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Preface

This book, like its companion volume Nonlinear Optimization with
Financial Applications, is an outgrowth of undergraduate and post-
graduate courses given at the University of Hertfordshire and the
University of Bergamo. It deals with the theory behind numerical
methods for nonlinear optimization and their application to a range of
problems in science and engineering. The book is intended for final year
undergraduate students in mathematics (or other subjects with a high
mathematical or computational content) and exercises are provided at
the end of most sections. The material should also be useful for postgra-
duate students and other researchers and practitioners who may be con-
cerned with the development or use of optimization algorithms. It is
assumed that readers have an understanding of the algebra of matrices
and vectors and of the Taylor and mean value theorems in several vari-
ables. Prior experience of using computational techniques for solving
systems of linear equations is also desirable, as is familiarity with the
behaviour of iterative algorithms such as Newton’s method for nonlinear
equations in one variable. Most of the currently popular methods for
continuous nonlinear optimization are described and given (at least) an
intuitive justification. Relevant convergence results are also outlined
and we provide proofs of these when it seems instructive to do so. This
theoretical material is complemented by numerical illustrations which
give a flavour of how the methods perform in practice.

The particular themes and emphases in this book have grown out of
the author’s experience at the Numerical Optimization Centre (NOC).
This was established in 1968 and its staff (including Laurence Dixon,
Ed Hersom, Joanna Gomulka, Sean McKeown and Zohair Maany) have
made important contributions in fields as diverse as quasi-Newton
methods, sequential quadratic programming, nonlinear least squares,
global optimization, optimal control and automatic differentiation.



xii Preface

The computational results quoted in this book have been obtained
using a Fortran90 module derived from the NOC’s OPTIMA library. This
software is not described in detail but interested readers can obtain it
from an ftp site. Some of the student exercises can be attempted using
OPTIMA but most can also be tackled in other ways, for example via the
SOLVER tool in Microsoft Excel, the MATLAB toolbox of optimization
procedures or the NAG libraries in C and Fortran.

I am indebted to many people for help in the writing of this book.
Besides the NOC colleagues already mentioned, I would like to thank
all the mathematics staff at the University of Hertfordshire for their
support. I have also received encouragement and advice from Marida
Bertocchi of the University of Bergamo, Alistair Forbes of the National
Physical Laboratory, Berc Rustem of Imperial College and Ming Zuo of
the University of Alberta. Any mistakes or omissions that remain are
entirely my responsibility. My thanks are also due to John Martindale,
Ann Kostant, Elizabeth Loew and their colleagues at Springer for
encouragement and help with the preparation of the book. Finally,
my deepest thanks go to my wife Nancy Mattson who, for a second
time, has put up with the domestic side-effects of my preoccupation
with authorship.

This book seeks to capture a view of the subject that I have acquired
over a working lifetime’s involvement with optimization and its appli-
cations. Optimization, by definition, is concerned with making things
better. It is natural, therefore, that it should apply its own principles to
itself and – in my experience, at least – this can generate a lively spirit
of friendly rivalry between practitioners and algorithm developers. This
spirit is worth celebrating in quasi-haiku form:

Optimization
means a quest for best answers
by the best methods.

Optimism means
believing both objectives
are achievable.

I hope readers will be stimulated by the challenge of finding more and
more effective solutions to practical problems that become increasingly
difficult.

Michael Bartholomew-Biggs
January, 2008
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Chapter 1

Introducing Optimization

1.1. A tank design problem

In an optimization problem we seek values for certain design or control
variables which minimize (or sometimes maximize) an objective function.
A good example is the problem of finding the dimensions of a rectangular
open-topped tank in order to obtain the smallest surface area which
encloses a given volume, V ∗. (The purpose of such a design might be
to minimize heat loss through the sides.) We denote the height by x1

and the lengths of the edges of the base by x2 and x3. The volume and
surface area are then given by

V = x1x2x3 and S = 2x1x2 + 2x1x3 + x2x3.

Hence the design problem can be posed as

Minimize S = 2x1x2 + 2x1x3 + x2x3 subject to x1x2x3 = V ∗.
(1.1.1)

This is a three-variable optimization problem which includes an equality
constraint. Methods for solving problems of this kind are discussed in
Chapters 16–18; but an alternative unconstrained formulation can be
obtained by eliminating one of the unknowns. Because x3 = V ∗x−1

1 x−1
2

we can also seek the optimum tank dimensions by solving

Minimize S = 2x1x2 + 2V ∗x−1
2 + V ∗x−1

1 . (1.1.2)

The solution of problems of this kind is discussed in Chapters 5–11.
The optimal tank dimensions can be found by solving either (1.1.1)

or (1.1.2). However an important factor has been omitted from both
of them. If any two of the xi have negative values then the constraint

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 1, c© Springer Science+Business Media, LLC 2008



2 1. Introducing Optimization

on volume can still be satisfied but the surface area may be negative.
Because a negative value for S is necessarily less than a positive one,
a solution with, say, x1 < 0 and x2 < 0 might seem “better” than a
solution with all the xi positive. Of course, negative dimensions have
no practical meaning and so the problem formulation should explicitly
exclude them. We can do this by adding inequality constraints, as in

Minimize 2x1x2 + 2x1x3 + x2x3 s.t. x1x2x3 = V ∗, xi ≥ 0, i = 1, 2, 3.
(1.1.3)

or

Minimize 2x1x2 + 2V ∗x−1
2 + V ∗x−1

1 s.t. xi ≥ 0, i = 1, 2. (1.1.4)

(The abbreviation “s.t.” is often used instead of “subject to”.) Methods
for dealing with problems such as (1.1.3) and (1.1.4) are considered in
Chapters 20–23.

In this chapter and the next we restrict ourselves to unconstrained
problems involving only one variable. We can obtain such a problem
from the tank design example by adding an extra requirement that the
base must be square; that is, x2 = x3. Now the expressions for volume
and surface area become

V = x1x
2
2 and S = 4x1x2 + x2

2.

Using the constraint on V to eliminate x1, we get S in terms of x2 only;
that is,

S = 4V ∗x−1
2 + x2

2. (1.1.5)

Figure 1.1 shows S as a function of x2 when V ∗ = 5. In this case the
minimum occurs when x2 ≈ 2.2.

Figure 1.1 illustrates the well-known fact that, at the minimum of
a differentiable function, the slope – that is, the first derivative – is
zero. Hence, for this rather simple problem, we can obtain the minimum
surface area by solving

dS

dx2
= −4V ∗x−2

2 + 2x2 = 0

which gives x2 = (2V ∗)1/3. Hence, when V ∗ = 5, the optimum square
base has edges of length 2.1544.

Not all optimization problems are as easy as the minimization of
(1.1.5). Some objective functions are hard to differentiate; and, even
when the first derivative has been found, the equation obtained by set-
ting it to zero may be difficult to solve. This book describes some of the
computational methods used by engineers and scientists to deal with
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Figure 1.1. Tank surface area as a function of x2.

optimization problems which do not have an analytical solution. Such
problems occur in many situations, for example, finding a formula which
gives the closest match to some experimental data, choosing the shortest
route which avoids a number of obstacles, or devising a maintenance
schedule which gives the least operating cost. Such case studies are used
later in the book as a basis for the practical comparison of different
optimization methods.

Exercises
1. What happens to the surface area (1.1.5) as x2 → 0? What is the

minimum value of S if x2 lies in the range −1 < x2 < 0?
2. If x2 = x3, reformulate (1.1.2) as an unconstrained minimization

problem involving x1 only. Using the value V ∗ = 5, plot a graph of
the objective function in the range 1 ≤ x1 ≤ 3. Hence deduce the
minimum surface area. What happens to the surface area as x1 → 0?

3. Formulate the problem of finding the maximum volume that can be
enclosed by a rectangular open tank with a fixed surface area and
then estimate a solution when the base of the tank is square and the
fixed surface area is 8. (Note that maximizing a function F (x) is
equivalent to minimizing −F (x).)

1.2. Least squares data-fitting

Suppose that a laboratory experiment produces a record of measured
temperatures, θ, (◦C) against time t (minutes), as in Table 1.1. Suppose
also that we believe the underlying relationship between θ and t is linear,
of the form θ = at, for some unknown coefficient a. The data points
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Measurement i 1 2 3 4

Time ti 1.0 2.0 3.0 4.0

Temperature θi 2.3 5.1 7.2 9.5

Table 1.1. Experimental data for temperature versus time.

do not, in fact, lie on a straight line (perhaps because of experimental
errors). Hence, out of all the straight lines which pass near the data
points, we wish to find the one which gives the best approximation, in
the sense that the discrepancies between the data and the straight line
model are as small as possible.

Figure 1.2 shows the errors ati − θi as vertical lines PP ′.
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Figure 1.2. Data points and model line showing vertical errors.

A common way to find the best approximation is to choose a to mini-
mize the sum of squares of these vertical errors; that is, we want a to
solve the problem

Minimize F (a) =
4∑

i=1

(ati − θi)2. (1.2.1)

At a minimum of F , the first derivative F ′(a) is zero. Hence the optimum
value of a satisfies

dF

da
= 2

4∑

i=1

(ati − θi)ti = 0. (1.2.2)

This leads to

a

4∑

i=1

t2i =
4∑

i=1

θiti.
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Substituting for ti and θi from Table 1.1 we get 30a = 72.1 and so
a ≈ 2.4033.

This simple problem is an example of the least squares approach to
approximating a set of data points by a model function. The approach
can be extended (as shown in later chapters) to models with more than
one unknown coefficient.

The data-fitting problem we have just solved is extremely easy because
F is a quadratic function of the variable a. This means that equation
(1.2.2) is linear and yields a unique answer. We now show that some
optimization problems are not so straightforward by considering another
way to minimize discrepancies between the data and the model. Rather
than dealing with just the vertical error at a data point, we take account
of the total displacement given by the perpendicular distance of (ti, θi)
from the line θ = at as shown in Figure 1.3.
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Figure 1.3. Data points and model line showing total displacement errors.

We can determine the perpendicular distance between point and line
as follows. A typical point, P ′, on the line θ = at has coordinates (t, at)
and the slope of the line joining P ′ to the data point P with coordinates
(ti, θi) is

m =
at − θi

t − ti
.

We want to find the value of t which makes m = −a−1 because the line
PP ′ will then be perpendicular to θ = at and P ′ will be the model point
which is closest to the data point P . The value of t at the footpoint P ′

is found by solving
−a−1(t − ti) = at − θi.
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Hence P ′ is defined by

t = τi =
a−1ti + θi

a + a−1
=

ti + aθi

a2 + 1
. (1.2.3)

The total displacement PP ′ is then
√

(ti − τi)2 + (θi − aτi)2 and to get
the optimum straight line θ = at we must find a by solving

Minimize F̂ (a) =
8∑

i=1

φ2
i (1.2.4)

where φi = (ti − τi) and φi+4 = (θi − aτi) for i = 1, . . . , 4. (1.2.5)

Of course, τ1, . . . , τ4 and φ1, . . . , φ8 are functions of a. If we substitute
the known values of ti and θi we see that (1.2.4) is a more complicated
expression than the corresponding function (1.2.1) in the vertical least-
squares problem. From (1.2.3) we get

τ1 =
1 + 2.3a
a2 + 1

; τ2 =
2 + 5.1a
a2 + 1

; τ3 =
3 + 7.2a
a2 + 1

; τ4 =
4 + 9.5a
a2 + 1

.

Hence

φ1 =
(

1 − 1 + 2.3a
a2 + 1

)
, φ5 =

(
2.3 − a + 2.3a2

a2 + 1

)

with similar expressions for the remaining φi.
It is now clear that the function (1.2.4) is not quadratic and its first

derivative is not linear. Hence, forming and solving the equation F̂ ′(a) =
0 is more difficult than for the vertical least-squares problem. In practice,
we would normally minimize a function such as F̂ (a) by using iterative
methods of the kind described in the next chapter. More information
about total least squares and the footpoint problem is given in [27].

We can, of course, estimate the minimum of F̂ (a) by plotting a graph,
as shown in Figure 1.4. In this case, the best straight line approximation
in the total least squares sense is very similar to the approximation based
on vertical least squares with slope a ≈ 2.4.

Exercises
1. Using vertical displacements, find the straight line y = mx to give a

least-squares approximation to the data points (3, 7), (4, 8), (6, 11).
2. Show that the footpoint P ′ could have been found by putting τi = tf

where t = tf solves the problem

Minimize (ti − t)2 + (θi − at)2.
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Figure 1.4. Plot of F̂ (a) the total least squares error function.

3. Use the data in the worked example to find expressions for φ2, . . . , φ4

and φ6, . . . , φ8; hence complete the expression for F̂ (a) in (1.2.4) and
obtain the expression for F̂ ′(a). Plot a graph to estimate the solution
of F̂ ′(a) = 0.

4. Consider the data in Table 1.1 and suppose θ4 is changed to 14.2.
Calculate a model line θ = at using both vertical and total least
squares. Comment on the difference between the two solutions.

1.3. A routing problem

Suppose a robot vehicle starts at the origin and is required to proceed
to a point P , as shown in Figure 1.5. It must move initially along the
x-axis and then turn towards P at some point Q. The circle represents a
“no-go” area which the vehicle must avoid. The point Q is to be chosen
to minimize a combination of the total distance travelled and the length
of the route that lies within the circle.

If the line from Q to P cuts the circle at R and S then we can define
the optimum route as the one which minimizes

F = distance OQ + distance QP + ρ(distance RS)

where ρ is a positive constant. This form of function penalizes the por-
tion of the route inside the no-go region. If ρ is large we expect little
or none of the optimum route to pass through the circle. On the other
hand, as ρ → 0, the optimum route will come closer to the straight line
OP .
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Figure 1.5. A routing problem.

If P has coordinates (xp, yp) and if x is the (unknown) distance OQ
then the total length of the route is

d(x) = x +
√

(x − xp)2 + y2
p. (1.3.1)

(We are assuming that P and the circle are in the positive quadrant
and hence that x is positive.) We now need to determine the points of
intersection (if any) of line QP and the circle. We assume that P is
outside the no-go area and also that the circle does not cut the x-axis;
it follows that the line segment QP will either cut the circle twice or not
at all. The coordinates of any point on the line between Q and P are

(x + λ(xp − x), λyp) where 0 ≤ λ ≤ 1.

If the no-go area has centre (xc, yc) and radius r then points of inter-
section with QP occur when λ satisfies

(x + λ(xp − x) − xc)2 + (λyp − yc)2 − r2 = 0.

This simplifies to αλ2 + βλ + γ = 0, where the coefficients are given by

α = (x − xp)2 + y2
p, β = 2[(xp − x)(x − xc) − ypyc] (1.3.2)

and γ = (x − xc)2 + y2
c − r2. (1.3.3)

We let δ = β2 − 4αγ. If δ ≤ 0 there are no points of intersection with
the circle and so the distance RS is zero. On the other hand, if δ > 0
the intersection points are given by

λ1 =
−β +

√
δ

2α
, λ2 =

−β −
√

δ

2α
. (1.3.4)
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The distance RS is then given by |λ1 −λ2| × (distance QP ). Hence the
optimum route is obtained by minimizing

F (x) = d(x) + ρv(x) (1.3.5)

where d(x) is given by (1.3.1) and

v(x) = |λ1 − λ2|
√

(x − xp)2 + y2
p. (1.3.6)

Note that α, β and γ are functions of x because of (1.3.2) and (1.3.3).
Hence (1.3.4) implies that λ1 and λ2 also depend on x. It is possible –
but not trivial – to differentiate F (x) but it will not be possible to find
an analytical solution to the equation F ′(x) = 0.

If we take the target point (xp, yp) as (5,4) and define the no-go region
by xc = yc = 2, r = 1 then we can plot the function (1.3.5), as shown
in Figure 1.6. It is clear that the optimum value of x is about 1.62. The
solution path leaves the x-axis at a point Q such that PQ is a tangent
to the circular boundary of the no-go region.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

x

F
(x

)

Cost function for the routing problem

Figure 1.6. Nonsmooth cost function for the routing problem.

Figure 1.6 shows that the minimum corresponds to a “kink” in F (x);
that is, the slope of (1.3.5) is not zero at the optimum but instead has a
discontinuity. This is due to the presence of the square root in (1.3.6).
The function (1.3.5) is said to be nonsmooth.

Most of the optimization methods described in this book are intended
for use with smooth (i.e., continuously differentiable) functions. We can
formulate the routing problem in terms of a function which is smooth if
we choose to minimize

Φ(x) = d(x) + ρv(x)3 (1.3.7)
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Figure 1.7. Smooth cost function for the routing problem.

whose graph is given in Figure 1.7 (for ρ = 1). The minimum of (1.3.7)
occurs at approximately the same place as that of the nonsmooth func-
tion (1.3.5). The use of functions such as (1.3.7) in some real-life routing
problems is described in [65, 9].

Exercises
1. Calculate expressions for the first derivatives of (1.3.1) and (1.3.6).
2. Using the sample data xp = 5, yp = 4, xc = yc = 2, r = 1, plot

graphs to determine the minima of (1.3.5) and (1.3.7) when ρ =
0.5, 0.05 and 0.005. Comment on any differences you observe.

3. Use the data xp = 4, yp = 8, xc = 4, yc = 2, r = 2 to plot graphs of
(1.3.5) and (1.3.7) with ρ = 1 in the range 0 ≤ x ≤ 10. Comment on
what you observe.



Chapter 2

One-variable Optimization

2.1. Optimality conditions

Definition Suppose that F (x) is a continuous function of the scalar
variable x and that, for some point x = x∗, there exists an ε > 0 such
that

F (x∗) ≤ F (x) when |x − x∗| ≤ ε. (2.1.1)

Then F (x) is said to have a local minimum at x∗.

If F (x) is a one-variable differentiable function then we can charac-
terize a minimum in terms of its first and second derivatives. In what
follows we sometimes use the notation

F ′(x) =
dF

dx
and F ′′(x) =

d2F

dx2
.

Definition Suppose that F (x) is a continuously differentiable function
of the scalar variable x and that, when x = x∗,

dF

dx
= 0 and

d2F

dx2
> 0. (2.1.2)

Then F (x) is said to have a local minimum at x∗.

Conditions (2.1.2) are called optimality conditions. We have already
used the optimality condition F ′(x∗) = 0 in the examples in the previous
chapter. Conditions (2.1.1) or (2.1.2) imply that F (x∗) is the smallest
value of F in some region near x∗. It may also be true that F (x∗) ≤ F (x)
for all x but condition (2.1.2) does not guarantee this.

Definition If conditions (2.1.2) hold at x = x∗ and if F (x∗) ≤ F (x)
for all x then x∗ is said to be the global minimum.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 2, c© Springer Science+Business Media, LLC 2008
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In practice it is usually hard to establish that x∗ is a global minimum
and so we are chiefly concerned with methods of finding local minima.

There are stationary points of F (x) which satisfy the first condition
(2.1.2) but not the second. If F ′(x∗) = 0 and F ′′(x∗) < 0 then x∗

is a local maximum. But if F ′(x∗) = 0 and F ′′(x∗) = 0 then F (x)
may be neither a maximum nor a minimum. For instance, the function
F (x) = x3 has a stationary point at x = 0 such that F is steadily
decreasing as x approaches zero through positive values but is steadily
increasing as x approaches zero through negative values.

For simple problems, the conditions (2.1.2) can be used directly to
find a minimum. Consider

F (x) = x3 − 3x2. (2.1.3)

Because F ′(x) = 3x2 − 6x we have F ′(x) = 0 when x = 0 and x = 2.
Hence there are two stationary points of F (x); and to find which is
a minimum we must consider F ′′(x) = 6x − 6. F has a minimum at
x = 2 because F ′′(2) > 0. However, F ′′(0) is negative and so F (x) has
a maximum at x = 0.

We can only use this analytical approach when it is easy to form and
solve the equation F ′(x) = 0. This may not be the case for functions
F (x) which occur in practical problems and so we usually resort to itera-
tive techniques.

Some iterative methods are called direct search techniques and are
based on comparisons of function values at trial points. Others, known
as gradient methods, use derivatives of the objective function and can
be viewed as algorithms for solving the nonlinear equation F ′(x) = 0.
Gradient methods tend to converge faster than direct search methods.
They also have the advantage that they permit an obvious convergence
test, namely stopping the iterations when the gradient is near zero.
Gradient methods are not suitable, however, when F (x) is a function
like (1.3.5) which has discontinuous derivatives.

Exercises
1. Show that if conditions (2.1.2) hold then F (x∗ + h) > F (x∗) for h

sufficiently small. (Hint: use a Taylor series expansion.)
2. Find the stationary points of F (x) = 4 cos x2 − sinx2 − 3.
3. Discuss the stationary points of F (x) = x4, F (x) = −x4 and

F (x) = x5.

2.2. The bisection method

A simple (but inefficient) way of estimating the least value of F (x) in a
range a ≤ x ≤ b would be to calculate the function at many points in
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[a, b] and then pick the one with the lowest value. The bisection method
uses a more systematic approach to the evaluation of F in [a, b].

Suppose we are seeking the minimum of F (x) in the range 0 ≤
x ≤ 1 and have evaluated F at five equally spaced points as shown
in Figure 2.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

x

F
(x

)

Figure 2.1. Five equi-spaced function values used by the bisection method.

If we assume that F (x) is unimodal (i.e., that it has only one mini-
mum in the range we are exploring) then the distribution in Figure 2.1
suggests the minimum must lie in the range 0 ≤ x ≤ 0.5. (If the sample
values of F had been different we might have deduced that the minimum
was in one of the ranges 0.5 ≤ x ≤ 1 or 0.25 ≤ x ≤ 0.75.) Repeated use
of this argument allows us to locate the minimum precisely, using the
following formal algorithm.

Bisection Method for minimizing F (x) on the range [a, b]

Set xa = a, xb = b and xm = 1
2(a + b).

Calculate Fa = F (xa), Fb = F (xb), Fm = F (xm)
Repeat
set xl = 1

2(xa + xm), xr = 1
2 (xm + xb)

calculate Fl = F (xl) and Fr = F (xr)
let Fmin = min{Fa, Fb, Fm, Fl, Fr}
if Fmin = Fa or Fl then set xb = xm, xm = xl, Fb = Fm, Fm = Fl

else if Fmin = Fm then set xa = xl, xb = xr, Fa = Fl, Fb = Fr

else if Fmin = Fr or Fb then set xa = xm, xm = xr, Fa = Fm, Fm = Fr

until |xb − xa| is sufficiently small

Each iteration of the bisection method compares the function values at
five points in order to halve the size of a bracket containing the minimum.
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We can show how the algorithm works by applying it to the problem

Minimize F (x) = x3 − 3x2 for 0 ≤ x ≤ 3.

