
Conclusions
	


	

 Radio interferometers today collect massive amounts of	

interferometric data to 
reconstruct images - one sample for every point source of a radio signal. But how much of 
that data is actually necessary? Compressed sensing, a new counterintuitive approach that 
allows reconstruction with much fewer data, has been applied to many realms of signal 
processing since its research jumpstart several years ago. However, it has yet to be applied to 
radio interferometry in practice. My experiments reveal a key link between uniform 
randomization in radio sensor distribution, and high probability of image reconstruction 
success through compressed sensing - particularly with regards to how uniform 
randomization affects the mathematical quality of sensing matrices known as incoherence. 

	

 We can see the superiority of a uniform random distribution through algebraic proof (see “The Central Connection”) and experimental 
demonstrations (Figures 13 and 15) of the high sensing matrix incoherence it provides, a theoretical indicator of compressed sensing success. 
Corresponding to these incoherence results, using just 351 samples (a mere 9.75% of the number of point sources!), the uniform random 
sensor distribution allows us to image radio sources far more successfully than with the VLA distribution (Figures 14). This enormous 
cutback of the samples needed in traditional image reconstruction - one for every point source - has great potential in improving the efficiency 
of sampling. The uniform random distribution has an especially acute advantage over the VLA distribution in the under-resolved case, where 
its super-resolution effects can allow an interferometer to enhance angular resolution, use a smaller aperture, or reconstruct signals of greater 
wavelengths (Figures 15 and 16). The subtlety of rigorously defined uniform randomness is also apparent - distributions with deterministic 
quasi-random or non-random irregularity are shown to be significantly outperformed (Figures 22 and 23). 

	

 These results also point to very simple, practical improvements to the current VLA distribution. In the well-resolved case, the VLA 
PPO distribution performs nearly identically to the uniform random distribution, and only requires a slight randomization modification to 
just 9 sensors in the existing VLA distribution (Figure 24). 	



	

 As the uniform random distribution appears to be a theoretical and empirical benchmark, it is very plausible that adding amounts of 
uniform randomization to any deterministic sensor distribution would make interferometry more conducive to compressed sensing. Many 
similar interferometric devices (such as the GMRT - see “Uniform Randomness vs. Irregularity”) and up-and-coming projects (such as the 
Atacama Large Millimetre/submillimetre Array and Square Kilometer Array) could be greatly enhanced with this new sampling 
perspective, allowing compressed sensing to make its first impact in astronomical studies. 

Reconstructions of Galaxy 3C75
	

 To expedite the process and provide general conclusions on sampling distribution, in the 
reconstruction probability experiments I used objects with randomly generated, randomly 
located non-zero components (see “Additional Data”). Here I simulated compressed sensing 
reconstructions of galaxy 3C75, which offered a more realistic context because the non-zero 
components are mostly adjacent to each other, a factor that can affect OMP’s response.  The 
number of samples used, 4851, was only about 34% the number of pixels, 14400. To 
emphasize the main results from the previous experiments, I reconstructed the image with the 
uniform random, VLA, and VLA PPO sensor distributions, in both well-resolved and under-
resolved cases. 

	

 The uniform random distribution gives an incredibly accurate reconstruction of the image (Figure 20.a), with a relative error of less than 
a tenth of a percent. With only very modest randomization modifications to the VLA, VLA PPO also provides a very accurate reconstruction 
(Figure 20.c). The VLA reconstruction (Figure 20.b), displays a distinct pattern of missing “streaks” of pixels, which is probably a direct 
consequence of relatively high mutual coherence. These streaks are mostly composed of adjacent point sources, which correspond to adjacent 
columns of the sensing matrix. Because adjacent point sources tend to be very similar, adjacent columns tend to be much more coherent than 
columns that are far apart. Therefore, in iteratively selecting new columns, the higher the mutual coherence is, the more OMP will tend to 
avoid columns that are adjacent or very near to previously selected columns. Missing adjacent columns leads to missing streaks of adjacent 
pixels, and the resulting visual patterns could easily give rise to faulty interpretations of the structure of the galaxy. The VLA PPO’s 
reconstruction also tends to miss adjacent pixels in the “cloudy” ends of the galaxy, but the major parts of the galaxy remain unaffected, and 
the relative error is less than 2%. 

