the performance
of ODR. For each ñ/n 2 [4, 8], we conduct 50 trials with independent, random initializations
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Figure 5. Relative error versus iteration in the 11
2
-mask case.

7.4. One-pattern case. Fig. 5 (a)-(d) shows the results of the 1-pattern case for which the
sector condition is imposed (ODR is equivalent to FDR as N = ñ).
To test the e↵ect of the sector constraint, the phase of RPP is uniformly distributed in

two di↵erent intervals: [0, ⇡/2] and [0, ⇡]. While FDR/ODR global convergence regardless
the initialization is evident, the rate of convergence decreases as the sector enlarges. When
the sector constraint is absent, the iteration ceases to converge in general.

7.5. 11
2
-mask case. For two- or multi-pattern case, we let the phase of RPP be uniformly

distributed in [0, 2⇡] (i.e. no sector constraint). Fig. 5 (e)-(h) shows the results of the 11
2
-

mask case for which ODR is implemented with ñ ⇡ 4n < N ⇡ 8n and hence not equivalent
to FDR. We see that the performances of ODR and FDR are drastically di↵erent: While
FDR converges to the true images regardless the initialization within 100 iterations, ODR
does so only for the deterministic image TCB.
Fig. 6 shows the relative error versus noise-to-signal ratio (NSR) when noise ✏ is present

in the data where

NSR =
k✏k

kA⇤x0k
.

We note that for NSR 2 [0, 20%] there is essentially no di↵erence between the results with
the maximum number of iterations set to 100 and 200 and this segment of error-noise curves
is approximately the same straight line (slope ⇡ 2.2). For a higher NSR, increasing the
maximum number of iterations reduces the error so with even greater number of iterations
the straight line segment can be extended to NSR greater than 20%.

7.6. Multi-mask case. To test how DR performs in the setting of multiple patterns with-
out oversampling [15,16] we simulate the 3-pattern and 4-pattern cases with the propagation
matrices
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Figure 6. Relative error versus NSR in the 11
2
-mask case (both oversampled)

with the maximum number of iteration set to 100 or 200.
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Figure 7. Relative error versus iteration with 3 patterns (a)-(d) and 4 pat-
terns (e)-(h) (without oversampling in each pattern).

where � is the standard (unoversampled) discrete Fourier transform.
Figure 7 shows the result with three patterns (a)-(d) and four patterns (e)-(h), both

without oversampling, i.e. N = 3|M| and N = 4|M|, respectively. Note that the number of
data with four patterns is half of that with 2 oversampled patterns and yet the performance
of the former is almost as good as that of the latter.
Going from three patterns (Fig. 7 (a)-(b)) to four patterns (Fig. 7 (e)-(f)) reduces the

number of iterations by almost an order of magnitude when RPP is the unknown image.
The case with TCB has less room for improvement.

7.7. Padding ratio. Finally we test the e↵ect of the padding ratio ñ/n on the performance
of ODR. For each ñ/n 2 [4, 8], we conduct 50 trials with independent, random initializations
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• Alternating Projections (PAP/SAP) of the Null Vector 

• Fourier Domain Douglas-Rachford (FDR) 

• Performance guarantee: Local convergence, global convergence of 
the null vector method, uniqueness of fixed point. 

• Global convergence for FDR? 

• Noise stability 

• Single molecule imaging: extremely noisy measurements. 


