
What is a Radio Image?

 A radio image is a representation of the 
intensity, or optical power, of a radio signal. The total 
signal is composed of N individual radio waves, each 
emitted from a different point source pl in the sky, and 
the intensity of one point source corresponds to one 
pixel in a radio image. The angular resolution is given 
by l. For mathematical convenience, the total signal 
intensity, called the object I, is vectorized as an N-
vector.

 

Figure 1.
a. Radio Image of the Crab Nebula

b. Intensities of 
N = 25 Point Sources

Radio Sensors and Baselines
	

 A radio interferometer consists of n radio sensors, labeled rj where j = 1, 2, ... n, located in an A x A square region called the aperture 
of size A. The displacement vectors between all possible pairs of sensors are called baselines, and are central to the sampling mechanism in 
radio interferometry (see “Radio Interferometry”). If there are n sensors, then there are n(n - 1)/2 possible combinations of two sensors, 
and therefore n(n - 1)/2 baselines. The VLA has 27 radio sensors, giving 351 baselines. Figure 2.a shows the VLA sensor distribution, and 
2.b provides a simple example of the relationship between 3 sensors, the baselines, and the aperture.

a. VLA Radio SensorsFigure 2. b. 3 Sensors and Their Baselines in the Aperture (A = 1)

Radio Interferometry
 Radio interferometry uses the interference patterns of radio waves 
to reconstruct the intensity of the radio signal. Interference patterns result 
when mutually coherent waves, which have a stable phase relationship, 
are superimposed, or added together. Interference patterns are 
determined by the phase difference between the superimposed waves, or 
how much the waves are aligned (Figure 3.a). 
	

 Like all electromagnetic waves from natural sources, radio signals 
are mutually incoherent; the N waves have no stable phase relationship 
with each other. However, each wave is certainly coherent to itself. 
Therefore, when a wave from pl is sampled with two sensors rj and rk at 
different locations, interferometers like the VLA can measure a phase 
difference (Figure 3.b). This phase difference is determined by the 
displacement vector between the two sensors, the baseline rj  - rk, and is 
used to construct interference patterns.  This interferometric data is called 
the visibility, and is essentially a result of superimposing a wave on itself. 
A system of equations, given by the van-Cittert Zernike Theorem, is then 
solved to reconstruct the signal intensity from the visibility.

b. Measuring Phase Difference for a Single Wave

a. Phase Difference Between Two WavesFigure 3.

The van-Cittert Zernike Theorem: 
A Mathematical Relationship between Intensity and Visibility

	

 How does radio interferometry use the visibility data to reconstruct the intensity I, the object? A certain key relationship between 
visibility and intensity is used. The visibility of one wave in the signal from pl as sampled by two sensors rj and rk is given as

where I(pl) is the intensity of the point source pl, and rj - rk is the baseline. In the idealized scenario in which P, the region of the sky being 
imaged, is a continuous plane of infinitely many point sources, the visibility of the total signal is given by the van-Cittert Zernike theorem:

As we are limited to imaging a finite number of point sources, we use the discretized summation instead:

The visibility of the total signal is simply a sum of the visibilities of the N individual waves. Additionally, in order for images to be well-
resolved, the criterion Al/λ = 1 must be met. (This gives the VLA’s current resolution capability). Such diffraction-limited interferometers 
have the ability to reconstruct images with resolutions as high as the theoretical resolution maximum.
	

 Interferometers take one visibility sample of the signal with every baseline rj - rk. If there are n sensors, then there are n(n - 1)/2 
baselines - for example, the VLA, with 27 sensors, has 351 baselines. The visibility V is then a vector with n(n - 1)/2 components. The goal 
of radio interferometry is to solve for the object I, the total signal intensity, given V, the collected visibility data. 

The Linear Algebra Context
The discrete approximation of the van-Cittert Zernike theorem,

provides us with a system of equations, corresponding to a linear algebra 
problem of the form Ax = b. After the visibility data V has been collected, 
the goal is to solve for the object I from the system of equations V = ΦI, 
where Φ is called the sensing matrix and its entry in the ith row and lth 
column, Φil , is defined as:

where i = 1, 2, ... n(n - 1)/2 and l = 1, 2, ... N. This type of matrix is known 
as a Fourier matrix, and V is a Fourier transform of I. Each ith row of Φ 
corresponds to a different baseline, and each lth column corresponds to a 
different point source.  When the ith row of Φ is multiplied by I, the 
product is the ith entry of V, or the visibility of the signal measured by that 
specific baseline. In other words, any equation in the system corresponds 
to the visibility of the signal as measured by one specific baseline, as shown 
in Figure 4.