Initially xa = 0, xb = 3, xm = 1.5. The first iteration adds xl = 0.75,
xr = 2.25 and we then have

Fa = 0; Fl = −1.266; Fm = −3.375; Fr = −3.797; Fb = 0.

The least function value Fmin occurs at xr = 2.25 and so the search
range for the next iteration is [xm, xb] = [1.5, 3.0].

After re-labelling the points and computing new values xl, xr we get

xa = 1.5; xl = 1.875; xm = 2.25; xr = 2.625; xb = 3

and

Fa = −3.375; Fl = −3.955; Fm = −3.797; Fr = −2.584; Fb = 0.

Now the least function value is at xl and the new range is [xa, xm] =
[1.5, 2.25]. Relabelling and adding the new xl and xr gives

xa = 1.5; xl = 1.6875; xm = 1.875; xr = 2.0625; xb = 2.25

and

Fa = −3.375; Fl = −3.737; Fm = −3.955; Fr = −3.988;

Fb = −3.797.

These values imply the minimum lies in [xl, xr] = [1.875, 2.25]. After a
few more steps we have an acceptable approximation to the true solution
at x = 2.

Proposition If F (x) is unimodal and has a minimum x∗ with a ≤ x∗ ≤ b
then the number of bisection iterations needed to locate x∗ in a bracket
of width less than 10−s is K, where K is the smallest integer which
exceeds

log10(b − a) + s

log10(2)
. (2.2.1)

Proof The size of the bracket containing the solution is halved on each
iteration. Hence, after k iterations the width of the bracket is 2−k(b−a).
To find the value of k which gives

2−k(b − a) ≤ 10−s
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we take logs of both sides and get

log10(b − a) − k log10(2) ≤ −s

and so the width of the bracket is less than 10−s once k exceeds (2.2.1).

The number of iterations needed to achieve a specified accuracy
depends on the size of the initial search range rather than the form
of the function being minimized, as observed in the numerical examples
later in this chapter.

Finding a bracket for a minimum

We now give a systematic way of finding a range a < x < b which con-
tains a minimum of F (x). The method uses the slope F ′ to indicate
whether the minimum lies to the left or right of an initial point x0. If
F ′(x0) is positive then lower function values will be found for x < x0,
whereas F ′(x0) < 0 implies lower values of F occur when x > x0. The
algorithm simply takes larger and larger steps in a “downhill” direction
until the function starts to increase, indicating that a minimum has been
bracketed.

Finding a and b to bracket a local minimum of F (x)

Choose an initial point x0 and a step size α(> 0)
Set δ = −α × sign(F ′(x0))
Repeat for k = 0, 1, 2, . . .
xk+1 = xk + δ, δ = 2δ

until F (xk+1) > F (xk)
if k = 0 then set a = x0 and b = x1

if k > 0 then set a = xk−1 and b = xk+1

Exercises
1. Apply the bisection method to F (x) = ex − 2x in the interval 0 ≤

x ≤ 1.
2. Do two iterations of the bisection method for the function F (x) =

x3 + x2 − x in the range 0 ≤ x ≤ 1. How close is Fmin to the exact
minimum of F? What happens if you apply the bisection method in
the range −2 ≤ x ≤ 0?

3. Use the bracketing technique with x0 = 1 and α = 0.1 to bracket a
minimum of F (x) = ex − 2x.

4. Estimate how many function evaluations are used by the bisection
method to reduce an initial range a ≤ x ≤ b to a bracket with width
less than 10−s.
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5. Discuss what will happen if the bisection method is applied in the
range a ≤ x ≤ b when F (x) does not have a minimum in this range.

2.3. The secant method

We now consider an iterative method for solving F ′(x) = 0. This finds a
local minimum of F (x) provided we use it in a region where the second
derivative F ′′(x) remains positive.

Let F (x) be a continuous and differentiable function and suppose
x1 < x2 and also F ′(x1) < 0 and F ′(x2) > 0. Then there is a minimum
of F between x1 and x2. A simple sketch diagram shows that this must
be the case. (A similar sketch shows there must be a maximum between
x1 and x2 if F ′(x1) > 0 and F ′(x2) < 0.) If there is a minimum between
x1 and x2 then we can estimate its position using linear interpolation.
If F ′

1 = F ′(x1) and F ′
2 = F ′(x2) then

x3 = x1 −
F ′

1

F ′
2 − F ′

1

(x2 − x1) (2.3.1)

gives x3 as an estimate of the point where F ′(x) vanishes.
The formula (2.3.1) can also be used to obtain an extrapolated

estimate of a stationary point if F ′
1 and F ′

2 have the same sign. The
stationary point will be a minimum under the following conditions.

either x1 < x2 and F ′
1 < F ′

2 < 0 or x1 > x2 and F ′
1 > F ′

2 > 0.

Once again a simple sketch shows why these conditions are necessary.
Consider the function F (x) = x2 − 3x − 1 for which F ′(x) = 2x − 3.

If we choose x1 = 0 and x2 = 2 then (2.3.1) gives

x3 = 0 − F ′(0)
F ′(2) − F ′(0)

× 2 = 0 − −3
4

× 2 = 1.5.

In this case (2.3.1) has found the stationary point of F (x) = x2−3x−1.
This will always happen when F (x) is quadratic (see Exercise 2). When
F is not quadratic, however, (2.3.1) must be used iteratively, as in the
algorithm below.

Secant method for solving F ′(x) = 0

Choose x0, x1 as two estimates of the minimum of F (x)
Repeat for k = 0, 1, 2, . . . .

xk+2 = xk − F ′(xk)
F ′(xk+1) − F ′(xk)

(xk+1 − xk) (2.3.2)

until |F ′(xk+2)| is sufficiently small.
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We apply this algorithm to F (x) = x3 − 3x2 for which F ′(x) =
3x2 − 6x. If x0 = 1.5 and x1 = 3 then F ′(x0) = −2.25 and F ′(x1) = 9.
Iteration one gives

x2 = x0 −
F ′(x0)

F ′(x1) − F ′(x0)
(x1 − x0) = 1.5 − −2.25

11.25
× 1.5 = 1.8.

Hence F ′(x2) = −1.08. The next iteration gives

x3 = x1 −
F ′(x1)

F ′(x2) − F ′(x1)
(x2 − x1) = 3 − 9

−10.08
× (−1.2) = 1.9286.

The iterates appear to be moving towards the solution x∗ = 2.
The algorithm we have just used generates each new solution estimate

from formula (2.3.2) based upon the two most recently calculated points.
In fact, this may not be the most efficient way to proceed. When k > 1,
we would normally calculate xk+2 using xk+1 together with either xk or
xk−1 according to one of a number of possible strategies:

(a) Choose whichever of xk and xk−1 gives the smaller value of |F ′|.
(b) Choose whichever of xk and xk−1 gives F ′ with opposite sign to
F ′(xk+1).
(c) Choose whichever of xk and xk−1 gives the smaller value of F .

Strategies (a) and (c) are based on using points which seem closer to
the minimum; strategy (b) seeks to exploit the fact that interpolation
is more reliable than extrapolation. Strategy (b), however, can only be
employed if we have chosen our initial x0 and x1 so that F ′(x0) and
F ′(x1) have opposite signs.

To demonstrate strategy (a) we return to the function F (x) = x3−3x2

with the initial points x0 = 1.5 and x1 = 3. As in the worked example
above, the first secant iteration gives x2 = 1.8 and so F ′(x2) = −1.08.
We now need to consider which of x0 and x1 should be combined with x2

in the formula (2.3.2) on the next iteration. Because |F ′(x0)| = 2.25 <
|F ′(x1)| we conclude that x0 is closer to the minimum and so we reassign
x1 = x0 = 1.5. Thus the next iteration gives

x3 = x1 −
F ′(x1)

F ′(x2) − F ′(x1)
(x2 − x1) = 1.5 − −2.25

−1.17
× 0.3 ≈ 2.077.

Strategy (a) gives a solution estimate x3 which is different from the one
obtained with the first version of the secant method. The reader can
perform further steps to confirm that subsequent xk converge to the
solution x∗ = 2.
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Exercises
1. Apply the secant method to F (x) = ex − 2x in the range 0 ≤ x ≤ 1.
2. Show that (2.3.1) will give F ′(x) = 0 when applied to any quadratic

function F (x) = ax2 + bx + c.
3. Use the secant method with strategy (b) on F (x) = x3 − 3x2 with

x0 = 1.5 and x1 = 3. What happens if the starting values are x0 = 0.5
and x1 = 1.5?

4. Suppose that xk < xk+1 and F ′(xk) > F ′(xk+1). Use a sketch to show
that the secant method will give xk+2 as a point which approximates
a maximum.

2.4. The Newton method

This method seeks the minimum of F (x) using both first and second
derivatives. In its simplest form it can be described as follows.

Newton method for minimizing F (x)

Choose x0 as an estimate of the minimum of F (x)
Repeat for k = 0, 1, 2, . . .

xk+1 = xk − F ′(xk)
F ′′(xk)

(2.4.1)

until |F ′(xk+1)| is sufficiently small.

This algorithm is derived by expanding F (x) as a Taylor series
about xk

F (xk + h) = F (xk) + hF ′(xk) +
h2

2
F ′′(xk) + O(h3). (2.4.2)

Differentiation with respect to h gives a Taylor series for F ′(x)

F ′(xk + h) = F ′(xk) + hF ′′(xk) + O(h2). (2.4.3)

Suppose h is the step from xk to the minimum x∗ so that F (xk +h) = 0.
If we assume that h is small enough for the O(h2) term to be neglected
then (2.4.3) implies h = −F ′(xk)/F ′′(xk), as used in (2.4.1).

Geometrically, the algorithm can be viewed as using the tangent to the
curve of F ′(x) to predict where F ′(x) itself becomes zero (see Figure 2.2).

As an illustration, we apply the Newton method to F (x) = x3 − 3x2

for which F ′(x) = 3x2 − 6x and F ′′(x) = 6x − 6. At the initial guess
x0 = 3, F ′ = 9 and F ′′ = 12 and so the next iterate is given by

x1 = 3 − 9
12

= 2.25.
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Figure 2.2. Tangent approximation to F ′(x) used in the Newton method.

Iteration two uses F ′(2.25) = 1.6875 and F ′′(2.25) = 7.5 to give

x2 = 2.25 − 1.6875
7.5

= 2.025.

After one more iteration x3 ≈ 2.0003 and so Newton’s method is con-
verging to the solution x∗ = 2 more quickly than either bisection or the
secant method.

Convergence of the Newton method

Because the Newton iteration is important in the development of opti-
mization methods we study its convergence more formally. We define

ek = x∗ − xk (2.4.4)

as the error in the approximate minimum after k iterations.

Proposition Suppose the Newton iteration (2.4.1) converges to x∗, a
local minimum of F (x) where F ′′(x∗) = m > 0. Suppose also there is
some neighbourhood N of x∗ in which the third derivatives of F are
bounded, so that, for some M > 0,

M ≥ F ′′′(x) ≥ −M for all x ∈ N. (2.4.5)

If ek is defined by (2.4.4) then there exists an integer K such that, for
all k > K,

e2
kM

m
> ek+1 > −e2

kM

m
. (2.4.6)
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Proof Because the iterates xk converge to x∗ there exists an integer K
such that

xk ∈ N and |ek| <
m

2M
for k > K.

Then the bounds (2.4.5) on F ′′′ imply m+M |ek| > F ′′(xk) > m−M |ek|.
Combining this with the bound on |ek|, we get

F ′′(xk) >
m

2
. (2.4.7)

Now, by the mean value form of Taylor’s theorem,

F ′(x∗) = F ′(xk) + ekF
′′(xk) +

1
2
e2
kF

′′′(ξ),

for some ξ between x∗ and xk. Because F ′(x∗) = 0 we deduce

F ′(xk) = −ekF
′′(xk) +

1
2
e2
kF

′′′(ξ).

The next estimate of the minimum is xk+1 = xk − δxk where

δxk =
F ′(xk)
F ′′(xk)

= −ek +
e2
kF

′′′(ξ)
2F ′′(xk)

.

Hence the error after k + 1 iterations is

ek+1 = x∗ − xk+1 = ek + δxk =
e2
kF

′′′(ξ)
2F ′′(xk)

.

Thus (2.4.6) follows, using (2.4.5) and (2.4.7).
This result shows that, when xk is near to x∗, the error ek+1 is pro-

portional to e2
k and so the Newton method ultimately approaches the

minimum very rapidly.

Definition If, for some constant C, the errors ek, ek+1 on successive
steps of an iterative method satisfy

|ek+1| ≤ Ce2
k as k → ∞

then the iteration is said to have a quadratic rate of ultimate convergence.

Implementation of the Newton method

The convergence result leading to (2.4.6) depends on certain assump-
tions about higher derivatives and this should warn us that the Newton
iteration (2.4.1) may not always be successful. For instance, the calcula-
tion will break down if the iterations reach a point where F ′′(x) is zero.
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It is not only this extreme case which causes difficulties, as the following
examples show.

Consider F (x) = x3−3x2, and suppose the Newton iteration is started
from x0 = 1.1. Because F ′(x) = 3x2 − 6x and F ′′(x) = 6x − 6, we get

x1 = 1.1 − (−2.97)
0.6

= 6.05.

The minimum of x3 − 3x2 is at x = 2 and so we see that the method
has overshot the minimum and given x1 further away from the solution
than x0.

Suppose now that the Newton iteration is applied to x3−3x2 starting
from x0 = 0.9. The new estimate of the minimum turns out to be

x1 = 0.9 − (−1.89)
(−0.6)

= −2.25,

and the direction of the Newton step is away from the minimum. The
iteration is being attracted to the maximum of F (x) at x = 0 (which is
not unreasonable because the Newton method solves F ′(x) = 0.)

These two examples show that convergence of the basic Newton itera-
tion depends on the behaviour of F ′′(x). A practical algorithm should
include safeguards against divergence. Clearly we should only use (2.4.1)
if F ′′(x) is strictly positive. We should also check that the new point pro-
duced by the Newton formula is “better” than the one it replaces. These
ideas are included in the following algorithm which applies the Newton
method within a range [a, b] such as can be found by the bracketing
algorithm in Section 2.2.

Safeguarded Newton method for minimizing F (x) in [a, b]

Make a guess x0 (a < x0 < b) for the minimum of F (x)
Repeat for k = 0, 1, 2, . . .
if F ′′(xk) > 0 then

δx = −F ′(xk)/F ′′(xk)
else

δx = −F ′(xk)
if δx < 0 then α = min(1, (a − xk)/δx)
if δx > 0 then α = min(1, (b − xk)/δx)
Repeat for j = 0, 1, . . ..
α = 0.5jα
until F (xk + αδx) < F (xk)
Set xk+1 = xk + αδx
until |F ′(xk+1)| is sufficiently small.
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As well as giving an alternative choice of δx when F ′′ ≤ 0, the
safeguarded Newton algorithm includes a stepsize α. This is chosen
first to prevent the correction steps from going outside the bracket [a, b]
and then, by repeated halving, to ensure that each new point has a lower
value of F than the previous one. The algorithm always tries the full step
(α = 1) first and hence it can have the same fast ultimate convergence
as the basic Newton method.

We can show the working of the safeguarded Newton algorithm on
the function F (x) = x3 − 3x2 in the range [1,4] with x0 = 1.1. Because

F (1.1) = −2.299, F ′(1.1) = −2.97 and F ′′(1.1) = 0.6

the first iteration gives δx = 4.95. The full step, α = 1, gives xk +αδx =
6.05 which is outside the range we are considering and so we must reset

α =
(4 − 1.1)

4.95
≈ 0.5859.

However, F (4) = 16 > F (1.1) and α is reduced again (to about 0.293)
so that

xk + αδx = 1.1 + 0.293 × 4.95 ≈ 2.55.

Now F (2.55) ≈ −2.93 which is less than F (1.1). Therefore the inner
loop of the algorithm is complete and the next iteration can begin.

Under certain assumptions, we can show that the inner loop of the
safeguarded Newton algorithm will always terminate and hence that the
safeguarded Newton method will converge.

The difference between the original Newton algorithm and the safe-
guarded version is worth noting. In most practical optimization algo-
rithms, a simple basic idea has to be augmented by extra features in
order to prevent failure when the assumptions behind the method are
not satisfied.

Exercises
1. Use Newton’s method to estimate the minimum of ex − 2x in 0 ≤

x ≤ 1. Compare the rate of convergence with that of the bisection
method.

2. Show that, for any starting guess, the basic Newton algorithm con-
verges in one step when applied to a quadratic function.

3. Do one iteration of the basic Newton method on the function F (x) =
x3−3x2 starting from each of the three initial guesses: x0 = 2.1, x0 =
1, x0 = −1. Explain what happens in each case.

4. Do two iterations of the safeguarded Newton method applied to the
function x3 − 3x2 and starting from x0 = 0.9.
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5. Devise a safeguarded version of the secant method which restricts the
search to a given range a ≤ x ≤ b and forces it only to accept a new
point if it produces a decrease in function value.

Methods using quadratic or cubic interpolation

Each iteration of Newton’s method generates xk+1 as a stationary point
of the interpolating quadratic function defined by the values of F (xk),
F ′(xk) and F ′′(xk). In a similar way, a direct-search iterative approach
can be based on locating the minimum of the quadratic defined by values
of F at three points xk, xk−1, xk−2; and a gradient approach could
minimize the local quadratic approximation given by F (xk−1), F ′(xk−1)
and F (xk). If a quadratically predicted minimum xk+1 is found to be
“close enough” to x∗ (e.g., because F ′(xk+1) ≈ 0) then the iteration
terminates; otherwise xk+1 is used instead of one of the current points
to generate a new quadratic model and hence to predict a new minimum.

As with the Newton method, the practical implementation of this
basic idea requires certain safeguards, mostly for dealing with cases
where the interpolated quadratic has negative curvature and therefore
does not have a minimum. The bracketing algorithm given earlier may
prove useful in locating a group of points which implies a suitable
quadratic model.

A similar approach is based on repeated location of the minimum of a
cubic polynomial fitted either to values of F at four points or to values
of F and F ′ at two points. This method can give faster convergence,
but it also requires fall-back options to avoid the search being attracted
to a maximum rather than a minimum of the interpolating polynomial.

Exercises
1. Suppose that F (x) is a quadratic function and that, for any two

points xa, xb, the ratio D is defined by

D =
F (xb) − F (xa)
(xb − xa)F ′(xa)

.

Show that D = 0.5 when xb is the minimum of F (x). What is the
expression for D if F (x) is a cubic function?

2. Explain why the secant method can be viewed as being equivalent to
quadratic interpolation for the function F (x).

3. Design an algorithm for minimizing F (x) by quadratic interpolation
based on function values only.
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2.5. Sample applications and results

We illustrate the performance of the bisection, secant and Newton
methods by quoting results obtained using a fortran90 module called
OPTIMA. This can be downloaded from an ftp site (as described at the
end of the book). It is not essential for the reader to use or understand
this software because it should be possible to obtain similar results from
other implementations of the methods. (Readers are, in fact, encouraged
to program and run their own versions of the minimization algorithms
given in this book since this is a very good way to appreciate the advan-
tages and the drawbacks of a particular method.)

Throughout this book we use solutions obtained with the OPTIMA

software in order to give a general indication of the relative merits of
a number of optimization methods. It should be understood, however,
that two implementations of the same method made by different authors
will probably not behave in an identical fashion. This is partly because
most algorithms involve some arbitrary parameters. For instance, our
version of the safeguarded Newton method uses repeated step-halving
in the inner iterations to ensure a decrease in the objective function.
However, a factor of 0.9 or 0.1 could just as well have been used instead
of 0.5. A scaling factor of 0.1 would probably mean that fewer trial steps
would be needed on each inner iteration but might also cause the outer
iterations to make smaller steps. Other, more subtle, reasons why two
implementations of a method may perform differently are considered in
later chapters.

The OPTIMA version of the secant method is implemented using stra-
tegy (b) from Section 2.3. This requires the method to be started with a
range a ≤ x ≤ b which brackets a minimum. The search then maintains
a bracket around the solution on subsequent iterations. The Newton
method in OPTIMA is an implementation of the safeguarded form of the
algorithm. When a search range a ≤ x ≤ b is specified, the first Newton
iteration is started from the midpoint x = 1

2(a + b).
Before quoting results, we consider the question of obtaining the

derivatives of F (x) which are required by the secant or Newton methods.
Sometimes the task of differentiating F (x) will be straightforward, as in
the tank design problem. In other cases, such as the total least squares
example, the derivatives require more care and effort. It is possible
to avoid the work of obtaining analytical expressions for derivatives by
using approximations based on finite differencing. Thus we can estimate
the slope of the function F (x) at a point x = a by using

F ′(a) ≈ F (a + h) − F (a)
h

(2.5.1)
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where h is a small positive stepsize. The errors in this approximation
can be shown to tend to zero as h → 0. For a given value of h, a more
accurate approximation is

F ′(a) ≈ F (a + h) − F (a − h)
2h

. (2.5.2)

A formula for approximating the second derivative of F (x) at x = a is

F ′′(a) ≈ F (a + h) − 2F (a) + F (a − h)
h2

. (2.5.3)

Alternatively, if we have an analytical expression for the first derivative
F ′(a), we can estimate the second derivative from

F ′′(a) ≈ F ′(a + h) − F ′(a − h)
2h

. (2.5.4)

We make use of finite difference estimates in some examples below.

The tank design problem

In order to apply the secant and Newton methods to the function (1.1.5)
we need expressions for the first and second derivatives. It is easy to
obtain

dS

dx2
= −4V ∗x−2

2 + 2x2;
d2S

dx2
2

= 8V ∗x−3
2 + 2.

These expressions are used in the program TD0 which lets a user apply
the bisection, secant and Newton methods to minimize (1.1.5) for any
choice of V ∗ and from any starting guess for the variable x2. (Even
though the minimum of (1.1.5) can be found by the formula x2 =
(2V ∗)1/3, we can use this problem to illustrate convergence behaviour of
the different methods.)

Taking V ∗ = 20 we consider three possible starting ranges for x2. (It
may not be easy to make a well-informed initial estimate of a solution
and a good optimization method should be able to converge from starting
points that are badly chosen.) Table 2.1 shows the numbers of iterations
needed to find the optimum value x2 ≈ 3.42 correct to three decimal
places.

Clearly the Newton method is consistently the best approach on this
example. The bisection method is relatively inefficient, even when given
a fairly good initial guess. However, the bisection method’s performance
does not deteriorate very much as the search range gets wider whereas
the secant method is quite adversely affected.