 In accordance with the impressive results in Figures 15 and 16, the accuracy of the uniform random distribution’s reconstruction (Figure 
21.a) appears unaffected in the under-resolved case, when the diffraction limit is broken. Maintaining a relative error of less than a tenth of a 
percent, the striking effects of super-resolution are clear. In contrast, the VLA distribution’s reconstruction (Figure 21.b) had a massive 
relative error of over 500%; the reconstruction is hardly identifiable as a galaxy. Though VLA PPO provided a significantly improved 
reconstruction (Figure 21.c), it is still heavily affected by the missing-adjacent-pixels symptom that was apparent in the VLA distribution’s 
well-resolved reconstruction. 

“Maybe we don’t have to perturb every sensor...”: VLA PPO
	

 In the well-resolved case, the VLA PP distribution offered a distinct improvement to the VLA distribution - the results were nearly 
identical to those of the uniform random distribution.This inspired the next phase of experiments - can I reduce the degree of modification to 
the VLA even more? What is the minimum change needed to make the VLA distribution emulate a uniform random distribution?

	

 These results show the effects of perturbing only the 3 innermost sensors of each arm (VLA PPI), versus perturbing only the 3 
outermost sensors of each arm (VLA PPO). Like VLA PP, when the number of sensors is not too large VLA PPO provides mutual 
coherence values that are nearly identical to those of the uniform random distribution. VLA PPI provides higher mutual coherence than 
either, though still considerably less than that of the VLA distribution. As in “Additional Data” Figures 1 and 2, it is apparent that less can be 
just as good as more - perturbing only the 3 outermost sensors on each arm provides the same benefits as perturbing all of the sensors. The 
results in Figure 18 correspond to the mutual coherence results, showing that VLA PPO is an extraordinarily simple modification to the 
VLA that allows it to emulate a uniform random distribution in reconstruction performance. 

The Under-Resolved Case: Al/λ ≤ 1
	

 As in many imaging processes, super-resolution - enhancing resolution beyond the diffraction limit - is a prize for physicists. In radio 
interferometry, super-resolution would allow us to reconstruct images with high resolution even when Al/λ ≤ 1. In my experiments, I 
simulated this condition by assuming l and λ to be constant, and decreasing the size of the aperture, A. 

	

 By about A = 0.65, the mutual coherence of the uniform random distribution appears to be as low as it is in the well-resolved case - no 
other distribution displays anything near this disposition toward super-resolution. In accordance with the mutual coherence results, Figure 16 
clearly indicates the uniform random distribution’s superiority in the under-resolved case, and again by an enormous degree - with A = 0.5,  it 
provided 100% reconstruction success for images with a sparsity of about 125, whereas all of the other distributions began faltering in their 
performance beyond a sparsity of only about 25. In effect, implementing the compressed sensing approach with a uniform random distribution 
would allow interferometers not only to collect just a fraction of the samples for reconstruction, but also to enhance image resolution 
beyond what the VLA is currently capable of. 

	

 Unlike in the well-resolved case, VLA PP doesn’t appear to provide noticeable improvement to VLA. The results in Figure 15 indicate 
near spot-on similarity in mutual coherence between the two until about A = 0.9. Generally, the results of VLA PP are probably lackluster 
because the amount of maximum perturbation is measured as a percent of the average distance between sensors, which becomes irrelevantly 
small at smaller apertures. However, following from the results in “Additional Data” Figures 1 and 2, simply increasing the percentage of 
perturbation is unlikely to improve the performance. 

	

 On the other hand, VLA RAA, which does not improve on the VLA results in the well-resolved case, provides noticeably lower mutual 
coherence than either VLA or VLA PP at relatively small apertures, and in Figure 16 gives the second-best reconstruction performance 
(though the uniform random distribution still out-performs it by a long run). The discrepancy of its results in the well-resolved and under-
resolved cases points to the existence of qualities of a well-designed sensing matrix other than incoherence, which may provide an interesting 
arena for future research. 

 	

 The normal random distribution’s mutual coherence results correspond to those in the well-resolved case - they are among the highest of 
all the distributions. Accordingly, its reconstruction results in Figure 16 could be called a disaster, as the probability of reconstruction success 
rapidly deteriorates at a sparsity of just over 0. Again, these results highlight the importance of uniformity in a random sensor distribution.