Figure 4. V = ΦI with 3 Baselines and 
a Signal from 9 Point Sources 

Doing it the Slow Way: Traditional Radio Image Reconstruction
	

 A key problem arises in solving the system V = ΦI. It is an underdetermined system, meaning there are more variables than 
equations, because there are far more point sources than baselines. High quality images are often of millions of point sources, while the 
VLA only has 351 baselines. Underdetermined systems have infinitely many solutions, and the correct one cannot be found through the 
traditional method of using a matrix inverse. The VLA currently solves this problem by sampling the signal over an extended period of 
time, allowing the rotation of the earth to naturally create “new” baselines. This technique, known as earth rotational aperture synthesis, 
allows the VLA to eventually accumulate one sample per point source, and an adequately determined system
	

 However, there are inherent physical constraints that prevent the VLA from completely sampling the Fourier space. Unknown 
components of V are set to 0, or interpolated from surrounding values, and can introduce significant error into the inverse reconstruction.  
Furthermore, the deconvolution algorithm CLEAN, which the VLA uses to eliminate this error, often requires that a technician have 
prior knowledge of the celestial region being imaged. Experience with where sources “should” be in the sky can be crucial to using 
CLEAN, and therefore deconvolution can require a considerable amount of manual, subjective work [4]. Furthermore, this method is 
tedious, as a colossal amount of interferometric data must be acquired - one sample must be taken for every pixel in a desired image. 

Fast and Efficient: Radio Interferometry by Compressed Sensing
	

 Can we skip the expensive, meticulous step of capturing the entire data set? 
Is it necessary to obtain one sample for each and every pixel of a desired image? 
Compressed sensing is a very new signal processing approach that got its research 
jumpstart in about 2006, and its answer is No. Compressed sensing operates off of 
the idea that we only need to capture the most significant coefficients of the signal 
to reconstruct it. One fundamental premise is that the signal is a sparse signal, one 
with mostly coefficients of zero and relatively few non-zero coefficients [3]. Most 
signals occurring in nature, including radio signals, are sparse. Figure 5 shows 
intuitively that only the relatively few point sources in the galaxy emit radio waves, 
while all the point sources in the “blank” background have an intensity of zero. 
One can toss out these zeros, and the compressed sensing idea is that sampling 
only the relatively few large coefficients of the signal gives enough information for 
a faithful reconstruction [3]. 
	

 Again, we now face an underdetermined system; we have collected far fewer 
samples than the number of point sources. However, if the object has s non-zero 
components (an s-sparse signal), under certain conditions it has been theoretically 
proven that only slightly more than s samples, rather than all N samples, are 
needed [2] for an exact reconstruction. 

A Sparse Signal: Galaxy 3C31Figure 5. 

wave intensities of 0 
(point sources in the 
black background)

non-zero wave intensities 
(point sources in the galaxy)

Introduction
The Problem:

 Radio interferometry is an imaging technique used to study astronomical radio sources such as galaxies and supernovae. Radio 
interferometers like the Very Large Array (VLA), one of the most prominent interferometers today, collect massive amounts of 
interferometric data from radio signals to reconstruct images, a process that comes at an unnecessary cost to time and data storage space. 

The Inspiration:
	

 Compressed sensing, a very new signal processing approach, proposes the efficient and accurate reconstruction of images with far 
fewer data. Traditional methods requires one sample of the signal per point source of radio emission, whereas compressed sensing allows 
image reconstruction with only a small fraction of those samples. (Mathematically, this appears to be impossible - it forces us to solve an 
underdetermined system of equations!) However, compressed sensing has never been applied to interferometry in practice. How can we 
ensure successful application of compressed sensing to radio interferometry?