26 2. One-variable Optimization

Bisection Secant Newton
Starting Range Method Method Method

3 ≤ x2 ≤ 4 14 6 2

3 ≤ x2 ≤ 5 15 6 3

2 ≤ x2 ≤ 6 16 18 3

Table 2.1. Numbers of iterations to minimize (1.1.5).

The secant method is less efficient than bisection in the third case
because the function (1.1.5) has much steeper slopes on the left of the
optimum than on the right. By working through the first few itera-
tions, the reader can verify that this causes the left end point to remain
unchanged and so convergence is from the right-hand side only. Hence
we do not get a bracket which shrinks onto the minimum from both
sides. This a fairly common failing of the secant method.

Exercise
For the case in row three of Table 2.1, perform the first three iterations
of the secant method (with strategy (b) from Section 2.3) and comment
on the results. What happens if we use strategies (a) or (c) instead?

Data-fitting by total least squares

To apply the secant and Newton methods to the function (1.2.4) we need
to form its first and second derivatives w.r.t. a. Because F̂ depends on
a through the intermediate functions τi and φ in (1.2.3) and (1.2.5), we
need a systematic way of organizing the differentiation. If we start with
τi we can write

τ ′
i =

dτi

da
=

θi

a2 + 1
− 2a

ti + aθi

(a2 + 1)2

τ ′′
i =

d2τi

da2
= −2a

θi

(a2 + 1)2
− 2ti + 4aθi

(a2 + 1)2
+ 4a2 ti + aθi

(a2 + 1)3
.

Then, proceeding to the expressions for φi, i = 1, . . . , 4,

φ′
i =

dφi

da
= −τ ′

i , φ′′
i =

d2φi

da2
= −τ ′′

i .

Also for φi+4, i = 1, . . . , 4,

φ′
i+4 =

dφi+4

da
= −aτ ′

i − τi, φ′′
i+4 =

d2φi+4

da2
= −aτ ′′

i − 2τ ′
i .
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Finally, when F̂ (a) is given by (1.2.4),

dF̂

da
= 2

4∑

i=1

[φiφ
′
i + φi+4φ

′
i+4]

d2F̂

da2
= 2

4∑

i=1

[(φ′
i)

2 + φiφ
′′
i + (φ′

i+4)
2 + φi+4φ

′′
i+4].

The demonstration program TLS0 uses these expressions to construct
derivatives of the error function (1.2.4), using data from Table 1.1.
Table 2.2 shows numbers of iterations needed by the methods to mini-
mize F̂ (a) in different search ranges (the optimum value for a is about
2.4046). The relative performance of the methods is similar to that for
the tank design problem. The Newton method again does very well
whereas the secant method is better than the bisection method only
when one end of the search range is very close to the optimum.

Bisection Secant Newton
Search Range Method Method Method

2 ≤ a ≤ 3 14 13 3

2 ≤ a ≤ 5 15 15 3

1 ≤ a ≤ 6 16 92 3

2.4 ≤ a ≤ 6 16 3 4

Table 2.2. Numbers of iterations to minimize (1.2.4).

In order to understand the slow convergence of the secant method in
the range 1 ≤ a ≤ 6, we consider Figure 2.3 which shows F̂ (a) quite far
from the solution.

F̂ (a) has negative curvature for values of a greater than about 3.5.
Hence the slope is decreasing as a increases towards infinity. This, cou-
pled with the fact that the left-hand end point has a large slope, means
that each secant iteration makes a fairly small improvement to the right-
hand bracket point. (The reader can verify this by doing a few iterations
by hand.)

It is worth noting that the safeguarded Newton method is able to
detect negative curvature and to calculate steps that move towards the
minimum. The bisection method is unaffected by the negative curvature.

Using approximate derivatives

The program TLS0 can also use numerically estimated derivatives based
on (2.5.2) and (2.5.3). Such approximations are often satisfactory and
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Figure 2.3. Negative curvature in the total least squares error function.

enable a minimization method to locate a solution with (almost) as much
accuracy as is possible when analytical derivatives are used. Table 2.3
shows how the differencing stepsize h affects the solutions when the
search range is 2 ≤ a ≤ 3.

Secant Method Newton Method
h a∗ itns a∗ itns

0.1 2.4082 13 2.4082 7

0.01 2.4047 13 2.4047 3

0.001 2.4046 13 2.4046 3

Table 2.3. Minimizing (1.2.4) using numerical derivatives.

The number of iterations does not seem to depend very strongly on
h. (The exception is the Newton method when h = 0.1 where the
number of iterations increases, because each new solution estimate is
adversely affected by inaccuracies in both first and second derivatives.)
However, the accuracy of the approximate derivatives does influence the
quality of the computed solution. The true slope of the best straight-
line approximation to the data is a ∗ = 2.4046, correct to five significant
figures. As h increases from 0.001, the errors in the estimated derivatives
cause the iterations to terminate at points which get further away from
the exact minimum.

Exercises

1. Determine exactly the value of a at which F̂ (a) begins to have
negative curvature.
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2. For the case in row three of Table 2.2, perform the first three
iterations of the secant method (with strategy (b) from Section 2.3)
and comment on the results. What happens if we use strategies (a)
or (c) instead?

3. Consider the data points

(1, 2.3), (2, 5.1), (3, 7.2), (4, 4.6)

and (by using TLS0 or otherwise) determine the straight lines pro-
duced by the vertical and total least squares approaches. Comment
on the differences between them.

The routing problem

The program R0 solves the problem described in Section 1.3. The results
quoted below were obtained using finite difference approximations to
derivatives. (But the reader is invited to work out expressions for the
analytical derivatives of the functions (1.3.5) and (1.3.7).)

Using the smooth objective function (1.3.7)

We consider the case where the circular obstacle has centre (2,2) and
radius 1 and the target point is (5,4). We first minimize the smooth
objective function (1.3.7) for various values of ρ and various choices for
the search range. The differencing stepsize for derivatives is h = 0.001.
The minimum of (1.3.7) depends on the value of ρ. Specifically, when
ρ = 1, x∗ = 1.6178; when ρ = 2, x∗ = 1.6186; and when ρ = 4,
x∗ = 1.6190. When ρ = 1, roughly 1% of the optimum route is inside
the no-go region. This incursion is approximately halved as ρ is doubled.

Performance of the minimization methods is shown in Tables 2.4–2.6
and we can see that the secant method performs quite poorly. More-
over it tends to do worse as the penalty factor ρ increases, whereas the
bisection and Newton methods are relatively unaffected.

Bisection Secant Newton
Search Range Method Method Method

1 ≤ x ≤ 2 14 14 10

0 ≤ x ≤ 2 15 12 7

0 ≤ x ≤ 3 15 14 10

1 ≤ x ≤ 5 16 26 11

Table 2.4. Numbers of iterations to minimize (1.3.7) with ρ = 1.
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Bisection Secant Newton
Search Range Method Method Method

1 ≤ x ≤ 2 14 21 8

0 ≤ x ≤ 2 15 21 7

0 ≤ x ≤ 3 15 24 8

1 ≤ x ≤ 5 16 46 5

Table 2.5. Numbers of iterations to minimize (1.3.7) with ρ = 2.

Bisection Secant Newton
Search Range Method Method Method

1 ≤ x ≤ 2 14 32 8

0 ≤ x ≤ 2 15 26 9

0 ≤ x ≤ 3 15 23 8

1 ≤ x ≤ 5 16 80 6

Table 2.6. Numbers of iterations to minimize (1.3.7) with ρ = 4.

Using the nonsmooth objective function (1.3.5)

Strictly speaking, we should only attempt to minimize (1.3.5) with the
bisection method, because this is a nonsmooth objective function whose
derivatives are not well defined at its minimum. However, we might
expect the finite difference formulae to give smoothed approximations
to the discontinuous derivatives which will allow us to use the secant
and Newton methods after all. To investigate this, we minimize (1.3.5)
with ρ = 1 using the search range 0 ≤ x ≤ 2. The bisection method
converges to x ≈ 1.6188 in 15 iterations. The secant method uses 35
iterations and terminates at a less accurate estimate x ≈ 1.62. The
Newton method stops after 50 iterations at x ≈ 1.6197 because errors
in the approximate derivatives prevent it from meeting the convergence
tests. These results show that the use of finite differences may not be a
reliable way of attempting to deal with a nondifferentiable function.

We now consider a second routing problem with the no-go region
having centre (4,2) and radius 2. The target point is (4,8). Figure 2.4
is a plot of the function (1.3.5) for this problem when ρ = 1.

If we apply the bisection method to (1.3.5) in the search range 4 ≤
x ≤ 10 we find the optimum turning point is at x ≈ 6.83 giving an
objective function value F ≈ 15.3. However, if we extend the search
range to 0 ≤ x ≤ 10 the bisection method finds an optimum at x = 0
with F ≈ 8.94. We can see these two local minima at x = 0 and x ≈ 6.83
in Figure 2.4. The two corresponding locally optimum routes are shown
in Figure 2.5. The better of the two (i.e., the global optimum) is OP
which goes straight from the origin to the target without even coming
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Figure 2.4. Plot of the function (1.3.5).
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Figure 2.5. Multiple solutions of the routing problem.

near the obstacle. However, the route OQP is the best among routes
which pass the obstacle and then turn back. It is locally optimal because
a small move of the point Q either to the right or the left would result
in a larger value of (1.3.5).

Exercises
1. Calculate an expression for the first derivatives of the function (1.3.7).
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2. Solve the routing problem with target point (4,8) and no-go region
centred on (4,2) with radius 2 by applying the bisection method to
(1.3.7) with ρ = 1. Are there multiple local minima for this problem?

3. If the no-go region has centre (4,2) and radius 2 and the target point
is (5.4), minimize (1.3.5) with ρ = 1, 2 and 4. Comment on the
solutions.

Summary of experience with one-variable problems

Results obtained for the previous three example problems confirm that
the Newton method can be very efficient in favourable circumstances.
The bisection method, on the other hand, is fairly slow but is quite
reliable. The secant method shows the biggest variations in performance
which suggests that the OPTIMA implementation needs more safeguards.

In all cases, rapid convergence of a method can be seen to be depen-
dent on the initial point or search range being chosen in a region near
a solution in which the objective function has a second derivative which
is positive (and preferably bounded away from zero).

We show, in the chapters which follow, that one-variable minimization
has an important part to play in the solution of problems in n variables.



Chapter 3

Applications in n Variables

The tank design problem introduced in Chapter 1 can involve either
two or three variables (see (1.1.1) and (1.1.2)). The other problems
discussed in Chapter 1 can also be extended to feature more variables.
Thus we might wish to fit a two-parameter model θ = at + b to the
data in Table 1.1 or to deal with a routing problem involving two or
more turning points. We discuss these cases and some other example
problems in the next sections.

3.1. Data-fitting problems

Consider the problem of fitting a straight line z = x1 + x2t to m data
points (t1, z1), . . . , (tm, zm) using the method of vertical least squares.
We need to find values for the unknown coefficients x1, x2 to minimize

F (x) =
m∑

i=1

(zi − x1 − x2ti)2. (3.1.1)

It is well known (but we discuss this more formally in the next chapter)
that the first partial derivatives are zero at the minimum of a differen-
tiable function F (x). The reader should verify that

∂F

∂x1
= −2

m∑

i=1

(zi − x1 − x2ti) and
∂F

∂x2
= −2

m∑

i=1

(zi − x1 − x2ti)ti.

Setting both expressions to zero implies that the optimum x1 and x2

satisfy

a11x1 + a12x2 = b1 and a21x1 + a22x2 = b2 (3.1.2)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 3, c© Springer Science+Business Media, LLC 2008
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where

a11 = m, a12 = a21 =
m∑

i=1

ti, a22 =
m∑

i=1

t2i ,

b1 =
m∑

i=1

zi, b2 =
m∑

i=1

ziti.

Notice that (3.1.2) is a pair of linear equations from which it is easy
to obtain x1 and x2. At the minimum of any quadratic function the
variables will satisfy a system of linear equations and hence it is usual to
regard the minimization of a quadratic function as an “easy” problem.

The reader can verify that least squares approximation of m data
points by an n-th degree polynomial

z = φ(t, x) = x1 + x2t + x3t
2 + · · · + xn+1t

n

also leads to the minimization of a quadratic function which involves the
solution of n + 1 simultaneous linear equations. However, the
approximation of data points by a non-polynomial model usually leads
to a nonquadratic objective function. So, for example, if we consider an
exponential model

z = φ(t, x) = x1e
x2t (3.1.3)

then we need to minimize the function

F (x) =
m∑

i=1

(zi − x1e
x2t)2. (3.1.4)

If we calculate first partial derivatives and set them to zero then the
optimal values of x1 and x2 satisfy the equations

m∑

i=1

(zi − x1e
x2ti)ex2ti = 0,

m∑

i=1

(zi − x1e
x2ti)ex2tix1ti = 0

which are clearly nonlinear in x1 and x2 and not particularly easy to
solve. In practice, the minimization of a nonquadratic function such as
(3.1.4) is normally done by iterative methods as described in the chapters
which follow.

We now consider the total least squares approach to data-fitting when
the model function involves two or more parameters. Recall, from
Section 1.2, that we require the parameters xi of the model function
to minimize

m∑

i=1

r̂(ti, zi, x)2 (3.1.5)
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where r̂(ti, zi, x) denotes the shortest distance from point (ti, zi) to the
curve defined by the model function

z = φ(t, x). (3.1.6)

In order to obtain the shortest distance, we first solve the footpoint
problem to find (tf , zf ) as the point on the curve (3.1.6) which is closest
to (ti, zi). This means we obtain tf by solving the one-variable problem
of minimizing

(ti − t)2 + (zi − φ(t, x))2 (3.1.7)

with respect to t. We then obtain

r̂(ti, xi, x)2 = (ti − tf )2 + (zi − φ(tf , x))2. (3.1.8)

We now have an interesting situation where the function (3.1.5) involves
the subfunctions (3.1.8) which depend on the optimization variables xi

both explicitly and also implicitly through the value of tf which mini-
mizes (3.1.7).

In the simple case when φ(t, x) = x1 + x2t, (3.1.7) becomes

(ti − t)2 + (zi − x1 − x2t)2

which is minimized when its first derivative is zero, which occurs when

(ti − t) + (zi − x1 − x2t)x2 = 0.

The solution of this equation is

t = tf =
ti + zix2 − x1x2

1 + x2
2

.

Then (3.1.8) gives

r̂(ti, xi, x)2 = (ti − tf )2 + (zi − x1 − x2tf )2.

A more general study of the footpoint problem can be found in [27].
For future reference we define some data-fitting problems to be used in

later chapters. In each case we suppose that m data points (ti, zi) are to
be approximated by a model function φ(t, x) which involves parameters
x1, . . . , xn.

Problem VLS uses vertical least squares and seeks the minimum of

F (x) =
m∑

i=1

(zi − φ(ti, x))2. (3.1.9)
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Problem TLS uses total least squares and seeks the minimum of

F (x) =
m∑

i=1

(ti − tf )2 + (zi − φ(tf , x))2 (3.1.10)

where tf minimizes (3.1.7).

Exercises
1. Show that the function (3.1.9) is quadratic when φ(t, x) is the nth

degree polynomial z = x1 + x2t + x3t
2 + · · · + xn+1t

n.
2. A solution to problem VLS when φ(t, x) = x1e

x2t can be approxi-
mated by fitting the model loge z = loge x1 + x2t to the data using
vertical least squares. Show that this can be posed as a quadratic
minimization problem.

3. Write down expressions for the first partial derivatives of (3.1.9) and
(3.1.10) in terms of partial derivatives of φ.

4. A way of estimating tf to minimize (3.1.7) is to use simple iteration
to seek a point which makes the first derivative of (3.1.7) zero. We
want tf to solve

(ti − t) + (zi − φ(t, x))
dφ(t, x)

dt
= 0

and we can use the iterative scheme

t
(k+1)
f = ti + (zi − φ(t(k)

f , x))
dφ(t(k)

f , x)

dt
, for k = 0, 1, 2, . . .

with the initial guess t
(0)
f = ti. Try this approach to formulate

the objective function (3.1.10) when the model function is given by
(3.1.3).

3.2. The routing problem

The routing problem in section 1.3 can be extended if the vehicle’s initial
movement is not forced to be along the x-axis. Suppose instead that it
can move to any point (x1, y1) before turning towards the target (xp, yp).
The vehicle may now enter the no-go region during both stages of the
route and so we consider the general problem of determining the intersec-
tion between the circle and a line segment from (xb, yb) to (xe, ye). Any
point on this segment can be written as (xb +λ(xe−xb), yb +λ(ye−yb))
with 0 ≤ λ ≤ 1. Points of intersection with the circle occur when

(xb + λ(xe − xb) − xc)2 + (yb + λ(ye − yb) − yc)2 = r2.
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This implies λ satisfies aλ2 + bλ + c = 0 where

a = (xe − xb)2 + (ye − yb)2,

b = 2((xb − xc)(xe − xb) + (yb − yc)(ye − yb))

c = (xb − xc)2 + (yb − yc)2 − r2.

If this equation has complex roots then there is no intersection between
the segment and the circle. If, however, there are real roots λ1, λ2

we have to consider whether the intersections lie between (xb, yb) and
(xe, ye). We can assume, without loss of generality, that the roots are
numbered so that λ1 ≤ λ2. If we write the total segment length as

d(xb, yb, xe, ye) =
√

(xe − xb)2 + (ye − yb)2

then ν(xb, yb, xe, ye), the segment length inside the circle, is found as
follows

if 0 ≤ λ1 ≤ λ2 ≤ 1 then ν = (λ2 − λ1)d(xb, yb, xe, ye)

if 0 ≤ λ1 ≤ 1 and λ2 > 1 then ν = (1 − λ1)d(xb, yb, xe, ye)

if λ1 < 0 and 0 ≤ λ2 ≤ 1 then ν = λ2d(xb, yb, xe, ye)

if λ1 < 0 and λ2 > 1 then ν = d(xb, yb, xe, ye)

if λ1 > 1 or λ2 < 0 then ν = 0.

Using this notation, the optimum route can be found by minimizing the
smooth objective function

d(0, 0, x1, y1) + d(x1, y1, xp, yp) + ρ[ν(0, 0, x1, y1)3 + ν(x1, y1, xp, yp)3].
(3.2.1)

For future reference we call this Problem R1(1).

Exercises
1. Construct an expression for the objective function of Problem R1(2)

which allows the vehicle to make two turns between the origin and
the target point.

2. Construct a revised version of Problem R1(1) for the case when the
obstacle is described by an ellipse α(x − xc)2 + β(y − yc)2 = 1.

3. Derive a three-dimensional version of Problem R1(1) for the case when
the obstacle is defined by the ellipsoid

(x − xc)2 + (y − yc)2 + γ z2 = r2.
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3.3. An optimal control problem

In this section we use a simple model of the motion of a train to determine
an operating policy for the driver when accelerating or decelerating. We
represent the vehicle as a body moving in a straight line. At an initial
time (t = 0) its distance from a reference origin is s0 and its speed is
u0. We consider the train’s position and speed at n equally-spaced times
t = 0, τ, 2τ, . . . , (n − 1)τ and we suppose that xk denotes the constant
applied acceleration between times (k − 1)τ and kτ . If uk, sk denote
the body’s speed and distance from the origin at time t = kτ then, for
k = 1, . . . , n,

uk = uk−1 + xkτ and sk = sk−1 + uk−1τ +
1
2
xkτ

2. (3.3.1)

We want to choose x1, . . . , xn to make sn and un as close as possible to
some given values sf and uf and so we want to minimize

(sn − sf )2 + (un − uf )2.

This is not the whole story, however, because the operation of a pass-
enger vehicle should not involve accelerations that are large or rapidly
changing. Bearing this in mind, we consider the minimization of the
function

F (x1, . . . , xn) = (sn − sf )2 + (un − uf )2 + ρP (3.3.2)

where sn and un are given by (3.3.1) and

P = x2
1 + x2

n +
n∑

k=2

(xk − xk−1)2. (3.3.3)

By including P in F (x) we are involving a “smoothness” requirement
in the objective function. The parameter ρ is a weighting factor which
reflects the importance given to smoothness of the motion. We refer
to this as Problem OC1(n) where n denotes the number of time steps.
Larger values of n correspond to more accurate models of the original
problem in which time is continuously varying.

Problem OC2(n) imposes the smoothness condition in a slightly diff-
erent way, by defining

P = x2
1 + x2

n +
n∑

k=2

(
1 − xk

xk−1

)2

. (3.3.4)
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This measures relative differences between the xk whereas (3.3.3)
measures absolute differences.

Examples such as OC1 and OC2 are typical of a large class of practical
problems involving the optimization of some dynamic system whose con-
tinuous behaviour is approximated by discretization over a number of
small time steps. Such problems are interesting because they enable us
to observe how optimization methods behave as the number of variables
becomes large.

Exercises
1. Derive expressions for

∂F

∂xi
and

∂2F

∂x2
i

when F is given by (3.3.2) and (3.3.3).
2. Repeat Question 1 when F is defined by (3.3.2) and (3.3.4).
3. Solve the minimization problem defined by (3.3.2) and (3.3.3) when

n = 2 and s0 = u0 = 0, sf = 1, uf = 0, and τ = 0.5.



Core curriculum [3]

Frowning at the inkwell of learning
tongue thrust out through lips
labouring over letters
with a nib that splits
to spatter extra dots on all the i’s
and cross the t’s before we come to them.
Each character perfected
to help us form strong characters
we rehearse an alphabet
for spelling out our stories.

1950’s child and this years adult:
both striving for connections
to give our words the virtue of integrity
and – something that we learned about much later –
more value than their letters’ algebraic sum.
There’s still some doubt that either one will manage
to get to grips with proper joined-up writing.



Chapter 4

n-Variable Unconstrained Optimization

4.1. Optimality conditions

Definition Suppose F (x) is a continuous function of x, where x =
(x1, . . . , xn)T . If, at some point x = x∗, there exists ε > 0 such that

F (x∗) ≤ F (x) when ||x − x∗|| ≤ ε (4.1.1)

then F (x) is said to have a local minimum at x∗.
When F (x) is an n-variable continuously differentiable function, the
conditions which characterise a minimum can be expressed in terms of
the vector of first partial derivatives

g =
(

∂F

∂x1
, . . . ,

∂F

∂xn

)T

, (4.1.2)

and the n × n matrix G of second partial derivatives whose (i, j)th
element is

Gij =
∂2F

∂xi∂xj
. (4.1.3)

Definitions The vector g in (4.1.2) is called the gradient and may also
be written as ∇F (or sometimes as Fx). The matrix G given by (4.1.3)
is known as the Hessian and may also be denoted by ∇2F or Fxx.