The Well-Resolved Case: Al/λ = 1
	



	

 These results were simulated in the well-resolved case, where Al/λ = 1, providing the current resolution of the VLA. As predicted by 
the identity in “The Central Connection”, in Figure 13 the mutual coherence given by the uniform random distribution continues to decrease 
as the number of sensors, n, increases.   It also consistently provides the lowest mutual coherence of all the distributions, matched (for n ≤ 27) 
only by VLA PP, one of the randomized modifications of VLA I designed. At 27 sensors, the number of sensors the VLA currently uses, VLA 
PP performs nearly identically to the uniform random distribution. This has very exciting implications - by only slightly perturbing the VLA 
distribution, we can significantly decrease its mutual coherence, which was among the worst of all the distributions. As predicted by the 
mutual coherence results, the reconstruction performances in Figure 14 of the uniform random distribution and VLA PP are nearly identical, 
and clearly superior to that of the VLA. Both distributions provide 100% reconstruction success for images of the greatest sparsity, about 200 
non-zero components, whereas the VLA distribution can handle images of only about 150 non-zero components. 

	

 The other randomization modification of the VLA, VLA RAA, does not provide any noticeable improvement to the mutual coherence 
of the VLA at 27 sensors. Accordingly, in Figure 14 its reconstruction success is very poor - the worst of all the distributions, providing high 
probability of reconstruction success for images with a sparsity of only about 125. This may be because, like the normal random distribution 
(which also provided high mutual coherence), the samples generated by VLA RAA tend to clump together, instead of covering the aperture 
evenly (see “Sensor Distributions”). However, the mutual coherence provided by this distribution appears to continue decreasing as n 
increases, a favorable effect that the uniform random distribution is also proven to have. In comparison, the promising benefits of VLA PP 
seem to weaken as n increases. This is likely because the amount of perturbation (here, 30%) is measured as a percent of the average distance 
between sensors, and when n is large this average distance becomes very small. In light of the results in “Additional Data” Figures 1 and 2, 
increasing perturbation for larger numbers of sensors does not continue to better the performance.  

	

 The performance of the normal random distribution demonstrates the importance of uniformity in a random distribution. Its mutual 
coherence at 27 sensors is among the worst, and actually seems to increase slightly as n increases. Accordingly, its reconstruction results were 
considerably worse than the results of the uniform random distribution. Of course, as the standard deviation of the normal random 
distribution (about 0.16) increases and approaches that of the uniform random distribution (about 0.29), it is entirely plausible that its 

performance would improve and eventually mimic the uniform random distribution. 

Sensor Distributions (27 Sensors)

	

 1. Uniform Random
Based on the coherence identity shown in “The Central Connection”, I hypothesized that the uniform random sensor distribution would provide 
the lowest mutual coherence and highest probabilities of OMP reconstruction success. 

	

 2. Normal Random
I chose to test this distribution in order to analyze the importance of the uniformity of a random distribution. In the aperture of size 1, the 
sensors had a standard deviation of about 0.16 in both the x- and y-directions from the mean point, (0.5, 0.5). Note the severe “clumping” of 
samples produced by this distribution.

	

 3. VLA
The VLA has 4 different sensor configurations (A, B, C, and D), but they are essentially scaled versions of the same “Y” structure, whose arms 
are 120° apart. To model how the distances between adjacent sensors should change as I added more sensors, I interpolated from the best-fit 
polynomial that approximated the existing distances provided in [5]. 

	



	

 4. VLA Randomized Along Arms (VLA RAA)
I used these last two sensor distributions to see whether and how introducing an element of randomness would affect the existing VLA 
configuration. In this distribution, sensors were randomly scattered along each of the arms of the Y. Somewhat similar to the normal random 
distribution, samples produced by VLA RAA tend to group together.

	

 5. VLA Perpendicularly Perturbed 30% (VLA PP)
Sensors in the VLA distribution were perturbed by a random distance in the direction perpendicular to their respective arms. The maximum 
amount of random perturbation was measured as a percentage of the average distance between adjacent VLA sensors. It was found that, by 
30% perturbation, the distribution already performed similarly to the uniform random distribution (see “Additional Data” Figures 1 and 2). 
Note that, compared to the original VLA distribution, this modification is very slight. 