The Research:
 As in all realms of signal processing, sample distribution, or where samples of a radio signal are taken, is a key ingredient to image 
reconstruction success. What is the optimal sample distribution for the application of compressed sensing to radio interferometry? The 
relationship between the interferometric data and the object of reconstruction is provided by a system of linear equations, and compressed 
sensing performs best when the matrix of the system has a mathematical quality known as high incoherence. Through computer 
simulations, I studied how different sample distributions affect the matrix incoherence, and therefore the ability of a compressed sensing 
algorithm, orthogonal matching pursuit, to reconstruct images from simulated data. The results point to specific modifications to optimize 
the Very Large Array (VLA) - one of the most prominent interferometers used today - and make it much more conducive to compressed 
sensing. The results also indicate a general principle for optimizing any interferometric sample distribution, allowing other radio 
interferometers, and related instruments such as microwave interferometers, to make sampling processes much more efficient. 
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Orthogonal Matching Pursuit (OMP): An Intuitive Explanation
 How is it possible to solve the underdetermined system? Why is signal sparsity central to compressed sensing? The key is that if the 
number of non-zero components, s, is small enough, we can create an adequately determined or overdetermined system, instead of the 
original underdetermined system. As a simple example, Figure 6.b shows that if I is 3-sparse, V is a linear combination of only the 3 color-
coded columns of Φ, rather than a linear combination all N columns of Φ.
	

 The compressed sensing algorithm that I used, called orthogonal matching pursuit (OMP), is an iterative algorithm that first 
locates, one by one, where the s non-zero components of the object are. OMP then extracts the columns of Φ that correspond to the 
locations of the non-zero components, in order to create an adequately determined system (Figure 6.c). (If s is small enough, this step could 
also result in an overdetermined system.) This system can be solved with matrix inversion or pseudo-inversion, giving the non-zero 
components of the object. These are placed back into their original locations in a zero vector (Figure 6.d), giving the reconstruction.

Figure 6.
a. 3-Sparse I b. Multiplication ΦI 

with  3-Sparse I
c. Adequately Determined/

Overdetermined System

d. Final Reconstruction 
ˆ

Step 2: Updating the Set Sk

	

 OMP now adds ĵk+1 to Sk = { ĵ1, ĵ2, ... ĵk}, the set of the indices of all the non-zero 
components of I found by Step 1 in the previous 1st through kth iterations. The updated 
Sk+1 now has the elements { ĵ1, ĵ2, ... ĵk,  ĵk+1}. At the end of the reconstruction, this set S 
will ideally have s components, one locating each non-zero component of I. For 
example, in Figure 8, this 2rd iteration would yield S2 = {4, 8], giving the locations of the 
red component (4), and the blue component (8). 
	

 The locations of the k+1 non-zero components correspond to the locations of k+1 
columns of Φ. ΦÎk+1 is a linear combination of k+1 columns of Φ - precisely the k+1 
columns whose indices are in Sk+1. ΦÎk+1 lies in the column space of ΦSk+1, or the vector 
space defined by all possible linear combinations of the columns of ΦSk+1. 

Step 1: Finding the Location of ΔÎj

	

 At the k+1 iteration, OMP tries to minimize ||rk+1||22, which is equivalent, after algebraic manipulation, to
 ||rk||22 + Φj

TΦj(ΔÎj)2 + 2Φj
Trk(ΔÎj).

where ΔÎj  is the one new non-zero component of I to be found in this iteration. By making the last two terms as negative as possible, we 
can aim to “cancel out” ||rk||22, the residual left over from the previous iteration, and thus minimize ||rk+1||22. To do this, OMP essentially  

finds the minimum of the quadratic Φj
TΦj(ΔÎj)2 + 2Φj

Trk(ΔÎj). The more negative the minimum is, the closer ||rk+1||22 will be to 0, so OMP 
first searches for the j that creates the quadratic with the most negative minimum possible. This index j will be location of ΔÎj (OMP must 
find both the location and value of this one new non-zero component). Solving for the minimum of this quadratic gives -(Φj

Trk)2/||Φj||22, 
where ||Φj||22 is a scalar constant for all j because the columns of a Fourier matrix have the same l2-norm. To make this expression as 
negative as possible, OMP’s first step is then to calculate 

This finds the index ĵk+1 of the column Φĵk+1 that maximizes the absolute value of Φj
Trk, the term that determines the magnitude of the 

minimum. OMP has now found the location of ΔÎj , the one new non-zero component of I. 