The Hessian matrix is always symmetric when F is a twice continu-
ously differentiable function because then

Gij =
∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
= Gji.

This is the case for most of the problems we consider.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 4, c© Springer Science+Business Media, LLC 2008
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Definition A positive-definite symmetric matrix is one which has all
positive eigenvalues. Equivalently, a matrix A is positive-definite if and
only if

xT Ax > 0, for any x 
= 0. (4.1.4)

Definition If F (x) is an n-variable function whose gradient and Hessian
satisfy

g(x∗) = 0 and G(x∗) is positive-definite. (4.1.5)

then the point x∗ is a local minimum of F (x).

It is the second of the optimality conditions (4.1.5) that distinguishes
a minimum from a maximum (or any other stationary point) because it
ensures F (x∗) < F (x) for all x in some, possibly small, region around x∗.
For some functions F (x) there may be several points x∗ which satisfy
(4.1.5). These are all local minima; and the one which gives the least
value of F is called the global minimum.

From a geometrical point of view, the positive-definiteness of G implies
that the function is convex near the minimum. (Convexity is briefly
discussed in Section 4.2.)

If a point x̄ has g(x̄) = 0 but G(x̄) negative-definite (i.e., has all
negative eigenvalues) then x̄ is a local maximum of F (x).

If x̄ is such that g(x̄) = 0 and G(x̄) is indefinite (i.e., has both positive
and negative eigenvalues) then x̄ is a saddle point. This means that x̄
appears to be a minimum when approached along some directions but
resembles a maximum when approached along others. To visualise this,
consider the surface defined by the function F (x) = x1x2 which has a
saddle point at the origin.

If g(x̄) = 0 and G(x̄) is positive semi-definite (i.e., vT G(x̄)v ≥ 0
because G(x̄) has a zero eigenvalue) then it is necessary to consider third
derivatives of F (x) to determine whether x̄ is a weak local minimum or
a saddle point.

We can sometimes use (4.1.5) directly to minimize F (x). Consider
the problem

Minimize F (x1, x2) = (x1 − 1)2 + x2
3 − x1x2. (4.1.6)

Setting the first partial derivatives to zero gives

2x1 − 2 − x2 = 0 and 3x2
2 − x1 = 0.

These equations have two solutions

(x1, x2) =
(

3
4
, −1

2

)
and (x1, x2) =

(
4
3
,

2
3

)
.
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To identify the minimum we consider the Hessian

G =
(

2 −1
−1 6x2

)
.

We can show quite easily that G is positive definite when x2 = 2
3 but

not when x2 = −1
2 . Hence the minimum is at (4

3 , 2
3).

In practice we cannot tackle problems in this way when the first-order
condition g = 0 yields equations which cannot be solved analytically. For
such problems we must use iterative methods. Many of these are gradient
techniques which – like the secant or Newton methods – require the
calculation of first (and sometimes second) derivatives. However some
n-dimensional minimization methods are like the one-variable bisection
technique and use only function values. These are called direct search
methods.

Exercises
1. Prove that, when conditions (4.1.5) hold, F (x∗+sp) > F (x∗) for any

vector p, provided the scalar s is sufficiently small.
2. Use the optimality conditions to minimize (1.1.2) when V ∗ = 20.
3. The eigenvalues of a matrix G can be found by solving the charac-

teristic equation det(G− λI) = 0. Use this to show that the Hessian
matrix of (4.1.6) is positive-definite when x2 is positive.

4.2. Visualising problems in several variables

It is easy to illustrate one-variable optimization problems using graphs
of the objective function. For two-dimensional problems we can use
contour plots and these can also give some insight into problems in higher
dimensions. A contour plot for a function of two variables shows curves
in the (x1, x2)-plane along which the function has a constant value (as
on maps which show lines of constant altitude.) Figure 4.1 is a contour
plot of a function whose minimum is near the middle of the central oval
region. The closed curves are contours whose function value increases
towards the edges of the figure.

Definition Convexity of a function means that any two points lying
inside one of its contour lines can be joined by a straight line which also
lies entirely inside the same contour line. Equivalently, F (x) is convex
if and only if F (a) < F̂ and F (b) < F̂ implies F (a + λ(b − a)) < F̂ for
0 ≤ λ ≤ 1.

The contours in Figure 4.1 show that the function is convex, in the
range of x1, x2 values illustrated. Pictorially, a nonconvex function has
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Figure 4.1. Contours of a convex function.

contour lines which “double-back on themselves” as in Figures 4.2 and
4.3. If a function F (x) is convex for all x then it has a unique minimum.
Nonconvex functions, however, may have multiple stationary points. In
Figure 4.3 there is a maximum near x1 = 0.5, x2 = 0.33 and a saddle
point near x1 = 0.42, x2 = 0.27.
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Figure 4.2. Contours of a nonconvex function.
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Figure 4.3. Multiple stationary points of a nonconvex function.
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4.3. Optimization software and test problems

We have already mentioned the OPTIMA software in Chapter 2. OPTIMA

is written in fortran90 and includes implementations of most of the opti-
mization techniques described in the chapters which follow. OPTIMA can
be downloaded from an ftp site (as described at the end of the book) and
used to solve many of the examples and exercises given in subsequent
chapters.

One way of comparing the performance of two iterative minimiza-
tion methods is to consider the numbers of iterations they take to solve
the same set of problems. (We must, of course, use the same starting
guesses for the variables and the same convergence test.) However, an
iteration count is not the only measure of efficiency. The amount of
computing effort needed to solve an optimization problem also depends
on the number of evaluations of the objective function (and perhaps its
derivatives). Thus, when we quote results obtained with OPTIMA, we
typically state both the number of iterations performed and also the
number of calls to the procedure which calculates F (x) (together with
the gradient and Hessian if these are used).

It should be emphasised that use of OPTIMA is not essential to the
understanding of this book. The sample problems can be handled by
other optimization software such as SOLVER [29] in Microsoft Excel [48],
the MATLAB optimization toolbox [61] or codes from the optimization
chapter of the NAG library [62]. The results obtained with any imple-
mentation of a particular method should be broadly similar to those
that we report from OPTIMA. It is worth mentioning, however, that the
routines in OPTIMA may not be as “highly tuned” for rapid convergence
as those in some of the commercial packages we have mentioned. As
we explain more fully in later chapters, the performance of a numerical
algorithm depends not only on the soundness of the underlying theory
but also on the details of its implementation.

The convergence tests used in OPTIMA can be briefly described as
follows. We have already distinguished between direct search algorithms
which only evaluate the objective function F (x) and gradient techniques
which use derivatives of F . The direct search routines in OPTIMA stop
iterating when a point x is found such that

|F (x) − F (x−)| < ε(ε + |F (x)|) or ||x − x−||2 < ε
√

n (4.3.1)

where x− denotes the solution estimate obtained on a previous iteration.
The gradient-based routines in OPTIMA employ a convergence test of the
form

||∇F (x)||2 < ε
√

n (4.3.2)
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for terminating the iterations. In both (4.3.1) and (4.3.2) the standard
accuracy criterion uses ε = 10−5. The OPTIMA software also allows us
to choose low- or high-accuracy solutions corresponding, respectively, to
ε = 10−4 and ε = 10−6.

We now give details of some test problems whose solutions are reported
in the chapters which follow. These problems have been implemented as
Fortran programs which can be downloaded along with OPTIMA.

Problem TD1 is the minimization of (1.1.2) with V ∗ = 20 starting
from the initial guess x1 = x2 = 2. This problem has solution x∗

1 ≈
1.71, x∗

2 ≈ 3.42 with a minimum surface area ≈ 35.09 (see the contour
plots in Figure 4.4).
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Figure 4.4. Contour plots for Problems TD1 and TD2.

Problem TD2 is the minimization of

V = −x1x2(S∗ − 2x1x2)
2x1 + x2

(4.3.3)

with S∗ = 35 and starting from x1 = x2 = 2. (This is a formulation
of the problem of maximizing tank volume subject to a limit on surface
area.) TD2 has solution x∗

1 ≈ 1.708, x∗
2 ≈ 3.416 with maximum volume

≈ 19.92. We may suspect (correctly) that the solutions of Problems TD1

and TD2 would be identical if the value of S∗ in TD2 were 35.09. We say
there is a dual relationship between the problems: if S∗ is the minimum
surface area for a given volume V ∗ then V ∗ is the maximum volume for
a given surface area S∗.

It is important to remember that Problems TD1 and TD2 involve func-
tions which are convex only in the neighbourhood of the minimum. Both
(1.1.2) and (4.3.3) tend to infinity as x1 and x2 approach zero; and they
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take large negative values if both x1 and x2 become negative. It is only
meaningful to search for a minimum when x1 and x2 are positive.

Problem VLS1 determines the best approximation (using vertical least
squares) of the data points (ti, zi) = (0, 3), (1, 8), (2, 12), (3, 17) by
minimizing (3.1.9) when φ is the straight line z = x1 +x2t. The starting
guess is x1 = x2 = 0. The solution is x∗

1 = 3.1, x∗
2 = 4.6.

Problem TLS1 uses total least squares to approximate the points (0,3),
(1,8), (2,12), (3,17) by minimizing (3.1.10) when φ is the straight line
z = x1 + x2t. The starting guess is x1 = x2 = 0. The solution is
x1 = 3.0875, x2 = 4.6083. This is slightly different from that given by
applying vertical least squares to the problem. The contours shown in
Figure 4.5 are perfect ellipses because the objective function for Problem
VLS1 is quadratic. The contours for TLS1 (Figure 4.6) may appear to be
elliptical, but in fact they are not and the nonquadratic nature of the
objective function makes problem TLS1 harder to solve, as shown by the
results quoted in later chapters.
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Figure 4.5. Contour plot for Problem VLS1.

Problem VLS2 determines the vertical least squares approximation to
the points

(ti, zi) = (0, 1), (1, 0.5), (2, 0.4), (3, 0.3), (4, 0.2)

by minimizing (3.1.9) when φ is the exponential function z = x1e
x2t. The

starting guess is x1 = x2 = 1. The solution is x1 ≈ 0.9515, x2 ≈ −0.4434
giving the sum of squared errors as about 0.0185. As there are five data
points, the root mean square error is given by

Frms ≈
√

1
5
(0.0185) ≈ 0.061
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Figure 4.6. Contour plot for Problem TLS1.
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Figure 4.7. Contour plot for Problem VLS2.

which can be taken as a rough estimate of the average residual at each
data point. Contours of the objective function appear in Figure 4.7
which makes clear the nonquadratic nature of the problem.

Problem R1(1) solves the problem described in Section 3.2 and deter-
mines the optimum turning point for a two-stage route from (0, 0) to
(8, 4) when the no-go circle is defined by xc = 4, yc = 3, r = 2. The
objective function (3.2.1) uses the weighting parameter ρ = 0.1. The
starting guess is the point (4, 2) and the solution is x∗ ≈ 4.976, y∗ ≈
1.177 and F ∗ ≈ 9.251. The contours of (3.2.1) around the solution can be
seen in Figure 4.8. They clearly show the nonconvexity of this problem.
Figure 4.9 displays the contours of (3.2.1) over a wider range of values
for the optimization variables. This shows that there is a second, locally
optimal, route with x∗ ≈ 3.029, y∗ ≈ 5.311 giving an objective function
value F ∗ ≈ 11.272. This is clearly inferior to the solution already quoted
above, but it represents the best route among all those which pass above
the no-go region.



4.3. Optimization software and test problems 49

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Figure 4.8. Near-optimum contour plot for Problem R1(1).
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Figure 4.9. Contour plot for Problem R1(1).

Problem R1(2) seeks the optimum 3-stage route with the same data
as Problem R1(1). The starting guess has turning points (3.9, 1.95) and
(4.9, 2.45). The exact solution makes turns at (4.712, 1.113) and (5.176,
1.362) giving an optimum function value F ∗ ≈ 9.233.

We could also pose a Problem R1(m) involving m turning points. But
in fact there is nothing practical to be gained by making more than two
turns to get around the circular obstacle. Figure 4.10 shows solutions
obtained for R1(m) as m increases. The upper subgraphs show results
when m = 1 and m = 2 and the introduction of the second turning
point produces a small decrease in the objective function value from
about 9.25 to about 9.23. However, there is no further reduction in the
objective function when m = 3 or 4. The lower subgraphs show that
the extra “turning points” are simply placed on the last segment of the
route and have no effect either on the overall route length or on the
extent of penetration of the no-go circle. In other words the variables
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Figure 4.10. Solutions of Problem R1(m) for m = 1, 2, 3, 4.

which define the third and subsequent turning points are redundant in
a problem concerned with optimal routing around a single circle.

The reader can consult [65, 9] for extensions of the above ideas to deal
with more than one obstacle.

Problem OC1(n) is the optimal control problem from Section 3.3 which
minimizes (3.3.2) with ρ = 0.01 and P defined by (3.3.3). The initial
and final conditions are defined by

tf = 3, τ =
tf
n

, s0 = 0, sf = 1.5, u0 = 0, uf = 0

and so the problem is to determine a smooth acceleration profile which
will take the vehicle from rest to rest over a distance of 1.5 km in 3
minutes. If there are only two time steps then the symmetrical solution
is to accelerate with x1 = 2

3 km/min2 and then decelerate with x2 =
−2

3 km/min2. If there are n time steps (n is assumed to be even) then
the starting guess is

xi = 0.66, i = 1, . . . ,
n

2
; xi = −0.66, i =

n

2
+ 1, . . . , n.

Figure 4.11 shows the solutions of Problem OC1(n) as n increases. The
pattern that emerges is one where the acceleration increases to a maxi-
mum and then decreases until braking starts about halfway through the
motion. The braking force then mirrors the acceleration with maxi-
mum braking being applied about three-quarters of the way through the
motion.
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Figure 4.11. Solutions of Problem OC1(n) for n = 4, 8, 16, 32.

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5
−1

−0.5

0

0.5

1

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Figure 4.12. Solutions of Problem OC2(n) for n = 4, 8, 16, 32.

Problem OC2(n) is the same as Problem OC1(n) except that P is
defined by (3.3.4). Figure 4.12 shows the solutions of this problem as n
increases.

In contrast to the results for Problem OC1, we see that the acceleration
increases until around the halfway point. Braking then is applied quite
sharply, after which the deceleration history is somewhat similar to that
for Problem OC1. Clearly, the relative measure of smoothness in (3.3.4)
does not produce the required result midway through the journey when
xi and xi−1 have opposite signs. If xi−1 is positive and xi is negative
then, in order to make 1 − xi/xi−1 small, the optimization forces xi−1

to be large while decreasing the magnitude of xi. This is what we see
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in the calculated solutions of OC2 and it indicates that the optimization
model in this problem is not a good one it presents interesting. In spite
of this, however, we use OC2 as one of our examples because it presents
interesting challenges to some of the optimization methods studied in
later chapters.

Exercises
1. Prove the dual relationship between Problems TD1 and TD2 men-

tioned in the paragraph following Equation (4.3.3).
2. Obtain a formulation of a problem TLS2 which computes an expo-

nential fit to the data points for Problem VLS2 using the total least
squares approach. This will involve minimizing the function (3.1.10)
after using an iterative method to find tf to minimize (3.1.7).

3. Obtain a formulation for extended versions of Problems R1(1) and
R1(2) in which there are two circular obstacles to be avoided. How
would these problems be further extended to allow more than two
turning points?

4. Consider the objective function for Problem OC2(2) and plot its con-
tours for −1 ≤ x1, x2 ≤ 1.



Chapter 5

Direct Search Methods

This book is mainly concerned with gradient methods of minimization;
but in this chapter we consider approaches which resemble the bisection
method in relying only on function values. These are usually referred
to as direct search methods and are useful when we want to minimize
functions which are not (or not easily) differentiable.

Obviously we could search for the least value of a function by evalua-
ting it at all points on a “grid” of values of the variables; but clearly this
is not very efficient. Alternatively, we might approximate the minimum
more rapidly by sampling the function value at a sequence of “random”
points, using statistical arguments to estimate the likelihood of find-
ing the minimum in a certain number of trials. Both approaches are
sometimes used; but we confine ourselves to techniques that are more
systematic.

5.1. Univariate search

Univariate search is based on performing a sequence of one-dimensional
minimizations of F (x), first with respect to x1, then with respect to x2

and so on. In other words, we search for a minimum point along each
of the coordinate directions in turn. We can avoid gradient calculations
by using a direct-search method such as bisection. At the end of a com-
plete “cycle” of minimizations, all n variables will have been adjusted;
but many such cycles will usually be needed to locate the overall opti-
mum x∗. This method sometimes works quite well (e.g., on two-variable
functions with near-circular contours) but, in general, it is not guaran-
teed to converge.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 5, c© Springer Science+Business Media, LLC 2008
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As an example we apply the method to the function

F (x) = x2
1 + 2x1x2 + 3x2

2 (5.1.1)

starting from the initial guess x1 = x2 = 1. The algorithm first explores
the x1 direction to minimize x2

1 +2x1 +3. Hence (e.g., by using bisection
in the range 0 ≤ x1 ≤ 2) it obtains x1 = −1. The method then searches
the x2 direction for the minimum of 1− 2x2 + 3x2

2 and (via bisection in
0 ≤ x2 ≤ 1) obtains x2 = 1

3 .
Hence the first cycle yields the point x = (−1, 1

3)T where F = 2
3 which

is much smaller than the function value F = 6 at the starting point
(1, 1)T .

The reader can verify that the second cycle of one-dimensional searches
yields the solution estimate x = (1

3 , −1
9) (which is closer to x∗ =

(0, 0)T ).
The algorithm is spelled out below. We assume the minimization of

F (x) is confined to a “hyperbox” li ≤ xi ≤ ui, i = 1, . . . , n. To distin-
guish iteration numbers from subscripted elements in a vector we let xki

be the ith variable after k iterations. We use ei to denote the ith column
of the n × n identity matrix.

Univariate search for minimizing Fx) in l ≤ x ≤ u

Choose an initial estimate x0 of the minimum of F (x)
Repeat for k = 0, 1, 2, . . .
Set x+ = xk

Repeat for i = 1, . . . , n
Find s∗ to minimize F (x+ + sei) in range ui − x+

i ≥ s ≥ x+
i − li.

Set x+ = x+ + s∗ei

Set xk+1 = x+

until ||xk+1 − xk|| is sufficiently small

An extension of univariate search is called the Hooke and Jeeves
method. This technique [37] augments each cycle of one-dimensional
minimizations with a “pattern move” which entails a further line search
along the resultant direction obtained by adding the individual one-
variable moves. Thus the Hooke and Jeeves algorithm is the same as
univariate search except that at the end of the kth iteration there is an
extra step involved in obtaining xk+1:

Find s∗ to minimize F (x+ + s(x+ − xk))
Set xk+1 = x+ + s∗(x+ − xk)
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We can illustrate the use of a pattern move on the function (5.1.1).
The calculations above show that the first cycle of univariate search
makes a step from x(0) = (1, 1)T to a new point x+ = (−1, 1

3 )T Hence
the pattern move gives

x(1) = x(0) + s∗(x+ − x(0)) =
(

1 − 2s∗, 1 − 2s∗

3

)T

where s∗ is chosen to minimize

(1 − 2s)2 + 2(1 − 2s)
(

1 − 2s
3

)
+ 3

(
1 − 2s

3

)2

.

By applying the bisection method in the range 0 ≤ s ≤ 1 we get s∗ = 5
8

and so the point reached by the first Hooke and Jeeves iteration is

x(1) =
(
−1

4
,

7
12

)T

.

This is closer to the optimum x∗ = (0, 0)T than the point (−1, 1
3)T

given by the univariate search on its own.

Exercises
1. Do two cycles of univariate minimization on the function (4.1.6) star-

ting from x1 = x2 = 1. What happens if a pattern move is added?
2. Continue the worked example above and perform a second iteration

of the univariate search method on problem (5.1.1) to show that it
yields the new point x = (−1

3 , 1
9)T . Show also that a pattern move

from this point will locate the exact minimum of (5.1.1).
3. Implement and test a computational procedure for univariate search,

using the bisection method as the one-dimensional minimization
algorithm.

4. Extend your procedure from the previous question to implement a
pattern move as in the Hooke and Jeeves algorithm.

5.2. The Nelder and Mead simplex method

This method [50] (not to be confused with the simplex method in linear
programming) is usually more effective than univariate search. We first
outline the approach for a two-variable optimization problem.

For a two-variable problem we make three initial estimates of the
position of the minimum. These will define a starting simplex. (More
generally, for a function of n variables, a simplex consists of n+1 points.)
Suppose we label the vertices of the simplex A, B, C and call the
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corresponding function values Fa, Fb, Fc. The vertex with the highest
function value is said to be the worst; and this point must be replaced
with a better one.

The basic move in the simplex method is reflection. A new trial point
is obtained by reflecting the worst point in the centroid of the remaining
vertices. This is a heuristic way of placing a new solution estimate in
a region where lower function values are likely to occur. Suppose, for
instance, that Fa > Fb > Fc. Then the vertex A would be reflected in
the centroid of vertices B and C. Let the new point be labelled as N
and let Fn be the associated function value. If Fn < Fa the new point is
an improvement on vertex A and a new simplex is defined by deleting
the old worst point and renaming vertex N as A.

We can illustrate the reflection step if the simplex method is applied to
(5.1.1) using the initial points A at (1, 0)T , B at (0, 1)T and C at (1, 1)T .
The corresponding function values are, respectively, Fa = 1, Fb = 3 and
Fc = 6. Now we reflect the point C in the centroid of the other two which
is at (1

2 , 1
2)T . Hence the new point N is
(

1 + 2
(

1
2
− 1

)
, 1 + 2

(
1
2
− 1

))T

= (0, 0)T .

In this case the reflection step has, rather fortuitously, located the mini-
mum!

To show that a reflection move is not always so successful we consider
(5.1.1) when the starting simplex has points A, B and C at (1, 0)T ,
(0, 1

2)T and (1, 1)T . C is still the point with the highest function value
and so we get N by reflecting C in the centroid of A and B at (1

2 , 1
4 )T .

Hence N is
(

1 + 2
(

1
2
− 1

)
, 1 + 2

(
1
4
− 1

))T

=
(

0,−1
2

)T

.