	

 6. VLA Perpendicularly Perturbed 3 Outermost 30% (VLA PPO)
In the second phase of experimentation, I aimed to minimize the modification of VLA PP 30%, while still retaining the improvements it 
provided. In VLA PPO, only the 3 outermost sensors on each arm were perpendicularly perturbed.
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Experimental Methods

Mutual Coherence
	

 As a theoretical indicator of OMP reconstruction success, I wrote MATLAB codes to find how the mutual coherence of sensing matrices was affected by different sample distributions. Low mutual coherence values would theoretically indicate high probabilities of OMP 
reconstruction success (see “Sensing Matrix Incoherence”). Because every sensor distribution except for the VLA had a degree of randomness, I took the average of the mutual coherence of 50 different sensing matrices for each distribution. Depending on how many sensors were used, 
the dimensions of the sensing matrices were between 36 x 3600 and 1275 x 3600 - all corresponding to severely underdetermined systems. 

Probability of OMP Reconstruction Success
	

 I wrote MATLAB codes for the OMP algorithm to simulate how sensor distributions affect the probability of image reconstruction success, as the sparsity of the signal increased from 1 to 300. For each distribution, I ran OMP reconstructions of 200 different objects for each 
sparsity level. A reconstruction was considered successful if the error relative to the original object was less than or equal to 1%. The number of successful trials for each sparsity was then divided by 2 to give the percent probability of OMP reconstruction success. To emphasize the 
efficiency of the compressed sensing approach, the number of samples in each reconstruction, 351, was less than 10% of the number of point sources of each signal, 3600. The reconstructions were run with 1% Gaussian-distributed random noise, to accommodate for error in the data.
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Figure 21. Compressed Sensing Reconstructions (Under-Resolved Case, Al/λ = 0.75)
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Uniform Randomness vs. Irregularity: Hammersley Points & GMRT
	

 The capacities of the uniform random 
distribution in compressed sensing are clear. 
However, is the rigorous mathematical 
definition of uniform randomness essential - or 
will deterministic irregularity provide the same 
results? The Hammersley point set is a 
deterministically generated, low-discrepancy 
sampling pattern that is commonly used for 
quasi-Monte-Carlo integration to emulate 
aspects of a uniform random distribution. In two 
dimensions, it implements the van der Corput 
sequence, a function based on the dyadic 
expansions of numbers. Here I analyzed the 
comparability of this quasi-random distribution 
to a truly uniform random distribution. 
	

 The sensor distribution of the Giant 
Metrewave Radio Telescope (GMRT), 
currently the world’s largest radio 
interferometer, also includes an outer 
irregularized ‘Y’ array as well as a highly 
compact, central random array [6]. This set-up 
includes two key differences from a uniform 
random distribution - the non-random 
irregularity of the outer array, as well as the 
extreme normality of the central array. 

	

 The mathematical specificity of uniform randomness is appears to be crucial in Figures 22 and 23. Though sensors in a Hammersley 
distribution have quasi-random qualities, the baseline distribution seems faintly formulaic, resulting in extraordinarily high coherence of the 
sensing matrix and the disastrous reconstruction results. (Thirty-two sensors were used because the formula provided in [7], which 
calculates an optimal shift of the point set, requires the number of points to be a power of two.) This points to the subtlety and inimitable 
qualities of rigorously defined uniform randomness.

	

 Due to the outer array’s non-random irregularity, I could not simulate increasing the number of sensors in the GMRT distribution. 
Regardless, the mutual coherence provided by the existing irregularized 30 sensors was not an improvement to the VLA, in contrast to the 
true randomization modification VLA PPO (see Figures 17 and 18). Along with the GMRT’s subpar reconstruction performance, this is 
probably a result of both the outer array’s non-random irregularity and the random central array’s normality, rather than uniformity 
(compare the normal random distribution to the uniform random distribution in Figure 14). 
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Figure 23. Probability of OMP Reconstruction Success 
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Figure 16. Probability of OMP Reconstruction Success 

(0.5 Aperture)