OMP: A Rigorous Step-by-Step Explanation
The Set-Up

	

 OMP reconstructs I by finding the sparsest solution Î from the set of infinitely many 
solutions to V = ΦI. Numerous empirical and theoretical studies have demonstrated that the 
sparsest solution is, with overwhelming probability, the original object [2]. A prerequisite to 
reconstruction success is that s is less than or equal to the the number of samples, or the number 
of rows in Φ.
	

 Finding the solution set to V = ΦI is synonymous to finding solutions Î such that the 
l2-norm of the residual r = ΦÎ - V, denoted ||r||2, is minimized (ideally, 0). The l2-norm, or 
Euclidean length, of a vector x = [x1, x2, ... xn] is defined as √(x1

2 + x2
2 + ... + xn

2
 ). When 

||r||2 = ||ΦÎ - V||2 = 0, then V = ΦÎ and Î is part of the solution set to V = ΦI. 
	

 The square root expression of the l2-norm can be clumsy to manipulate algebraically, so 
OMP approaches the problem by minimizing the square of the l2-norm of the residual, or ||r||22. 
OMP is an iterative algorithm, meaning it starts off with Î0 as a zero vector and repeats 
(iterates) its procedure, each time producing a more accurate Îk by finding the value and location 
of one more non-zero component of the I (Figure 7). 

Î1 Î2 Î3

Figure 7. Iterative Reconstruction
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Step 4: Solving for the Non-Zero Components of I
	

 The k+1 non-zero components of Îk+1 can then be found through matrix inversion or pseudo-
inversion of the system ΦSk+1 Īk+1 =  ΦÎk+1, (Figure 10). We can use inversion as this is an adequately 
determined or overdetermined system, instead of the original underdetermined system, because I is 
sufficiently sparse. A prerequisite to reconstruction success is that s is less than or equal to the number of 
samples. Therefore, the number of indices in Sk+1 will always be less than or equal to the number of 
samples; ΦÎk+1 is a linear combination of at most only s columns of Φ. The number of equations in the 
system ΦSk+1 Īk+1 =  ΦÎk+1 is now greater than or equal to the number of variables (non-zero components). 

Figure 9. Finding ΦÎ2 Through 
Orthogonal Projection

Step 3: Finding ΦÎk+1 
	

 OMP now performs an orthogonal projection of V onto the column space of 
ΦSk+1 (Figure 9), a transformation of V that is a standard method of finding ΦÎk+1 such 
that a) ΦÎk+1  is in the column space of ΦSk+1 and b) ||rk+1||2 is minimized.

Figure 10. Solving for Ī2

Step 5: “Filling in the Zeros”
	

 The k+1 non-zero components found in Step 4 are then placed into a zero N-vector, 
precisely at the entries given by the components’ indices ĵ1, ĵ2, ... ĵk+1 (Figure 11). This 
produces the reconstruction Îk+1. OMP then starts the k+2th iteration and repeats the whole 
process, finding more non-zero components and updating Î until the residual ||r||2 falls below 
some stopping criterion. In my experiments, I set this criterion as 1% of ||I||2.

Figure 11. Final Step in Finding Î2

column space 
of ΦS2

The Central Connection: Sample Distribution and Mutual Coherence
Why does Sample Distribution Matter?

	

 Sample distribution, or where samples of a signal are taken, directly affects the mutual coherence of sensing matrices. In radio 
interferometry, we take one sample of the signal at each baseline, so the baseline distribution is the sample distribution. The basic premise 
of my research: if I can design a sample distribution that gives very low mutual coherence, it has been theoretically proven that this sample 
distribution will also provide very high probability of OMP reconstruction success [1]. I ultimately aimed to optimize the VLA sample 
distribution - can I modify it to make it more conducive to compressed sensing? 

Previous Studies of Sample Distribution 
	

 [3] summarizes the findings of many papers and states that randomly sampled sensing matrices have exceptionally low mutual 
coherence. However, previous studies of sample distribution have been focused on non-interferometric applications of compressed sensing, 
where the mechanisms of sampling are fairly different. Compressed sensing has never been applied to radio interferometry in practice. 
	