Because Fn = 3
4 , which is less than Fc = 6, this new point is acceptable

and replaces C as a vertex of the new simplex.
It can sometimes happen that the reflected point is not acceptable. If

the initial simplex for problem (5.1.1) has vertices A, B, C at (1, 0)T ,
(−1, 0)T , (0, 1)T then Fa = Fb = 1 and Fc = 3. Hence point C is
reflected in the centroid (0, 0)T which gives N at (−1, 0)T . But this
will mean that Fn = Fc = 3 and so N is not a suitable replacement
for C. In such a case, the simplex method uses modified reflection to
generate another trial point M so that CM = 2

3(CN). If Fm < Fc

then M becomes part of a new simplex. The reader can verify that
modified reflection does give an acceptable new vertex in the example
we are considering.
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If both reflection and modified reflection fail to give an acceptable
new point then the minimum may lie inside the simplex. In these
circumstances a contraction strategy is used. This involves shrinking
the current simplex towards its best point. Thus, if B is the lowest
vertex, a new simplex is obtained by halving the distances of all other
vertices from B. The method stops when the simplex has shrunk below
a certain size.

Formalising and extending these ideas for an n-variable problem we
get the following algorithm. The reader will note that it is signifi-
cantly more complicated than other methods we have considered so far.
(Correct implementation of such an algorithm is a nontrivial task; but
a version that is fairly widely available is the procedure FMINSEARCH in
MATLAB [61].)

Nelder and Mead simplex algorithm for minimizing F (x)

Choose points x0, . . . , xn to form an initial simplex
Repeat
Find xw such that F (xw) ≥ F (xi) for i = 1, . . . , n
Find xb such that F (xb) ≤ F (xi) for i = 1, . . . , n
Calculate

x̃ =
1

n − 1

n∑

i=1,i�=w

xi and x̄ =
1
n

n∑

i=1

xi.

Set x+ = xw + 2(x̃ − xw) (reflection)
If F (x+) < F (xb) (reflection is successful)
set x++ = x+ + (x+ − xw) (expand reflected step)
if F (x++) < F (x+) then set x+ = x++

set xw = x+

else
if F (x+) < F (xw)
set xw = x+

else (reflection is unsuccessful)
set x+ = xw + 4

3 (x̃ − xw) (shrink reflected step)
If F (x+) < F (xw)
set xw = x+

else (modified reflection is unsuccessful)
for i = 1, . . . , n, i 
= b set xi = 1

2(xi + xb) (contract towards xb)
Until ||xi − x̄|| is sufficiently small for i = 1, . . . , n

Exercise
Do two iterations of the simplex method on the function (4.1.6) starting
from an initial simplex with corners at (1, 1), (1.5, 1), (1, 1.5).
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5.3. DIRECT

DIRECT [39] is a particularly interesting technique because – unlike most
of the methods in this book – it seeks the global rather than a local
minimum of F (x). In practice, global minimizers are usually applied
in some restricted region, typically in a “hyperbox” defined by li ≤
xi ≤ ui. DIRECT relies on the use of such rectangular bounds and
works by systematic exploration of rectangular subregions. In the limit,
as the number of iterations becomes infinite, it will sample the whole
region and, in that sense, the algorithm is guaranteed to converge. The
practical performance of the method depends on how it chooses which
subregions to explore first, because this determines whether the global
minimum can be approximated in an acceptable number of iterations.

To describe the method, we consider first the one-variable problem of
finding the global minimum of F (x) for 0 ≤ x ≤ 1. We begin by dividing
[0, 1] into three equal subranges and evaluating F (x) at their midpoints.
The range containing the least function value is taken to be the “most
promising” and so we trisect it, evaluating F at the midpoints of the
new ranges. We then have a situation of the kind shown in Figure 5.1.

F

F

F

F

F

0___________________|___________________|_______|_______|______1

Figure 5.1. One iteration of DIRECT on a one-variable problem.

There are now trial ranges of two different widths, namely, 1
3 and 1

9 .
For each of these widths we trisect the one with the smallest value of F
at the centre. This is depicted in Figure 5.2.

F

F

F

F F

F F F

F

0_____|_______|_______|_________________|___|___|___|_______|______1

A B C D E F G H I J

Figure 5.2. Two iterations of DIRECT on a one-variable problem.
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The situation shown in Figure 5.2 involves three candidate range-sizes,
1
3 , 1

9 and 1
27 . For each of these, the third iteration trisects the one which

has the smallest F -value at its centre. In the diagram, this would mean
subdividing the intervals DE, AB and EF. Continuing in this way, we
can systematically explore the whole range in a way that concentrates
on the most promising regions first. Thus we aim to find a good estimate
of the global optimum before the iteration count gets too high.

The basic idea just outlined can be made more efficient if we refine
the definition of a “promising” range. Let d1, . . . , dp be the p different
rangesizes at the start of an iteration and let Fj denote the smallest of
all the function values at the centres of ranges of width dj . The range
containing Fj is trisected only if a “potential optimality” test is satisfied.
This test is based upon Lipschitz constants, which are bounds on the size
of the first derivative of F . If F has Lipschitz constant L then, within
the range containing Fj , we have the bounds

Fj +
1
2
Ldj ≥ F (x) ≥ Fj −

1
2
Ldj .

We do not normally know a Lipschitz constant for F . However, the
range containing Fj can be said to be potentially optimal if there exists
a Lipschitz constant L such that

Fj −
1
2
Ldj < Fi −

1
2
Ldi for i = 1, . . . , p; i 
= j. (5.3.1)

If (5.3.1) holds then it is possible that the range containing Fj also
contains a smaller value of F than can be found in any other range. For
(5.3.1) to be satisfied we need

L > 2 × max
{

Fj − Fi

dj − di

}
for all i : di < dj

and

L < 2 × min
{

Fj − Fi

di − dj

}
for all i : di > dj

If these conditions on L are inconsistent then the range containing Fj

cannot be considered potentially optimal and hence it need not be sub-
divided. This consideration can save wasteful function evaluations when
there are many different candidate ranges.

Another “filter” can be used to reduce the number of ranges to be
subdivided. If Fmin is the smallest function value found so far then the
range containing Fj will not be trisected unless there exists an L which
satisfies (5.3.1) and also

Fj −
1
2
Ldj < Fmin − ε̂|Fmin| (5.3.2)
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where ε̂ is a user-specified parameter. Condition (5.3.2) suggests that
subdivision of the range containing Fj can be expected to produce a
nontrivial improvement in the best function value so far.

The above ideas can be extended to problems in several variables
[39]. The original search region becomes a hyperbox rather than a line
segment and the initial subdivision is into three hyperboxes by trisection
along the longest edge. The objective function is evaluated at the centre
point of each of these boxes and the size of each box is taken as the
length of its diagonal. The box with the smallest value of F at its
centre is subdivided by trisection along its longest side and the process
of identification and subdivision of potentially optimal hyperboxes then
continues as in the one-variable case. (There are refinements for subdivi-
ding boxes with several longest sides [39].)

Experience has shown that DIRECT can often get good estimates of
global optima quite quickly [9]. It only uses function values and so it can
be applied to nonsmooth problems or to those where the computation of
derivatives is difficult. One drawback, however, is that there is no hard-
and-fast convergence test for stopping the algorithm. One can simply
let it run for a fixed number of iterations or else terminate if there is
no improvement in the best function value after a prescribed number
of function evaluations. Neither strategy, however, will guarantee to
identify the neighbourhood of the global optimum.

5.4. Results with direct search methods

The results quoted below show the performance of UNIVAR and DIRECT

which are the OPTIMA implementations of univariate search and the
DIRECT algorithm. We also include results obtained with FMINSEARCH,
the MATLAB implementation of the Nelder and Mead simplex algorithm
[61]. UNIVAR uses the bisection method for the one-dimensional mini-
mizations. Table 5.1 shows the numbers of iterations and function calls
needed by the methods to solve Problems TD1–OC2 to standard accuracy
defined by (4.3.1) with ε = 10−5. Each iteration of UNIVAR consists of a
complete cycle of n one-dimensional searches parallel to each coordinate
axis. DIRECT uses the value ε̂ = 0.01 in the test (5.3.2). Both UNIVAR

and DIRECT require a search range to be specified for each xi. This
is used to establish a bracket for each one-dimensional minimization in
UNIVAR and to define the initial hyperbox for DIRECT. The search ranges
used in the quoted results are:

TD1, TD2: 0.1 ≤ xi ≤ 3.9 for i = 1, 2
VLS1, TLS1: −5 ≤ xi ≤ 5 for i = 1, 2
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VLS2: 0 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 3
R1(1): 3 ≤ x1 ≤ 5, 1 ≤ y1 ≤ 3
R1(2):
2.9 ≤ x1 ≤ 4.9, 0.95 ≤ y1 ≤ 2.95, 3.9 ≤ x2 ≤ 5.9, 1.25 ≤ y2 ≤ 3.25

OC1(4), OC2(4):
0 ≤ xi ≤ 1.32 for i = 1, 2 and −1.32 ≤ xi ≤ 0 for i = 3, 4

In each case, the starting values for the variables are given by the mid-
point of the stated range.

UNIVAR FMINSEARCH DIRECT
Problem itns/fns itns/fns itns/fns

TD1 5/370 37/72 23/241

TD2 5/370 37/72 33/367

VLS1 18/1404 74/145 33/787

TLS1 18/1404 81/152 33/773

VLS2 21/1512 46/86 33/503

R1(1) 29/2030 37/71 33/325

R1(2) 31/4340 199/335 55/1227

OC1(4) 168/22176 119/206 75/2243

OC2(4) 32/4224 97/168 55/1543

Table 5.1. Direct search solutions for Problems TD1–OC2.

The results in Table 5.1 show the importance of considering numbers
of function evaluations as well as numbers of iterations. On iteration
count alone, FMINSEARCH usually appears inferior to both UNIVAR and
DIRECT; but, in terms of function calls, it is much more efficient. Each
simplex iteration can be seen to require only one or two function calls
whereas an iteration of UNIVAR involves n accurate minimizations and
is much more expensive. On Problem TD1, for instance, each UNIVAR

iteration uses about 90 function calls, that is 45 for each bisection search.
(This cost might be reduced if the one-dimensional minimizations were
performed less accurately.) The DIRECT iterations are cheaper than
those of UNIVAR but still require between 8 and 40 function evalua-
tions. Because DIRECT seeks a global minimum, each of its iterations
may evaluate the function at points throughout the whole search region
whereas FMINSEARCH confines its exploration to a region near the current
simplex.

Exercises

1. How would you expect the performance of DIRECT to change if
ε̂ > 0.01? Use numerical tests to see if your expectations are con-
firmed.
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2. What would you expect to happen to the performance of UNIVAR

and DIRECT if the search ranges were smaller than those quoted
before Table 5.1? Use numerical tests to see if your expectations
are confirmed.

3. Implement and test a version of univariate search in which the one-
variable bisection method is only required to find a minimum to low
accuracy.

4. Apply the direct search methods from this chapter to Problems R1(1)

and R1(2) with ρ > 0.1. Comment on the solutions and the compu-
tational costs of obtaining them.

5. Apply the simplex method and DIRECT to Problem R1(1), using the
starting guess x1 = 3, y1 = 5 and the search range 1 ≤ x1 ≤ 5, 1 ≤
y1 ≤ 9 and comment on the results.



Chapter 6

Computing Derivatives

6.1. Hand-crafted derivatives

In the chapters which follow we mainly deal with optimization methods
which are iterative gradient techniques involving the calculation of first
(and sometimes second) partial derivatives at each solution estimate.
As noted in Chapter 2, the analytic differentiation of objective functions
which occur in practical applications may be a nontrivial process. In
such situations it can be helpful to take a systematic approach. As
an example of the careful hand-crafting of derivatives we consider the
differentiation of the function (3.3.2). For notational convenience we use
s′k,i, u′

k,i to denote ∂sk/∂xi and ∂uk/∂xi, respectively. Because s0 and
u0 are given we must have

s′0,i =
∂s0

∂xi
= u′

0,i =
∂u0

∂xi
= 0 for i = 1, . . . , n.

Then, using (3.3.1) we get, for i = 1, . . . , n

s′k,i =
∂sk

∂xi
=

⎧
⎪⎪⎨

⎪⎪⎩

s′k−1,i + τu′
k−1,i if i < k

1
2τ2 if i = k

0 if i > k

u′
k,i =

∂uk

∂xi
=

⎧
⎪⎪⎨

⎪⎪⎩

u′
k−1,i if i < k

τ if i = k.

0 if i > k

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 6, c© Springer Science+Business Media, LLC 2008
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By using these expressions for k = 1, . . . , n we can compute all the
elements of ∇sn and ∇un, where

∇sn =
(

∂sn

∂x1
, . . . ,

∂sn

∂xn

)T

and ∇un =
(

∂un

∂x1
, . . . ,

∂un

∂xn

)T

.

From (3.3.3) we have

∂P

∂x1
= 2x1 − 2(x2 − x1);

∂P

∂xn
= 2xn + 2(xn − xn−1)

and
∂P

∂xi
= 2(xi − xi−1) − 2(xi+1 − xi) for i = 2, . . . , n − 1

which give us all the elements of the gradient vector ∇P . Hence we can
compute the gradient of the complete objective function (3.3.2) as

∇F = 2(sn − sf )∇sn + 2(un − uf )∇un + ρ∇P. (6.1.1)

A formula like (6.1.1) would have to be derived and then coded, along
with the expression for the objective function F (x), before a gradient-
based optimization routine could be applied.

Exercises
1. Determine expressions for the second partial derivatives of (3.3.2).
2. Determine expressions for ∇F and ∇2F when F is the objective

function for Problem OC2(n).

Derivatives in matrix and vector notation

Functions of many variables can sometimes be written in compact form
using matrix and vector notation. If v is an n-vector and c is a constant
scalar then a general n-variable linear function has the form

F = vT x + c. (6.1.2)

It is easy to show (see exercises below) that the gradient and Hessian of
(6.1.2) are

∇F = v, ∇2F = 0. (6.1.3)

If M is a symmetric n×n matrix then an n-variable quadratic function
is of the form

F = xT Mx + vT x + c. (6.1.4)

The gradient and Hessian of (6.1.4) are given by

∇F = 2Mx + v, ∇2F = 2M. (6.1.5)
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Expressions (6.1.3) and (6.1.5) can be regarded as basic identities which
are useful when differentiating more complicated expressions. Thus,
for instance, we can use the function-of-a-function rule to say that the
quadratic function

F = (vT x)2 (6.1.6)

has the gradient vector
∇F = 2(vT x)v. (6.1.7)

Similarly, the quartic function

F = (xT Mx)2 (6.1.8)

has the gradient
∇F = 4(xT Mx)Mx. (6.1.9)

By applying the rule for differentiation of a product we can show that
the cubic function

F = (vT x)(xT Mx) (6.1.10)

has a gradient given by

∇F = (xT Mx)v + 2(vT x)Mx. (6.1.11)

Similarly, we can use the product rule to differentiate (6.1.7) and hence
obtain the Hessian of (6.1.6) as

∇2F = 2vvT . (6.1.12)

Further applications of these ideas appear in the exercises below.

Exercises
1. Verify the results (6.1.3), (6.1.5) for the cases n = 2 and n = 3.
2. If N is a 2 × 2 nonsymmetric matrix show that the gradient of the

function F = xT Nx is ∇F = (N + NT )x. What is ∇2F?
3. If F = 1

2xT Mx + vT x + c find expressions for ∇F and ∇2F .
4. Find an expression for the Hessian matrix of (6.1.8) when n = 2 and

deduce the corresponding result for general n.
5. Use the rule for differentiating a quotient to obtain expressions for

∇F if F is given by

(i) F =
vT x

xT Mx
and (ii) F =

xT Mx

vT x + c
.

6. If α, β are scalar constants and F = (αx + β)T M(αx + β) find ∇F
and ∇2F .
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6.2. Finite difference estimates of derivatives

We stated in Section 2.5 that derivatives of a one-variable function F (x)
can be approximated by finite difference formulae. We now treat this
idea a little more formally and extend it to functions of several variables.

The standard definition of the first derivative of a one-variable func-
tion F (x) is

dF

dx
= lim

h→0

F (x + h) − F (x)
h

.

Hence, for any particular value of x, we can approximate the first deriva-
tive by choosing a small value for h and setting

dF

dx
≈ F (x + h) − F (x)

h
. (6.2.1)

This is called the forward difference approximation.
The accuracy of the derivatives estimated by (6.2.1) depends upon

h being neither “too big” nor “too small”. If we rearrange the Taylor
series expansion

F (x + h) = F (x) + h
dF (x)

dx
+

h2

2
d2F (x)

dx2
+

h3

6
d3F (x)

dx3
+ O(h4), (6.2.2)

to give

F (x + h) − F (x)
h

=
dF (x)

dx
+

h

2
d2F (x)

dx2
+

h2

6
d3F (x)

dx3
+ O(h3)

then it is clear that (6.2.1) gives an error which is O(h). If the chosen
value of h is big enough to make this error significant in comparison
with the true first derivative then the approximation is said to be con-
taminated by truncation error. If h is very small, however, the trunca-
tion error will also be small but the approximation (6.2.1) can then be
damaged by rounding error. When h is near zero, the values computed
in finite-precision arithmetic for F (x + h) and F (x) may differ in only
one or two digits and so the right-hand side of (6.2.1) will give poor
accuracy.

As an illustration, consider forward difference estimates of the first
derivative of F (x) =

√
x for different values of x. Calculations in 15-digit

real arithmetic give the results in Table 6.1 which show the percentage
error in the approximate derivative for different values of x and h.

In each case the errors initially decrease with h and then start to
increase again once h becomes too small. However the values of h that
are “too big” or “too small” vary with x. Hence the use of finite differ-
ence approximations to derivatives may require a preliminary trial-and-
error investigation to determine a value for h which ensures that the
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h 10−1 10−4 10−7 10−10 10−13

% error(x = 1) 2.4 2 × 10−3 2 × 10−6 8 × 10−6 8 × 10−2

% error(x = 100) 2 × 10−3 2 × 10−5 8 × 10−6 9 × 10−3 6.6

% error(x = 0.01) 53 0.25 2 × 10−4 3 × 10−6 2 × 10−3

Table 6.1. Errors in forward differencing.

computed derivatives are not too much damaged by either truncation
error or rounding.

This idea behind (6.2.1) extends easily to functions of several vari-
ables. For an n-variable function F (x1, . . . , xn) the forward difference
approximations to the first partial derivatives are

∂F

∂xi
≈ F (x + hei) − F (x)

h
for i = 1, . . . , n (6.2.3)

where ei is the ith column of the identity matrix.
An alternative estimate for first derivatives of a one-variable function

is
dF

dx
≈ F (x + h) − F (x − h)

2h
. (6.2.4)

This is the central difference formula, derived by subtracting the Taylor
series

F (x − h) = F (x) − h
dF (x)

dx
+

h2

2
d2F (x)

dx2
− h3

6
d3F (x)

dx3
+ O(h4) (6.2.5)

from (6.2.2). The errors in (6.2.4) are O(h2). Table 6.2 shows that, for a
given step size h, the percentage errors in the derivative estimates given
by (6.2.4) are usually smaller than those from (6.2.1). Notice, however,
that errors still tend to increase as h becomes too large and also as h
approaches zero.

h 10−1 10−4 10−7 10−10 10−13

% error(x = 1) 0.12 1 × 10−7 6 × 10−8 8 × 10−6 3 × 10−2

% error(x = 100) 1 × 10−5 1 × 10−8 8 × 10−6 9 × 10−3 6.6

% error(x = 0.01) 73 1 × 10−3 1 × 10−9 1 × 10−6 8 × 10−4

Table 6.2. Errors in central differencing.

Obviously there is a version of the central difference formula for first
partial derivatives of a function of n variables, namely

∂F

∂xi
≈ F (x + hei) − F (x − hei)

2h
for i = 1, . . . , n. (6.2.6)
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Finite difference approximations can also be used for second
derivatives. If we add (6.2.2) and (6.2.5) the odd-powered terms cancel
and we get

F (x + h) + F (x − h) = 2F (x) + h2 d2F (x)
dx2

+ O(h4).

From this there follows the central difference estimate of the second
derivative of a one-variable function F (x),

d2F

dx2
≈ F (x + h) − 2F (x) + F (x − h)

h2
. (6.2.7)

The error in this formula is O(h2). Analagous ideas can be used to
estimate the second derivatives of an n-variable function, so that

∂2F

∂x2
i

≈ F (x + hei) − 2F (x) + F (x − hei)
h2

(6.2.8)

and

∂2F

∂xi∂xj
≈ F (x + hsij) − F (x + hdij) − F (x − hdij) + F (x − hsij)

4h2

(6.2.9)
where

sij = ei + ej and dij = ei − ej .

Finite difference schemes such as these have been widely used in prac-
tical optimization. However, there can be difficulties in choosing the
stepsize h to ensure that the approximate derivatives are sufficiently
accurate. These difficulties may be avoided if we use the techniques
described in the next section.

Exercise
Using (6.2.6), (6.2.8) and (6.2.9) calculate estimates of the gradients and
Hessians of the functions in Problems TD1 and TD2 when x1 = x2 = 1.

6.3. Automatic differentiation

The term automatic differentiation (AD) is used to denote computa-
tional techniques implemented in software tools which apply the rules
for differentiating sums, products, functions of functions and so on. Such
tools can be interfaced with a program for calculating a mathematical
expression in order to evaluate first (and higher) derivatives along with
the expression itself. AD is distinct from – although clearly related
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to – software for symbolic differentiation which operates on mathematical
formulae and produces corresponding formulae for derivatives with
respect to chosen variables.

In the context of optimization, automatic differentiation can provide
derivatives of the objective function without requiring a user to do any
calculus. Essentially it takes a user-supplied program for evaluating F (x)
and then carries out extra computations, based on the rules of calculus,
to obtain the corresponding derivative value(s). Some software tools
do the extra computations at the same time as the function evaluation;
but others construct a separate procedure for the derivative calculation.
(The first approach is said to use overloaded operations while the second
is called preprocessing.) In both cases the derivatives are evaluated as
accurately as the function itself (i.e., subject only to possible round-
ing errors). Truncation errors do not arise as they do for derivatives
estimated by finite differences.

The simplest software tools for automatic differentiation involve the
introduction of a new data type and a set of associated operations.

Definition The doublet data type is a bracketed pair of the form U =
{u, u′}. Here u is called the value and u′ the gradient of U .

We first consider the use of doublets for differentiating functions of
one variable. In this case the value and gradient are both real scalars. If
U = {u, u′} and V = {v, v′} then basic doublet arithmetic operations
are

U + V = {u + v, u′ + v′} and U − V = {u − v, u′ − v′} (6.3.1)

UV = {uv, vu′ + uv′} (6.3.2)

U

V
=
{

u

v
,

u′v − v′u

v2

}
. (6.3.3)

The gradient parts of (6.3.1)–(6.3.3) capture the rules for differentiating
sums, products and quotients. There are similar definitions for mixed
operations between doublets and constants. If U = {u, u′} and c is a
real constant then

U + c = {u + c, u′} and U − c = {u − c, u′} (6.3.4)

Uc = cU = {uc, u′c} (6.3.5)

U

c
=
{

u

c
,

u′

c

}
and

c

U
=
{

c

u
, −cu′

u2

}
. (6.3.6)
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We can also extend the meanings of standard functions to allow them
to take doublet arguments. If U = {u, u′} then, for instance,

sin(U) = {sin(u), u′ cos(u)} (6.3.7)

log(U) =
{

log(u),
u′

u

}
. (6.3.8)

Un = {un, nun−1u′} if n 
= 0 is an integer. (6.3.9)

In a similar way we can define the doublet extension of any differentiable
real-valued unary or binary functions.

Definition If h(u) is a real-valued differentiable function of a real scalar
argument u then its doublet extension for U = {u, u′} is

H(U) = {h(u), u′hu} where hu =
dh(u)

du
. (6.3.10)

Definition If h(u, v) is a real-valued differentiable function of two real
scalar arguments u and v then its doublet extension for U = {u, u′},
V = {v, v′} is

H(U, V ) = {h(u, v), u′hu + v′hv} where hu =
∂h

∂u
and hv =

∂h

∂v
.

(6.3.11)
The basic doublet operations (6.3.1)–(6.3.3) are particular cases of
(6.3.11) and the mixed operations (6.3.4)–(6.3.6) are particular cases
of (6.3.10). Hence (6.3.10) and (6.3.11) effectively sum up the rules of
doublet calculation.

If f(x) is a differentiable function of a single variable x we can obtain
its first derivative by evaluating f according to the rules of doublet
arithmetic. To do this we must first convert the independent variable to
doublet form.

Definition If f(x) is a function of a scalar variable x then its doublet
extension F (X) is obtained by replacing x by its doublet form

X = {x, 1}. (6.3.12)

The definition (6.3.12) is consistent with the fact that, trivially, x is the
value of the variable and x′ = 1 is the gradient of x with respect to itself.

The evaluation of the doublet extension F (X) uses the rules (6.3.10),
(6.3.11). As an example, consider the function

f(x) = x3sinx + cos x2. (6.3.13)
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Its doublet extension F is

F = X3sin X + cos X2 (6.3.14)

where X is given by (6.3.12). Using (6.3.1)–(6.3.11) for any x we get

F = {x3, 3x2}{sin x, cos x} + {cos x2, −2x sin x2}

= {x3sin x, 3x2sin x + x3cos x} + {cos x2, −2x sin x2}

= {x3sin x + cos x2, 3x2sin x + x3cos x − 2x sin x2}.

The reader can verify that the gradient part of F is what we should
have obtained by differentiating (6.3.13) in the usual way. In particular,
if x = 1, the evaluation of (6.3.14) gives

F = {1, 3}{0.84147, 0.5403} + {0.5403, −2 × 0.84147}

= {0.84147, 3 × 0.84147 + 1 × 0.5403} + {0.5403, −1.68294}

= {1.38177, 1.38177}.

This agrees with the fact that, for the function (6.3.13), both f(x) and
its first derivative f ′(x) simplify to sin 1 + cos 1 when x = 1.

Generalising the above example, the following result is the basis of
the forward accumulation method of automatic differentiation.

Proposition If f(x) is a differentiable function of a scalar variable x
and F (X) is its doublet extension then the gradient part of F (X) will
give f ′(x) for any x for which this derivative exists.

The above ideas can be extended to functions of n variables. In this
case the value part of a doublet is still a scalar but the gradient part
becomes an n-vector. However, all the rules (6.3.1)–(6.3.11) still apply,
and only the definition (6.3.12) needs to be modified.

Definition If f(x) is a function of n independent variables x1, . . . , xn

then its doublet extension is obtained by replacing each xi by its doublet
form

Xi = {xi, ei} i = 1, . . . , n (6.3.15)

where ei denotes the ith column of the unit matrix.
With this definition we can state the following result.

Proposition If f(x) is a differentiable function of n variables x1, . . . , xn

and F (X) is its doublet extension then the gradient part of F (X) will
give ∇f for any x for which this gradient exists.
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As an example we consider the two variable function

f(x) = x1(x1 + x2). (6.3.16)

Its doublet extension is

F = X1(X1 + X2) = {x1, (1, 0)T }({x1, (1, 0)T } + {x2, (0, 1)T }).

Using (6.3.1) and (6.3.2), the calculation of F for any value of x is as
follows.

F = {x1, (1, 0)T }({x1 + x2, (1, 1)T }

= {x1(x1 + x2), (x1, x1)T + (x1 + x2, 0)T }

= {x1(x1 + x2), (2x1 + x2, x1)T }.

Hence the doublet F contains the correct value and gradient vector for
the function (6.3.16).

The ideas of forward accumulation are quite easily implemented in
programming languages which support overloaded operations for user-
defined data types. The code for evaluating the objective function can
simply be written in terms of a doublet data type rather than a stan-
dard real variable and then, for any values of the independent variables,
the numerical value of the first partial derivatives will be returned in
the gradient part of the doublet result. This facility is included in
OPTIMA which uses forward accumulation for computing first deriva-
tives. OPTIMA also includes procedures for estimating derivatives by
finite differences which are used to obtain second derivatives when these
are required.

We have only given a brief introduction to an important topic and for
more information on automatic differentiation the reader is referred to
[26, 32].

Exercises
1. Work through the forward accumulation approach to evaluate the

gradient of the function (1.1.5) at x2 = 2.
2. Use the forward accumulation approach to obtain the first partial

derivatives of the function in Problem TD1 when x1 = x2 = 1.

6.4. Computational costs of derivatives

Finite difference approximations or automatic differentiation software
tools allow us to avoid the time and trouble of producing hand-crafted
expressions for derivatives and then coding them. However, they may
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both incur a computational cost. The cost of a forward difference
estimate of the gradient of an n-variable function is about the same
as n evaluations of the function itself. A central difference estimate of
the gradient costs about 2n function evaluations. Obtaining a gradient
by forward accumulation in doublet arithmetic can also cost about n
times as much as one function evaluation. In contrast to these figures,
the evaluation of a skilfully coded hand-crafted gradient may be equiva-
lent to much less than n function calculations. In short, therefore, a
program which uses hand-crafted derivatives may require less runtime
than one which uses derivatives which are approximated or obtained via
forward accumulation.

There is a version of automatic differentiation called reverse accumula-
tion which is potentially much more efficient than forward accumulation.
In terms of arithmetic operations, it is able to compute derivatives as
efficiently as the best of hand-crafted expressions. It is, however, a more
difficult technique to explain than forward accumulation and its arith-
metic efficiency is somewhat offset by the fact that it can be expensive
in its memory requirements. We do not discuss it any further here, but
details can be found in [32].



Iterative schemes
Each repetition
closes on the vital point:
Pit and Pendulum?

When will it converge?
Each false step, like Poe’s raven,
cackles “Nevermore!”



Chapter 7

The Steepest Descent Method

7.1. Introduction

The steepest descent method is the simplest of the gradient methods
for optimization in n variables. It can be justified by the following
geometrical argument. If we want to minimize a function F (x) and if
our current trial point is xk then we can expect to find better points
by moving away from xk along the direction which causes F to decrease
most rapidly. This direction of steepest descent is given by the negative
gradient. To use a geographical illustration: suppose we are walking on
a hillside in thick fog and wish to get to the bottom of the valley. Even
though we cannot see ahead, we can still reach our objective if we make
sure each step is taken down the local line of greatest slope.

A formal description of the steepest descent method appears below.
Here, and in what follows, subscripts on vectors are used to denote
iteration numbers. On occasions when we need to refer to the ith element
of a vector xk we use double-subscript notation xki

.

Steepest descent with perfect line search

Choose an initial estimate, x0, for the minimum of F (x).
Repeat for k = 0, 1, 2, . . .
set pk = −∇F (xk)
calculate s∗ to minimize ϕ(s) = F (xk + spk)
set xk+1 = xk + s∗pk

until ||∇F (xk+1)|| is sufficiently small.

The one-dimensional minimization in this algorithm can be performed
using methods discussed in Chapter 2.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 7, c© Springer Science+Business Media, LLC 2008
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It should be said at once that the steepest descent algorithm is not
a particularly efficient minimization method. (The simple strategy of
proceeding along the negative gradient works well for functions with
near-circular contours; but practical optimization problems may involve
functions with narrow curving valleys which need a more sophisticated
approach.) However, we consider it at some length because it introduces
a pattern common to many optimization methods. In this pattern, an
iteration consists of two parts: the choice of a search direction (pk)
followed by a line search to find a suitable stepsize s∗.

7.2. Line searches

Definition A line search which chooses s∗ to minimize ϕ(s) =
F (xk + spk) is said to be perfect or exact.

Definition A weak or inexact line search is one which accepts any value
of s such that F (xk + spk) − F (xk) is negative and bounded away from
zero.

A perfect line search gives the greatest possible reduction in F along
the search direction. However, as we show later, it may be computation-
ally expensive to do an accurate minimization of ϕ(s) on every iteration.
Hence weak searches are often preferred in practice. A convergence proof
for the steepest descent algorithm with a weak line search is given later
in this chapter.

Line searches play an important part in optimization. If p denotes
any search direction and if we write

ϕ(s) = F (xk + sp) (7.2.1)

then, using a Taylor expansion,

ϕ(s) = F (xk) + spT∇F (xk) +
s2

2
pT∇2F (xk)p + O(s3||p||3)

and so
dϕ

ds
= pT∇F (xk) + spT∇2F (xk)p + O(s2||p||3).

But
∇F (xk + sp) = ∇F (xk) + s∇2F (xk)p + O(s2||p||2)

and so
dϕ

ds
= pT∇F (xk + sp). (7.2.2)
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(We can also derive this relationship by using the chain rule.) From
(7.2.2) we deduce that the initial slope, as we move away from xk along
the search direction p, is given by pT∇F (xk).

Definition The vector p is a descent direction with respect to the
function F (x) at the point xk if it satisfies the condition

pT∇F (xk) < 0. (7.2.3)

If (7.2.3) holds then p is a suitable search direction for an iteration of a
minimization algorithm which begins at xk.

Proposition If s∗ is the step which minimizes ϕ(s) then

pT∇F (xk + s∗p) = 0. (7.2.4)

Proof The result follows on putting dϕ/ds = 0 on the left of (7.2.2).

Condition (7.2.4) means that a perfect line search terminates at a
point where the gradient vector is orthogonal to the direction of search.

A steepest descent example

We now apply steepest descent to the function

F (x) = (x1 − 1)2 + x3
2 − x1x2.

The gradient is g = (2x1 − 2 − x2, 3x2
2 − x1)T . Hence, if we take

x0 = (1, 1)T then F0 = 0 and g0 = (−1, 2)T . On the first iteration, the
search direction is p0 = −g0 and the new solution estimate is

x = x0 + sp0 = (1, 1)T + s(1, −2)T = (1 + s, 1 − 2s)T .

We can use (7.2.3) to confirm that p0 is a descent direction because

pT
0 g0 = (1, −2)

(
−1
2

)
= −5.

Now we want to find s to minimize

ϕ(s) = F (x0 + sp0) = s2 + (1 − 2s)3 − (1 + s)(1 − 2s). (7.2.5)

To find a steplength s∗ to minimize ϕ(s) we solve dϕ/ds = 0. This leads
to

2s − 6(1 − 2s)2 − (1 − 2s) + 2(1 + s) = −24s2 + 30s − 5 = 0.
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(In this case we have a quadratic equation which can be solved
analytically. In general, however, s∗ must be found by an iterative
method such as bisection.)
On solving 24s2 − 30s + 5 = 0 we find that the smaller root s∗ ≈ 0.198
gives the minimum of ϕ (and the larger root corresponds to a maximum).
Hence a perfect search will give the new point x = (1.198, 0.604)T .

A second steepest descent iteration from x1 = (1.198, 0.604)T will
use a search direction p1 = −g1 = (0.208, 0.1036)T . The new point will
then be

x2 = (1.198 + 0.208s, 0.604 + 0.1036s)T

where s is again chosen by a perfect line search. Continuing in this way,
we can expect that a minimum will be found if enough iterations are
performed.

Exercises
1. In the first iteration of the worked example above, show that the

same value of s∗ would be obtained by solving pT
0 g = 0 where g is

calculated at x = (1 + s, 1 − 2s)T .
2. Perform another iteration of the steepest descent method with perfect

line searches applied to (4.1.6) following on from the point x1 =
(1.198, 0.604)T .

3. Show that the steepest descent method with perfect line searches
generates successive search directions that are orthogonal.

4. Do one iteration of steepest descent for F (x) = 2x2
1+3x1x2+5x2

2−x1

starting from x1 = x2 = 0.

7.3. Convergence of the steepest descent method

Experience shows that methods using perfect line searches may not
make much better overall progress than those using weak searches. The
following result shows that the steepest descent method with a weak line
search can converge to a stationary point.

Proposition Let F (x) be a function which is twice continuously
differentiable and bounded below. Also let its Hessian matrix be
bounded, so that for some positive scalar M,

zT∇2F (x)z ≤ M ||z||2

for any vector z. Then a sequence of steepest descent iterations

xk+1 = xk −
1
M

∇F (xk)
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(i.e., which use a constant stepsize s = M−1) will produce a sequence of
points xk such that ||∇F (xk)|| → 0 as k → ∞.

Proof Suppose the statement is false and that, for some positive ε,

||∇F (xk)|| > ε for all k.

Now consider a typical iteration starting from a point x where p =
−∇F (x) and x+ = x + sp. By the mean value theorem, for some ξ
between x and x+,

F+ − F = spT∇F (x) +
1
2
s2pT∇2F (ξ)p. (7.3.1)

Hence, writing g for ∇F (x),

F+ − F = −gT g

M
+

gT∇2F (ξ)g
2M2

≤ −gT g

M
+

gT g

2M
,

using the bound on ∇2F . Now by the assumption at the start of the
proof we have, on every iteration

F+ − F ≤ − ε2

2M
. (7.3.2)

But if this holds for an infinite number of steps it contradicts the fact
that F (x) is bounded below; and hence our initial assumption must be
false and there exists an integer K such that ||∇F (xk)|| ≤ ε for all
k > K.

The above proposition does not relate to an algorithm which is either
practical or efficient. We would not in general be able to determine
the constant M and, even if we could, the stepsize s = M−1 would
usually be much less than the perfect step and convergence would be
slow. However we can use the same reductio ad absurdum approach
to show the convergence of the steepest descent algorithm as stated in
Section 7.1.

Corollary If the function F (x) satisfies the conditions of the preceding
proposition then the steepest descent algorithm with perfect line searches
produces a sequence of points xk such that ||∇F (xk)|| → 0 as k → ∞.

Proof This result follows because, with a perfect line search, the
decrease in function value obtained on every iteration must be at least
as good as that given by the bound (7.3.2). Therefore it would still
imply a contradiction of F being bounded below if the iterations did not
approach a stationary point.
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The rate of convergence of steepest descent

The fact that an algorithm can be proved to converge does not necessarily
imply that it is a good method. Steepest descent, whether using perfect
or weak line searches, is not usually to be recommended in comparison
with the algorithms introduced in later chapters. This is because its rate
of convergence can be slow, as shown in the next example. Consider the
problem

Minimize F (x) =
1
2
(x2

1 + qx2
2).

Then ∇F = (x1, qx2)T and F has a minimum at x∗ = (0, 0)T . (A simple
sketch shows that the contours are ellipses.)

If we choose x0 = (1, q−1)T as a starting point then p0 = (−1, −1)T .
Thus the next iterate will be of the form

x1 = (1 − s, q−1 − s)T . (7.3.3)

A perfect line search finds s so that pT
0 g1 = 0, which implies

(−1, −1)
(

1 − s
1 − qs

)
= −1 + s − 1 + qs = 0

and so s = 2(1 + q)−1. Substituting in (7.3.3) we get the new point

x1 = K(1, −q−1)T where K =
(q − 1)
(q + 1)

. (7.3.4)

It follows from (7.3.4) that ||x1|| = K||x0|| and so the error after the
first iteration is K times the error at the starting point. In a similar way
we can show

||x2|| = K||x1|| = K2||x0||. (7.3.5)
In the special case when q = 1 (when F has circular contours) steepest
descent performs well, because K is zero and the solution is found in one
iteration. For larger values of q, however, (7.3.5) shows that the solution
error decreases by a constant factor K on each iteration. Moreover, K
is close to 1 for quite moderate values of q. For instance, K ≈ 0.82
when q = 10 and so about 60 iterations would be needed to reduce ||x||
to around 10−5. Convergence would be yet slower for q = 100. This
example illustrates a general property of the steepest descent method,
which we state without proof.

Proposition If F (x) is a function for which the steepest descent algo-
rithm converges to a stationary point x∗, then there exists an integer k̄



7.4. Results with steepest descent 81

and a positive real constant K(< 1) such that, for k > k̄,

||xk+1 − x∗|| < K||xk − x∗||.

This means that the steepest descent method generally displays linear
convergence near the solution, with the errors in the approximate min-
ima, xk, decreasing by a constant factor on every iteration.

7.4. Results with steepest descent

Performance of the steepest descent method can be illustrated by results
for Problems TD1–OC2. The OPTIMA implementation of the steepest
descent method with perfect line searches, is denoted by SDp and Table
7.1 gives the numbers of iterations and function evaluations needed to
satisfy convergence test (4.3.2) when ε = 10−4, 10−5 and 10−6. Table 7.1

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 18/71 24/83 28/91

TD2 16/48 20/56 24/64

VLS1 4/9 5/11 5/11

TLS1 26/69 38/93 48/113

VLS2 20/108 25/118 29/126

R1(1) 43/294 43/294 44/296

R1(2) 1608/7650 2977/12673 3555/14560

OC1(4) 417/835 609/1219 801/1603

OC2(4) 111/241 153/325 197/413

Table 7.1. SDp solutions for Problems TD1–OC2.

shows that SDp performs in a similar way on Problems TD1 and TD2,
taking four iterations to reduce the gradient norm by an order of magni-
tude, from O(10−5) to O(10−6). Hence its ultimate rate of convergence is
given approximately by ||xk+1−x∗|| < 0.56||xk−x∗|| because 0.564 ≈ 0.1.

Among the least-squares problems, SDp clearly finds TLS1 the most
difficult. Problem VLS2 is also quite challenging but VLS1 with its
simple quadratic objective function proves relatively easy. On Problem
TLS1, SDp takes about 12 iterations to reduce the gradient by an order
of magnitude and so the ultimate convergence rate is approximately
||xk+1 − x∗|| < 0.83||xk − x∗||. The most extreme examples of slow
convergence near a solution are seen on Problems OC1(4) and R1(2).

It is interesting to compare the performance of steepest descent with
that of the direct search methods shown in Table 5.1. If we take numbers
of function evaluations as a basis for comparison we see that, in all cases
except R1(2), SDp outperforms UNIVAR. It also does better than DIRECT
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on all problems except R1(1) and R1(2). In terms of function evaluations,
however, SDp only beats the simplex method on two of the problems and
does appreciably worse on the routing and optimal control examples.

Exercises
1. Apply SDp to Problem TD1 with the starting guess x1 = x2 = 1 and

explain what happens.
2. Apply SDp to a modified form of Problem TD2 in which the specified

surface area is S∗ = 30.
3. Apply SDp to a modified form of Problem VLS2 in which there is an

extra data point (5, 0.1).
4. Perform numerical experiments applying SDp to Problem R1(2) to see

how close the initial guess must be to the solution in order for the
method to converge in fewer than 1000 iterations.

5. Apply SDp to the problems R1(1) and R1(2) with ρ = 0.01 and com-
ment on the solutions.

6. Investigate the performance of SDp on Problems OC1(6) and OC2(6).



Chapter 8

Weak Line Searches and Convergence

8.1. Wolfe’s convergence theorem

The steepest descent method introduces some important ideas which
are common to many other minimization techniques. These are (i) the
choice of a search direction, p, to satisfy the descent property (7.2.3); and
(ii) the use of a line search to ensure that the step, s, along p decreases
the function. Optimization techniques differ mainly in the way that p is
calculated on each iteration.

Wolfe’s theorem [66] gives precise conditions on p and s which guar-
antee convergence of any minimization algorithm. We now define these
Wolfe conditions with xk denoting an estimate of the minimum of F (x)
and gk = ∇F (xk).

Definition The first Wolfe condition is a stronger form of (7.2.3),
namely

pT gk ≤ −η0||p|| ||gk||, (8.1.1)

where η0 is a small positive constant, typically η0 = 0.01.

If (8.1.1) holds then θ, the angle between p and −gk, is such that cos θ
is positive and bounded away from zero. In other words −π/2 < θ < π/2.

Before stating the other Wolfe conditions, we let s̄ denote the
steplength along p for which

ϕ(s̄) = ϕ(0) which is eqivalent to F (xk + s̄p) = F (xk). (8.1.2)

Clearly s̄ > s∗, the step which minimizes ϕ; and on a quadratic function
we can show that s̄ = 2s∗ (see Exercise 3, below). The purpose of the
next two Wolfe conditions is to define an acceptable step s as being one
which is neither too long (i.e., too close to s̄) or too short (too near zero).

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 8, c© Springer Science+Business Media, LLC 2008
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Definition The second Wolfe condition is

F (xk + sp) − F (xk) ≤ η1 s pTgk, (8.1.3)

for some constant η1, such that 0.5 > η1 > 0 (typically η1 = 0.1).
Condition (8.1.3) ensures that the step taken produces a nontrivial

reduction in the objective function and hence that s is bounded away
from s̄.

Definition The third Wolfe condition is

|F (xk + sp) − F (xk) − s pT gk| ≥ η2|s pT gk|, (8.1.4)

where η2 is a constant such that 0.5 > η2 > 0.
The inequality (8.1.4) ensures s is bounded away from zero by requiring

the actual decrease in F to be bounded away from the linear predicted
reduction.

Wolfe’s Theorem [66] If F (x) is bounded below and has bounded
second derivatives then any minimization algorithm which satisfies
(8.1.1)–(8.1.4) on a regular subsequence of iterations (and does not allow
F to increase) will terminate in a finite number of iterations at a point
where ||∇F (x)|| is less than any chosen positive tolerance.

A proof of Wolfe’s theorem is not given here but it is similar to that
for the steepest descent convergence result in Section 7.3. To explain
the second and third Wolfe conditions we introduce the ratio

D(s) =
F (xk + sp)− F (xk)

s pT gk
. (8.1.5)

Figure 8.1 illustrates the behaviour of this function when F is quadratic.