 One question addressed in my research was whether random sample distributions show the same superiority in interferometry that 
they have in non-interferometric applications. It can be proven in the interferometric context that as the number of sensors increases, the 
mutual coherence given by a uniform random sample distribution will keep approaching zero. Through algebraic manipulation, we can 
derive the identity for mutual coherence 

Because we aim to minimize mutual coherence, minimizing

appears to be a good standard for designing an optimal sample distribution. If the radio sensors rj  are placed randomly according to some 
distribution f(r) on [0,1]2 (the aperture of size 1), then 

is the Monte-Carlo approximation (a type of Riemann sum) of the integral

This integral equals 0 (indicating a minimization of the approximation, and therefore the mutual coherence) when the probability density 
function f = 1, meaning a random distribution that is uniform. The Monte-Carlo expression becomes a more and more accurate 
approximation of the integral - that is, it gets closer and closer to 0 - as the number of sensors n increases. Though this does not prove that 
the uniform random sample distribution is the best one, it does mathematically prove that the mutual coherence provided by this 
distribution will continue to approach 0. In contrast, there is absolutely no mathematical theory predicting how the VLA sample 
distribution will affect mutual coherence in the compressed sensing context. 

Sensing Matrix Incoherence: A Key to Compressed Sensing Success 

	

 Compressed sensing algorithms such as OMP perform best when the sensing matrix is 
highly incoherent [3], meaning its column vectors are nearly orthogonal to each other (the 
angle between them is close to π/2 radians). Because each column vector corresponds to the 
visibility of one point source, high incoherence is synonymous to having highly unique 
measurements of the signal. 
	

 As a measure of coherence, the mutual coherence [3] of a sensing matrix is defined as

where Φi and Φi ‘ denote the ith and i 'th columns of Φ. Considering the expression for the cosine 
of the angle between two vectors x and y, 

mutual coherence simply gives the maximum cosine value of the angles between all possible 
pairs of column vectors (excluding whenever Φi = Φi ‘, as a vector is always perfectly coherent 
to itself). We want the mutual coherence to be as low as possible. The closer it is to 0, the closer 
the angle between the most coherent column vectors is to π/2 radians, because cos(π/2) = 0.
	

 Though the ideal sensing matrix would be perfectly incoherent, in which case all of its 
columns would be orthogonal to each other, in compressed sensing this is inherently impossible 
because an underdetermined system is used. There are far more columns than the dimension of 
the columns, or the number of rows, and a basic theorem of linear algebra states that, for a 
vector space of dimension d, there can only be a maximum of d orthogonal vectors. However, 
the columns can still be nearly orthogonal when the mutual coherence is very low. A central 
theorem to my research [1] provides that if the sparsity s of the object satisfies 

then OMP will reconstruct the object exactly (in the absence of noise, or measurement error in the data). The smaller µ is, the greater the 
sparsity s of the object that OMP is guaranteed to exactly reconstruct. Objects of greater sparsity carry more information and complexity, 
because there are more non-zero point sources (Figure 12); we want to be able to reconstruct as sparse images as possible. Based on this 
theorem, in my experiments I used mutual coherence as a theoretical indicator of how successful OMP reconstructions would be. 
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�Î�1, subject to V = ΦÎ
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Figure 12.
a. Less Sparsity: Galaxy 3C75

b. Greater Sparsity: 
Supernova W30 
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�Î�1, subject to V = ΦÎ
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AN IDENTITY FOR PAIRWISE COHERENCE

Let Φ = [φli] ∈ Rm×N be the measurement matrix defined as

φli =

�
cos [2πpi · (rj − rk)A�/λ] , l = (2n− j)(j − 1)/2 + k, j < k
sin [2πpi · (rj − rk)A�/λ] , l = n(n− 1)/2 + (2n− j)(j − 1)/2 + k, j < k

Let µij be the pairwise coherence between columns i, j
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This suggests the minimization of
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as the design principle of optimal sensor locations {rj}. Note that only the sensor locations,
instead of the baselines, appear in the minimization principle.
Suppose now rj are selected randomly and independently according to the distribution f

over [0, 1]2. Then
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Integral (1) vanishes for all pi,pi� ∈ Z2,pi �= pi� if and only if f ≡ 1, i.e. the uniform
distribution.
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