Clearly D(s̄) = 0 and we can also show that D(s) → 1 as s → 0.
Moreover, if F (x) is a quadratic function, D(s) decreases linearly from
1 to 0 as s increases from 0 to s̄. In particular D(s∗) = 0.5. The
second Wolfe condition is equivalent to the requirement that D(s) ≥ η1.
Similarly, the third Wolfe condition holds if D(s) ≤ 1− η2. The vertical
dashed lines in Figure 8.1 indicate an acceptable range for s when η1 =
η2 = 0.1.

If F (x) is nonquadratic then D(s) will not be linear. However, if F
is convex, D will still lie in the range 1 ≥ D(s) ≥ 0 when 0 ≤ s ≤ s̄.
Figure 8.2 illustrates the acceptable range for s on a cubic function when
η1 = η2 = 0.1. Note that the left- and right-hand excluded regions are
not now the same size.
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Figure 8.1. Wolfe conditions on a quadratic function.
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Figure 8.2. Wolfe conditions on a nonquadratic function.

If F (x) is nonconvex then the ratio D(s) may exceed 1 in the range
0 ≤ s ≤ s̄. This can be seen in Figure 8.3, where the function has
slight negative curvature near to s = 0. The third Wolfe condition –
that the step s must not be too close to zero – can then be expressed
as |1 − D(s)| ≥ η2. Figure 8.3 shows the acceptable range for s when
η1 = η2 = 0.1.

Exercises
1. Prove that the steepest descent direction satisfies Wolfe condition 1.
2. Use Taylor series to show that D(s) → 1 as s → 0.
3. Use (8.1.2) to prove that s̄ = 2s∗ when F is quadratic.
4. An alternative to (8.1.4) is |pT g(xk + sp)| ≤ η3|pT g(xk)| for some

constant η3(1 > η3 > 0). Explain why this causes s to be bounded
away from zero.

5. If F (x) is quadratic, prove that (8.1.5) implies D(s∗) = 0.5.
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Figure 8.3. Wolfe conditions on a nonconvex nonquadratic function.

8.2. The Armijo line search

Conditions (8.1.3) and (8.1.4) will be fulfilled if s minimises the line
search function ϕ(s) in (7.2.1). However, they also justify the use of a
weak line search. This could be implemented by performing an exact
search with a low-accuracy stopping rule. However, a simpler form of
weak search, based on the second and third Wolfe conditions, is called
the Armijo technique [1]. This can conveniently be described in terms
of the ratio D(s) defined by (8.1.5).

The Armijo line search technique

Let p be a search direction satisfying (8.1.1)
Choose constants C > 1, c < 1 and η1, η2 such that 0 < η1, η2 < 0.5
Set s = 1 and smin = 0
Repeat for j = 0, 1, 2, . . .
If |1 − D(s)| < η2 then set smin = s and s = Cs
else exit
Repeat for k = 0, 1, 2, . . .
set s = smin + c(s − smin)
until D(s) ≥ η1

This search first ensures that s is “big enough” and then modifies s if
necessary to produce a decrease in F consistent with (8.1.3). The second,
step-reducing, phase must not cause a violation of (8.1.4).

The Armijo search can be modified to perform exact minimizations
when F is quadratic by making use of the fact that D(s∗) = 0.5. This
modified search uses linear interpolation or extrapolation to estimate a
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value of s such that D(s) = 0.5 (but using the constants C and c to
prevent excessively large or small corrections).

A modified Armijo line search

Let p be a search direction satisfying (8.1.1)
Choose constants C > 1, c < 1 and η1, η2 such that 0 < η1, η2 < 0.5
Set s = 1 and smin = 0.
Repeat for j = 0, 1, 2, . . .
if |1 − D(s)| < η2 then set

smin = s and s = min
(

Cs,
0.5s

1 − D(s)

)

else exit
Repeat for k = 0, 1, 2, . . .

s = max
(

smin + c(s − smin),
0.5s

1 − D(s)

)

until D(s) ≥ η1

For nonquadratic functions, the Armijo search with η1, η2 ≈ 0.5 will
(usually) give a better estimate of the line minimum than one which
uses η1, η2 ≈ 0.1. However, in order to perform a perfect line search on
nonquadratic functions the OPTIMA software uses an Armijo search to
obtain an approximation to the line minimum, and then switches to the
secant method in order to locate a point where the directional derivative
ϕ′(s) = pT g is close enough to zero.

Exercises
1. Calculate the point found on the first iteration of the example in

Section 7.2 if the line search is done by the Armijo method with
η1 = η2 = 0.1, using s = 1 as the first trial step. What point would
be found if the modified Armijo search were used instead?

2. Write and test a procedure implementing the simple Armijo search.

8.3. Further results with steepest descent

We now consider the performance of SDw, the OPTIMA implementation
of steepest descent with a weak line search. The entries in Table 8.1 are
numbers of iterations and function calls needed to satisfy the stopping
rule (4.3.2) with ε = 10−4, 10−5 and 10−6.
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Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 22/46 28/58 34/70

TD2 14/27 20/39 26/51

VLS1 4/9 5/11 5/11

TLS1 50/92 61/105 69/114

VLS2 17/52 21/60 25/68

R1(1) 90/291 104/326 118/361

R1(2) 282/824 1446/3734 2620/6669

OC1(4) 417/835 609/1219 801/1603

OC2(4) 119/239 165/331 211/423

Table 8.1. SDw solutions for Problems TD1–OC2.

By comparing Tables 7.1 and 8.1 we see that a weak line search is
usually preferable to a perfect one. For Problems VLS1 and OC1, both
methods give the same performance; but SDw uses fewer function calls
(although more iterations) than SDp when applied to Problem TD1. On
Problem TD2, SDw and SDp use similar numbers of iterations but the
weak search makes fewer function calls. On Problem TLS1, SDw takes
many more iterations than SDp but still uses fewer function calls overall
(about 1.5 per iteration as opposed to between 2 and 3). It is only on
Problems R1(1) and OC2 that SDw is inferior to SDp in terms of both
iterations and function calls.

In comparison with the numbers of function evaluations needed by
the direct search methods (Table 5.1), SDw is more competitive than
SDp and outperforms the simplex method on the first five problems.

Exercises
1. Change the starting point for TLS1 to x1 = x2 = 1 and compare the

performance of SDp and SDw.
2. Apply SDw to a modified form of Problem TD2 in which the specified

surface area is S∗ = 30.
3. Apply SDw to a modified form of Problem VLS2 in which there is an

extra data point (5, 0.1).
4. Use the results in Table 8.1 to estimate the rate of convergence of

SDw on each problem.
5. Perform numerical experiments applying SDw to Problem R1(2) to see

how close the initial guess must be to the solution in order for the
method to converge in fewer than 1000 iterations.

6. Apply SDw to the problems R1(1) and R1(2) with ρ = 0.01 and com-
ment on the solutions.

7. Apply SDw to Problems OC1(6) and OC1(8).
8. Write and test a procedure implementing the steepest descent method

using a weak, Armijo-type line search.



8.3. Further results with steepest descent 89

9. Consider a version of the steepest descent method in which the
iteration has the form xk+1 = xk − hgk where h is a small positive
constant on every step. The points traced out by such an iteration are
an approximation to the continuous steepest descent path obtained
by solving the ordinary differential equation

dx

dt
= −∇F (x)

with the initial condition x = x0 when t = 0. By modifying an
OPTIMA procedure (or otherwise) implement this algorithm and
investigate its performance on some of the test examples TD1–OC2.



Calculated risk [2]

It was 6 a.m. at Heathrow when
their machine was woken up by mine.
Turn it on, the stern attendant said
and prove to us it’s what it seems to be:
a harmless, necessary calculator.

Feeling rather smug to be accused
of something I was sure I had not done,
I rattled buttons to evaluate
suspicion and obtained precisely nothing –
a single open zero with no countdown.

Permitted to proceed beyond the gate,
I felt my reservations multiply
as fast as bits of ticket were subtracted.
A formula that proves one’s innocence
in terms of integers may miss the point.



Chapter 9

Newton and Newton-like Methods

9.1. Quadratic models and the Newton step

The steepest descent algorithm performs badly on the example in
Section 7.3 chiefly because it uses no second derivative information.
More effective methods are based on the properties of a quadratic func-
tion,

Q(x) =
1
2
xT Ax + bT x + c (9.1.1)

where A is a constant n×n matrix, b a constant n-vector and c a constant
scalar. The gradient and Hessian of Q are

∇Q(x) = Ax + b and ∇2Q(x) = A. (9.1.2)

If A is nonsingular then (9.1.1) has a unique stationary point which is
found by solving the linear equations

Ax = −b. (9.1.3)

The solution will be a minimum if the Hessian matrix A is positive-
definite. On the other hand, it will be a maximum if A is negative-
definite or a saddle point if A is indefinite.

We can also apply these ideas to a nonquadratic function F (x).
Suppose xk is an estimate of the minimum of F (x) and that gk =
∇F (xk), Gk = ∇2F (xk). We can approximate F and ∇F by the
truncated Taylor series

F (xk + p) ≈ Q(p) = F (xk) + pT gk +
1
2
(pT Gkp) (9.1.4)

and
∇F (xk + p) ≈ ∇Q(p) = gk + Gkp. (9.1.5)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 9, c© Springer Science+Business Media, LLC 2008
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Therefore, if Gk is positive-definite, a first-order estimate of the step
from xk to the minimum of F is

p = −G−1
k gk. (9.1.6)

This leads to the following algorithm.

The Newton method

Choose x0 as an initial estimate of the minimum of F (x)
Repeat for k = 0, 1, 2, . . .
Set gk = ∇F (xk), Gk = ∇2F (xk).
if Gk is positive-definite then obtain pk by solving Gkpk = −gk

else set pk = −gk

Find s so F (xk + spk) satisfies (8.1.3), (8.1.4) for some η1, η2

Set xk+1 = xk + spk

until ||∇F (xk+1)|| is sufficiently small.

The vector pk given by (9.1.6) is called the Newton correction and is
based on regarding Q as a local quadratic model of F . Under favourable
conditions – that is, when the Hessian of F is positive-definite – the
Newton algorithm can be very efficient. The “natural” steplength implied
by the quadratic model is s = 1; and in practice this often satisfies the
Wolfe conditions and effectively eliminates the line search.

If Gk is not positive-definite then the quadratic model has a maximum
or a saddle point rather than a minimum and then the Newton correction
may not be suitable. In this case we need an alternative search direction;
and in the algorithm above we simply revert to steepest descent. This
is not a particularly good option, however, and we discuss this issue in
greater detail in a subsequent section.

A worked example

We can demonstrate a typical Newton iteration using the function

F (x) = x4
1 + 2x2

2 + x1 − x2.

We avoid the use of subscripts to denote iteration numbers and so x =
(−1

2 , 1
2)T is the starting point. We refer to the search direction as p and

a line search along p will yield x+ = x + sp. Because

g(x) =
(

4x3
1 + 1

4x2 − 1

)
=
(

1
2
1

)
and

G(x) =
(

12x2
1 0

0 4

)
=
(

3 0
0 4

)
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the Newton correction p is obtained by solving Gp = −g, which is

3p1 = −1
2

(9.1.7)

4p2 = −1. (9.1.8)

This gives p1 = −1
6 and p2 = −1

4 and so the new point is of the form

x+ =
(
−1

2
− 1

6
s,

1
2
− 1

4
s

)T

.

Using the “natural” steplength s = 1 we get x+ = (−4
6 , 1

4 )T and then

F (x+) =
256
1296

+
2
16

− 4
6
− 1

4
≈ −0.5942.

But the value of F at the initial point is −0.4375, and so the step s = 1
has produced an acceptable reduction in F .

Exercises
1. In the worked example above, calculate the optimal step s∗ for a

perfect line search along the Newton direction. What are the largest
values of η1 and η2 for which the step s = 1 satisfies the second and
third Wolfe conditions?

2. Do one iteration of the Newton method applied to the function

F (x) = (x1 − 1)2 + x3
2 − x1x2

starting from x1 = x2 = 1. What happens when you start from
x = (1,−1)?

Positive-definiteness and Cholesky factors

In the Newton algorithm we must determine whether the Hessian Gk

is positive-definite. Very conveniently, the test for positive-definiteness
can be combined with the solution of Gkpk = −gk if we use the method
of Cholesky factorization. This seeks triangular factors of Gk so that

Gk = LLT (9.1.9)

where L is a lower triangular matrix. Once we have found these factors
we can solve Gkpk = −gk by first obtaining an intermediate vector z to
satisfy

Lz = −gk (9.1.10)

and then getting pk from
LTpk = z. (9.1.11)
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The two linear systems (9.1.10) and (9.1.11) are easy to solve because
they involve triangular coefficient matrices and so z and pk are obtained
by simple forward and backward substitution.

The Cholesky factorization (9.1.9) always exists if Gk is positive
definite. Conversely, if Gk is not positive definite then the factoriza-
tion process will break down. Attempting to find the Cholesky factors is
usually the most efficient way of testing a symmetric matrix for positive
definiteness.

We now describe the Cholesky method for solving a symmetric
positive-definite linear system Ax = b using the factorization A = LLT .
The method of calculating L is based on the fact that its elements must
satisfy

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

l11 0 . . . 0 . . . 0
l21 l22 . . . 0 . . . 0

. . . . . .
lk1 lk2 . . . lkk . . . 0

. . . . . .
ln1 ln2 . . . lnk . . . lnn

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

l11 l21 . . . lk1 . . . ln1

0 l22 . . . lk2 . . . ln2

. . . . . .
0 0 . . . lkk . . . lnk

. . . . . .
0 0 . . . 0 . . . lnn

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Considering the first row of A, the rules of matrix multiplication imply

a11 = l211; a1j = l11lj1 for j = 2, . . . , n.

Hence the first column of L can be obtained from

l11 =
√

a11; lj1 =
a1j

l11
for j = 2, . . . , n.

In the second row of A we have

a22 = l221 + l222; a2j = l21lj1 + l22lj2 for j = 3, . . . , n

and so the second column of L is given by

l22 =
√

a22 − l221; lj2 =
(aj2 − l21lj1)

l22
for j = 3, . . . , n.

More generally, by considering the k-th row of A, we obtain the following
expressions for the k-th column of L.

lkk =

√√√√akk −
k−1∑

i=1

l2ki; ljk =
(akj −

∑k−1
i=1 lkilji)

lkk
for j = k +1, . . . , n.

(9.1.12)
A complete Cholesky factorization consists of applying (9.1.12) for
k = 1, . . . , n. The process breaks down at stage k if the calculation of
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lkk involves the square root of a negative number. This will not happen
if A is positive-definite.

As an example, consider the equations

A =

⎛

⎝
10 1 1
1 8 2
1 2 20

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
10
7

−17

⎞

⎠ . (9.1.13)

The factorization process (9.1.12) gives

l11 =
√

10 ≈ 3.162; l21 = l31 ≈ 1.0
3.162

≈ 0.3163;

l22 ≈
√

8.0 − 0.31632 ≈ 2.811; l32 ≈ (2.0 − 0.3163 × 0.3163)
2.811

≈ 0.6759;

l33 ≈
√

20.0 − 0.31632 − 0.67592 ≈
√

19.44 ≈ 4.409.

(The product LLT will be found to differ slightly from A because the
elements of L have been rounded to four-digit accuracy.)

To solve (9.1.13) we deal first with the lower triangular system Lz = b.
Forward substitution in

⎛

⎝
3.162 0 0
0.3163 2.811 0
0.3163 0.6759 4.409

⎞

⎠

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
10
7

−17

⎞

⎠

gives

z1 ≈ 10
3.162

≈ 3.163, z2 ≈ (7 − 0.3163z1)
2.811

≈ 2.134

and z3 ≈ (−17 − 0.6759z2 − 0.3163z1)
4.409

≈ 4.409.

The upper triangular system LT x = z is
⎛

⎝
3.162 0.3163 0.3163

0 2.811 0.6759
0 0 4.409

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
3.163
2.134
4.409

⎞

⎠

and backward substitution yields x ≈ (1.0, 1.0,−1.0)T . Clearly this
satisfies the original system (9.1.13).

Exercises
1. Show that solving (9.1.10) and (9.1.11) yields the solution to

Gkpk = −gk.
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2. Solve the system of equations

10x1 + x2 + x3 = 9
x1 + 8x2 + 2x3 = 11
x1 + 2x2 + 12x3 = −31

(9.1.14)

using the Cholesky method.

9.2. Newton method advantages and drawbacks

If the eigenvalues of the Hessian matrix ∇2F are bounded away from
zero then it can be shown that the Newton iteration produces search
directions which satisfy the first Wolfe condition (8.1.1). Therefore the
Newton method converges if it uses a line search to satisfy the second
and third Wolfe conditions. The rate of convergence can be quadratic,
as stated in the following result.

Proposition If F (x) is a function for which the Newton algorithm con-
verges to a local minimum x∗ and if the smallest eigenvalue of ∇2F (x∗)
is m > 0 and if the third derivatives of F (x) are bounded in some neigh-
bourhood of x∗ then there exists an integer k̄ and a positive real constant
K(< 1) such that, for k > k̄,

||xk+1 − x∗|| < K||xk − x∗||2.

(The essentials of the proof are similar to the one-variable case in
Chapter 2.)

It is important to point out that such theoretical convergence rates are
not always observed in practice because of rounding errors in computer
arithmetic. Because all calculated results must be expressed in some
fixed number of digits (about 14 in the double precision arithmetic used
in OPTIMA) there will inevitably be small errors in computed values of
F , ∇F and ∇2F during the solution of an optimization problem. Such
errors may become significant when ∇F is near zero and they can prevent
iterative methods from reaching solutions with arbitrarily high accuracy.
(For a fuller account of rounding errors see the text by Higham [36].)

In spite of the above cautionary remarks, however, the theoretical
quadratic convergence of the Newton method does imply that it can
be very efficient. Unfortunately, however, the method also has some
drawbacks.

(i) Hand crafting of all the required second derivatives can be labo-
rious. Along with the subsequent coding of the derivative expressions
it is both time consuming and liable to error. As explained earlier,
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this effort can be avoided by the use of finite difference approximations
or by extension of the automatic differentiation techniques described in
Chapter 6. However, the Newton method has sometimes been neglected
because it is perceived as requiring too much effort on the part of a user.
(ii) The Newton method is computationally expensive because it solves a
system of linear equations to obtain the search direction. The Cholesky
method is more efficient than the general-purpose Gaussian elimination
method but it still uses O(1

6n3) multiplications per iteration. (A possible
way of reducing this would be to perform a low-accuracy solution of
Gkp = −gk. This idea leads to the truncated Newton method explained
in section 11.5.)
(iii) The most serious difficulty for the Newton approach is that it does
not invariably provide a good search direction. As we have already men-
tioned, the Cholesky solution of Gkpk = −gk may break down because
Gk is not positive-definite. If we were to solve Gkpk = −gk by some other
method when this happens then the search direction might lead towards
a local maximum or saddle point. (We have already noted similar beha-
viour of the one-variable Newton method in Section 2.4.) The algorithm
given in Section 9.1 deals with the possibility of unsuitable search direc-
tions by resorting to the steepest descent direction on certain iterations.
Better strategies than this can be devised; but the fact still remains
that the Newton algorithm, in practice, requires a “fall-back option”
to ensure convergence. Further discussion of this appears in the next
section.

Exercise
If a search direction is obtained by solving an n × n linear system
Bp = −g and if B is positive-definite show that p is a descent direc-
tion. If the eigenvalues of B are bounded above by M and below by m
show that Wolfe condition 1 is satisfied with η0 =

√
(m/M).

9.3. Search directions from indefinite Hessians

Matrix modification techniques

Suppose that, during a Newton iteration, the Cholesky factorization
breaks down at step k because the calculation of lkk in (9.1.12) involves
the square root of a negative argument. We could try to continue
with the calculation of a search direction by modifying the Hessian and
increasing its k-th diagonal term gkk so that it exceeds

∑k−1
i=1 l2ki. We

would then obtain factors L, LT of a matrix Ĝk which differs from Gk

in one (or more) diagonal elements. These triangular factors can then be
used to solve Ĝkp = −gk and the resulting p will be a descent direction,
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based on partially correct second derivative information, which could be
used instead of the Newton direction.

An alternative strategy when the Cholesky factorization fails is based
on the Gershgorin disk theorem [38] which implies that a symmetric
matrix A will have all positive eigenvalues if it satisfies

akk >
n∑

j=1, j �=k

|akj|

(which is called a diagonal dominance condition). Hence, if the Cholesky
factorization breaks down we can obtain a modified Hessian Ĝ by increa-
sing the diagonal elements of G, where necessary, so that

gkk ≥ M
n∑

j=1, j �=k

|gkj |

for some value of M > 1.
In practice, the modifications of diagonal elements of Gk outlined

in the previous paragraphs do not always work very well because the
computed L and LT factors may contain very large elements. Gill and
Murray [30] and Schnabel and Eskow [60] have suggested more com-
plicated – but more numerically stable – ways of changing the Hessian
during the Cholesky process so as to get L and LT as factors of a matrix
Ĝk which may differ from Gk in both diagonal and off-diagonal terms.

Trust-region methods

If Gk is not positive-definite we can get a downhill search direction by
solving

(λI + Gk)pk = −gk (9.3.1)

for a “suitably large” value of the positive scalar λ. This is because the
eigenvalues of (λI + Gk) exceed those of Gk by λ and hence, when λ is
big enough, (λI + Gk) must be positive-definite.

Using a search direction given by (9.3.1) might seem as arbitrary as
the matrix modification approaches outlined above. However, it turns
out that (9.3.1) gives pk as a solution of a subproblem of the form

Minimize Q(p) =
1
2
pT Gkp + pT gk subject to ||p||2 ≤ Δ. (9.3.2)

In other words, xk+pk minimizes a quadratic approximation to F subject
to an upper bound on the size of the move away from xk. (The connec-
tion between (9.3.2) and (9.3.1) is established in a later chapter.)
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Problem (9.3.2) always has a solution even when Gk is not
positive-definite. This is because it simply amounts to finding the
smallest value of Q(p) within a hyperspherical region around xk. Hence
(9.3.2) provides a reasonable way of choosing a search direction when
the Newton correction is not appropriate.

Problem (9.3.2) is the basis for a class of minimization techniques
known as trust-region methods fully described by Conn et al. [14]. Most
of the methods that we consider work by choosing a promising search
direction first and then determining a stepsize by a line search. Trust-
region methods reverse this approach and decide on a suitable stepsize
before calculating a direction in which to take it.

Suppose for instance that we have some reason to trust that a local
quadratic model of F will be reasonably accurate within a distance ||Δ||
of the current iterate xk. A new point xk+1 = xk + pk could then be
obtained by solving (9.3.2) whether Gk is positive-definite or not. The
trust-region radius, Δ, can be adjusted from iteration to iteration. It
is increased if the actual change F (xk+1) − F (xk) agrees well with the
predicted change in the quadratic model. Conversely, it is decreased if
the actual and predicted changes are too inconsistent. Ultimately, the
value of Δ becomes large enough for subproblem (9.3.2) to allow full
Newton steps to be taken and hence permit quadratic convergence.

One disadvantage of the trust-region approach is that (9.3.2) can be
difficult and expensive to solve accurately on each iteration. The rela-
tionship between the trust region radius Δ and the value of λ in (9.3.1)
is highly nonlinear and it is not easy to obtain pk to solve (9.3.2) via a
single solution of (9.3.1). Therefore most implementations make do with
an approximate solution.

We can seek an approximate solution of (9.3.1) in the following way.
If we define μ = λ−1 then (9.3.1) is equivalent to

(I + μG)p = −μg. (9.3.3)

If λ is sufficiently large that the matrix μG is small compared with I,
then we can use the expansion

(I + μG)−1 = I − μG + μ2G2 − μ3G3 + O(μ4)

to obtain an approximate solution of (9.3.3) as

p = −μγ0 + μ2γ1 − μ3γ2 (9.3.4)

where
γ0 = g, γk = Gkg, k = 1, 2, . . . .
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A suitable value for μ can be found by a trial-and-error process. For
a sequence of values μ1, . . . , μk with 0 < μ1 < μ2 · · · < μk < ||G||−1

we use (9.3.4) to obtain p1, . . . , pk as candidate directions (without the
cost of any matrix factorization). We then evaluate the curvature of the
objective function along each pi as

κi =
pT

i Gpi

pT
i pi

.

If possible, we then pick a search direction pi giving the most negative
value κi. Otherwise we choose the one with the smallest positive value.
In either case we expect quite a large step to be taken which may cause
the search to move rapidly away from the nonconvex region to one where
G is positive-definite.

Another way of avoiding the cost of solving (9.3.2) is to reduce it to
a 2-D problem. For instance we could combine the negative gradient
−gk with the Newton direction pk (even if this is uphill) [6]. This would
mean seeking a new point xk+1 = xk − αgk + βpk that gives the least
value of F in the plane (pk,−gk), subject to a restriction on stepsize.
Better still, for the non positive-definite case, would be to determine a
direction of negative curvature, v, such that vT Gkv < 0. We could then
search for the minimum of F in a plane defined by −gk and v (see [68]).

Exercises
1. If Ḡ = λI + Gk show that xT Ḡx > 0 for all x 
= 0, when λ is

sufficiently large.
2. Show that the matrix

G =
(

2 0.1
0.1 −1

)

is not positive-definite and then test the accuracy of (9.3.4) as an
approximate solution of

(
1 + 2μ 0.1

0.1 1 − μ

)(
p1

p2

)
=
(

−1
−2

)

when μ = 1.1, 1.3, 1.5.
3. If G is the matrix in Exercise 2 and g = (1, 2)T , solve the system

(9.3.1) for λ = 0.9, 0.8, 0.7 and plot the resulting values of ||p||2.

9.4. Results with the Newton method

We use NMp and NMw, respectively, to denote the OPTIMA implemen-
tations of the Newton method with perfect and weak line searches.
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In the examples below, exact first derivatives are obtained using
automatic differentiation but the Hessian is approximated by finite
differences.

When the Hessian is not positive-definite, a search direction is obtained
using a search direction derived from (9.3.4). The trial values of μ are
given by

μ1 =
0.01
||G||1

, μi = μ1 +
0.33i
||G||1

for i = 2, . . . , 6.

This not a particularly sophisticated implementation of the trust region
approach but it does provide a reasonable safeguard against breakdown
of the Newton algorithm.

The entries in Tables 9.1 and 9.2 are numbers of iterations and func-
tion calls needed by NMp and NMw to satisfy the stopping rule (4.3.2) to
low, standard and high accuracy. (The figure in brackets is the number
of iterations encountering a non positive-definite Hessian.)

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 3/13 3/13 3/13

TD2 3/12 3/12 3/12

VLS1 1/2 1/2 1/2

TLS1 4(1)/41 4(1)/41 4(1)/41

VLS2 5(2)/23 5(2)/23 6(2)/24

R1(1) 5/35 5/35 6/37

R1(2) 15(15)/84** 22(19)/113 22(19)/113

OC1(4) 1/2 1/2 1/2

OC2(4) 3/13 4/14 4/14

Table 9.1. NMp solutions for Problems TD1–OC2.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 5/6 5/6 5/6

TD2 4/5 4/5 4/5

VLS1 1/2 1/2 1/2

TLS1 6(1)/8 6(1)/8 7(1)/9

VLS2 13(9)/14 13(9)/14 13(9)/14

R1(1) 9(1)/27 10(1)/28 10(1)/28

R1(2) 14(14)/27** 18(16)/32 19(16)/33

OC1(4) 1/2 1/2 1/2

OC2(4) 3/5 4/6 4/6

Table 9.2. NMw solutions for Problems TD1–OC2.



102 9. Newton and Newton-like Methods

Some conclusions to be drawn from Tables 9.1, 9.2 are as follows.

• NMp and NMw converge in just one iteration on Problems VLS1 and
OC1 which both have quadratic objective functions.
• On all the problems, the Newton method converges in fewer iterations
and function calls than steepest descent (see Tables 7.1, 8.1) and direct
search methods (Table 5.1).
• On the nonquadratic problems, NMw is typically more economical than
NMp in terms of function evaluations even when it requires more itera-
tions.
• The superscript “**” indicates that premature termination occurs on
Problem R1(2) when the low-accuracy convergence test is used. The
region round the solution is rather flat and the gradient norm becomes
less than 10−4√n while the search is still in a nonconvex region. Such
premature convergence is always a risk when a stopping rule is based
only on the gradient norm.

The Newton method has to deal with non positive-definite Hessians
during some of the solutions reported above. On Problem TLS1, for
instance, both NMp and NMw encounter an indefinite Hessian on the
first iteration. However, the recovery procedure using (9.3.4) generates
a suitable descent direction and the method goes on to converge to the
correct solution. On problem R1(2) both NMp and NMw remain in a non-
convex region for the first 20 iterations or so and the standard Newton
correction is only used on the last few steps.

The entries across the three columns of Tables 9.1 and 9.2 demonstrate
the practical implications of the Newton method’s theoretical quadratic
convergence rate. It quite often happens that a single iteration can
take ||∇F || from failing the low-accuracy test (4.3.2) with ε = 10−4

to passing it with ε = 10−5 (standard accuracy). In such cases we
see the same figures in two or even three of the columns in the table.
It rarely takes more than one iteration to improve the accuracy of a
solution by an order of magnitude. This can be contrasted with the much
slower ultimate convergence of steepest descent implied by corresponding
figures in Tables 7.1 and 8.1.

Exercises
1. Modify Problem TLS1 to find the best straight-line approximation to

the points (1, 3), (1.1, 3.2), (1.3, 4), (1.6, 4.7), (1.9, 5.7) and then
find a solution using the Newton method.

2. Modify Problem VLS2 to find an approximation to the data points
(0, 1), (0.2, 0.95), (0.4, 0.85), (0.6, 0.65), (0.8, 0.35)
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using the model y = cos(ax + b). Solve this problem by Newton’s
method.

3. Use NMp and NMw to solve Problems R1(1) and R1(2) with ρ = 0.05
and ρ = 0.2. Comment on the changes in the computed solutions
and also in the numbers of iterations and function calls required.

4. Apply NMp and NMw to Problems OC2(6) and OC2(10).
5. Apply NMp and NMw to a modified form of Problem OC2(6) in which

the initial and terminal conditions are

tf = 2, τ =
tf
n

, s0 = 0, sf = 0.9, u0 = 0, uf = 0.5.

6. By modifying an OPTIMA procedure, or otherwise, implement a
version of the Newton method which reverts to the steepest descent
method on any iteration where the Hessian is not positive-definite.
Investigate how this method performs on Problem R1(2).

9.5. The Gauss–Newton method

Some of the problems TD1–OC2 have objective functions which are sums
of squared terms. The least-squares data-fitting problems are obvious
examples, but Problems OC1 and OC2 are also in this form. There is
a variant of Newton’s method for the special case of minimizing F (x)
when

F (x) =
m∑

i=1

fi(x)2 (9.5.1)

(where we assume m ≥ n). Differentiating (9.5.1) gives

∇F (x) = 2

{
m∑

i=1

∇fi(x)fi(x)

}
.

If f is the m-vector whose elements are the subfunctions fi(x) and if J
is the m×n Jacobian matrix whose ith row is ∇fi(x)T then we can also
write

∇F (x) = 2JT f. (9.5.2)

Differentiating a second time gives

∇2F (x) = 2

{
JT J +

m∑

i=1

∇2fi(x)fi(x)

}
. (9.5.3)

In data-fitting problems, the subfunctions are often close to zero at a
solution. It may also happen that the model function is chosen so that
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the fi are nearly linear and hence ||∇2fi(x)|| is close to zero. In both
situations the second term on the right hand side of (9.5.3) will be small
in comparison with the first term. If we assume we can ignore this
second term then 2JT J becomes a convenient approximation to ∇2F .
This leads to an algorithm which resembles the Newton method but uses
no second derivatives.

The Gauss–Newton method for minimizing a sum of squares

Choose x0 as an estimate of x∗

Repeat for k = 0, 1, 2, . . .
Set fk = the vector with elements fi(xk)
Set Jk as the corresponding Jacobian matrix
Obtain pk by solving

(JT
k Jk)pk = −JT

k fk (9.5.4)

Find s so F (xk + spk) satisfies Wolfe conditions 2 and 3
Set xk+1 = xk + spk

until ||JT
k fk|| is sufficiently small.

The vector pk used in this algorithm approximates the Newton direc-
tion because 2JT

k fk = ∇F (xk) and 2JT
k Jk ≈ ∇2F (xk). Because JT

k Jk

can be shown to be positive semi-definite we can (fairly) safely assume
that pk is a descent direction, satisfying Wolfe condition 1. We refer to
the system (9.5.4) which gives the Gauss–Newton search direction as the
normal equations.

The Gauss–Newton algorithm can often minimize a function of the
form (9.5.1) in fewer iterations than more general unconstrained opti-
mization methods. However, it may do more work per iteration than a
Newton method because O(n2m)+O(1

6n3) multiplications are needed to
form JT

k Jk and then factorize it by the Cholesky method. The Gauss–
Newton method will have a cost advantage if the calculation of JT

k Jk is
less expensive than the evaluation of the full Hessian ∇2F (xk).

The Gauss–Newton algorithm given above will fail in the exceptional
case that JT

k Jk is singular. However, if we choose some λ > 0 we can
obtain a downhill search direction, pk, from the Levenberg–Marquardt
equations [44, 47]

(JT
k Jk + λI)pk = −JT

k fk. (9.5.5)

As explained in section 9.3, this search direction minimizes a quadratic
model of F subject to a limit on the Euclidian norm of p. In other words
it solves

Minimize
1
2
(pT JT

k Jkp) + pTJT
k fk subject to ||p||2 ≤ Δ
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for some positive Δ. The relationship between λ and Δ is not simple,
but we can easily see that, as λ → ∞, pk tends towards an infinitesimal
step along the steepest descent direction −JT

k fk.

Exercises
1. Write down expressions for the subfunctions and the elements of the

Jacobian matrix for Problems VLS1 and TLS1.
2. Show that the matrix JT

k Jk is at least positive-semi-definite. Show
also that it is positive-definite if the columns of Jk are linearly inde-
pendent.

9.6. Results with the Gauss–Newton method

We use GNp and GNw to denote the OPTIMA implementations of the
Gauss–Newton method with perfect and weak line searches. In the
examples below, exact first derivatives of the function and subfunctions
are obtained using automatic differentiation. In the case when JT

k Jk is
singular, the search direction is computed from (9.5.5), using a similar
approach to that based on (9.3.4).

The entries in Tables 9.3 and 9.4 show the numbers of iterations and
function calls needed to satisfy the stopping rule (4.3.2) with different
values of ε.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

VLS1 1/2 1/2 1/2

TLS1 3/13 4/14 4/14

VLS2 8/125 9/127 10/129

OC1(4) 1/2 1/2 1/2

OC2(4) 3/13 5/14 7/18

Table 9.3. GNp solutions for Problems VLS1–OC2.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

VLS1 1/2 1/2 1/2

TLS1 5/7 5/7 6/8

VLS2 8/9 9/10 10/11

OC1(4) 1/2 1/2 1/2

OC2(4) 6/8 10/12 14/16

Table 9.4. GNw solutions for Problems VLS1–OC2.
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From the results in the tables we can make the following observations.

• As with the Newton method, Gauss–Newton converges in one iteration
when F is quadratic (Problems VLS1, OC1).
• The Gauss–Newton method can outperform the Newton approach,
especially with weak line searches. However it does much less well than
Newton’s method on Problem VLS2 when a perfect search is used. This
may be due to the fact that residuals of the data-fitting Problem VLS2

are not zero and therefore JT J is not so good an approximation to G as
it is for TLS1 and VLS1.
• The fallback search direction (9.5.5) is never used in any of the quoted
solutions. In nonconvex regions the approximation 2JT

k Jk has an advan-
tage over the true Hessian in that the normal equations (9.5.4) almost
invariably yield a descent direction even when the Newton correction is
uphill.
• Ultimate convergence of the Gauss–Newton method does not seem to
be as fast as that for the Newton method. On Problem OC2, for instance,
it can take more than one iteration to improve solution accuracy by an
order of magnitude.

Exercises
1. Use the Gauss–Newton method to solve the first question in the

exercises of section 9.4.
2. Use the Gauss–Newton method to solve the second question in the

exercises of section 9.4.
3. Use GNp and GNw to solve Problems OC1(4) and OC2(4) when ρ = 0.05

and ρ = 0.2. Comment on the results.
4. Use results from Tables 9.3 and 9.4 to estimate the rate of convergence

of GNp and GNw on Problem OC2(4). Extend your investigation to
the problem OC2(8).

5. Apply GNp and GNw to a modified form of Problem VLS2 in which
the model function is

z = φ(t, x) = x1e
x2t + x3.



Chapter 10

Quasi-Newton Methods

10.1. Approximate second-derivative information

Drawbacks of the Newton method were noted in Section 9.2. These have
led to the development of quasi-Newton techniques (sometimes called
variable-metric methods). The essential idea of these methods is simply
that a positive-definite matrix is used to approximate the Hessian (or
its inverse). This saves the work of computing exact second deriva-
tives and also avoids the difficulties associated with loss of positive-
definiteness. The approximating matrix is updated on each iteration so
that, as the search proceeds, second derivative information is improved.
Before going into detail about this updating we give an outline quasi-
Newton algorithm.

An outline quasi-Newton method

Choose x0 as an initial estimate of the minimum of F (x).
Choose H0 as an arbitrary symmetric positive definite matrix
Repeat for k = 0, 1, 2, . . .
Set gk = ∇F (xk)
Set pk = −Hkgk

Find s, so F (xk + spk) satisfies (8.1.3), (8.1.4) for some η1, η2

set xk+1 = xk + spk, γk = gk+1 − gk, δk = xk+1 − xk

Obtain a new positive definite matrix Hk+1 such that

Hk+1γk = δk (10.1.1)

until ||∇F (xk+1)|| is sufficiently small.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 10, c© Springer Science+Business Media, LLC 2008
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In this algorithm, Hk is an estimate of the inverse Hessian ∇2F (xk)−1.
The simple initial choice H0 = I, the identity matrix, is usually satis-
factory.

Definition The equation (10.1.1) used in the calculation of the new
matrix Hk+1 is called the quasi-Newton condition.

Condition (10.1.1) is derived as follows. If F (x) = 1
2xT Ax + bT x + c

then

γk = gk+1 − gk = (Axk+1 + b) − (Axk + b) = A(xk+1 − xk) = Aδk.

In other words
A−1γk = δk.

Thus, when F (x) is a quadratic function, the condition (10.1.1) causes
Hk+1 to share a property with the true inverse Hessian.

To save computing effort – and also to preserve second-derivative
information already present in Hk – the new matrix Hk+1 is obtained
by a low-rank modification to Hk. This means that Hk+1 is of the form

Hk+1 = Hk + auuT or Hk+1 = Hk + buuT + cvvT

where a, b, c are scalars and u, v are vectors depending on Hk, γk and δk.
We now describe some widely-used updating formulae.

10.2. Rank-two updates for the inverse Hessian

Definition The Davidon–Fletcher–Powell (DFP) update [15, 22] for
Hk+1 is

Hk+1 = Hk −
Hkγkγ

T
k Hk

γT
k Hkγk

+
δkδ

T
k

δT
k γk

. (10.2.1)

Proposition The DFP formula makes Hk+1 satisfy (10.1.1).

Proof The result follows immediately on multiplying the right-hand
side of (10.2.1) by γk and simplifying.

Proposition The DFP formula causes Hk+1 to inherit positive-
definiteness from Hk provided

δT
k γk > 0. (10.2.2)

(The proof of this is left to the reader – see Exercise 3, below.)

The quasi-Newton condition does not define Hk+1 uniquely because it
consists of n equations involving the n2 elements of Hk+1. As well as the
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DFP formula, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula
[12] also causes Hk+1 to satisfy (10.1.1).

Definition The BFGS formula for Hk+1 is

Hk+1 = Hk − Hkγkδ
T
k + δkγT

k Hk

δT
k γk

+
[
1 +

γT
k Hkγk

δT
k γk

]
δkδ

T
k

δT
k γk

. (10.2.3)

This formula also ensures that Hk+1 is positive-definite when (10.2.2)
holds.

An important result which links the DFP and BFGS updates is the
following.

Dixon’s Theorem [18, 19] If a quasi-Newton algorithm includes a
perfect line search then, for any function F (x), the same sequence of
iterates {xk} will be obtained irrespective of whether Hk is produced by
the DFP or BFGS formula.

This theorem seems to imply there is no practical difference between
the DFP and BFGS updates. However, when we attempt a perfect line
search in finite-precision arithmetic, rounding errors can prevent the
condition pT

k gk+1 = 0 from being satisfied precisely. It turns out that
even small departures from “perfection” in the line search can cause diff-
erences to appear in the iterates given by different updates. Moreover,
most quasi-Newton implementations use weak line searches and then
Dixon’s theorem does not apply.

In practice, the BFGS update is usually preferred to the DFP one.
Experience suggests that, although both (10.2.1) and (10.2.3) keep Hk

positive-definite, the DFP formula is more likely to produce matrices
which are near-singular and this can have an adverse affect on its per-
formance.

An example

We consider a quasi-Newton iteration (with perfect line search and DFP
update) on the function

F (x) = x2
1 + 3x2

2 + x1x2 + x1 + x2.

We dispense with iteration-number subscripts for this example and take
the starting point as x = (0, 0)T . To make the iteration differ from
steepest descent we use the initial inverse Hessian estimate

H =
( 1

2 0
0 1

6

)
.
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The gradient of F (x) is

g =
(

2x1 + x2 + 1
6x2 + x1 + 1

)

and therefore the initial search direction is

p = −Hg = −
( 1

2 0
0 1

6

)(
1
1

)
=

(
−1

2

−1
6

)
.

The new point is

x+ = x + sp =
(
−s

2
, −s

6

)T

where s is chosen to minimize

F (x + sp) =
s2

4
+

3s2

36
+

s2

12
− s

2
− s

6
=

5s2

12
− 2s

3
.

This gives s∗ = 0.8 and so the new point and new gradient are

x+ =
( −0.4

−0.1333

)
and g+ =

(
0.0667
−0.2

)
.

Now, using quasi-Newton notation,

δ = x+ − x =
( −0.4

−0.1333

)
, γ = g+ − g =

( −0.9333
−1.2

)
.

Thus, working to five significant figures, δT γ = 0.53328. Moreover,

Hγ =
( −0.46665

−0.2

)

and so γT Hγ = 0.67552. We also obtain

HγγT H =
(

0.21776 0.09333
0.09333 0.04

)

so that
HγγT H

γHγ
=
(

0.32236 0.13816
0.13816 0.05921

)

and

δδT =
(

0.16 0.05332
0.05332 0.017769

)
so that

δδT

δT γ
=
(

0.3 0.1
0.1 0.03333

)
.
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Putting these ingredients together in the DFP formula,

H+ =
(

0.5 − 0.32236 + 0.3 0 − 0.13816 − 0.1
0 − 0.13816 − 0.1 0.16667 − 0.05921 + 0.03333

)

=
(

0.47764 −0.03816
−0.03816 0.14079

)
.

On the next iteration, the search direction will be

p = −H+g+ =
( −0.039474

0.030702

)
.

The reader can verify that the perfect step s∗ ≈ 1.3807 along p away
from x+ will locate the minimum of F (x) at (− 5

11 , − 1
11 )T (subject to

rounding errors in five-digit arithmetic).

Exercises
1. For the worked example above, does the second iteration locate the

solution if H+ is obtained by the BFGS update?
2. Using the DFP update and perfect line searches, do two quasi-Newton

iterations on the function

F (x) = x2
1 + x1x2 +

x2
2

2
starting from x = (1, 1). What happens if a weak line search is used
instead?

3. Prove that the DFP update ensures that Hk+1 inherits positive-
definiteness from Hk provided δT

k γk > 0.
(Hints: (i) a positive-definite Hk has a Cholesky factor L such that
Hk = LLT ;
(ii) if u and v are vectors the Schwarz inequality states that (uT v)2 ≤
uT u vT v.)

4. Prove that the condition (10.2.2) for ensuring positive-definiteness
in DFP and BFGS updates is automatically satisfied when a perfect
line search is used.

5. If F is a quadratic function and if Hk = (∇2F (xk))−1 show that
Hk+1 given by the DFP update is equal to (∇2F (xk+1))−1. Is the
same true if Hk+1 is given by the BFGS update?

6. Show that the following general result follows from Dixon’s theorem.
If a quasi-Newton algorithm includes a perfect line search then, for
any function F (x), the same sequence of iterates {xk} will be pro-
duced when the update for Hk+1 is any member of the family defined
by

Hk+1 = θHdfp
k+1 + (1 − θ)Hbfgs

k+1 (10.2.4)
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where 1 ≥ θ ≥ 0 and Hdfp
k+1, Hbfgs

k+1 denote the right-hand sides of the
updating formulae (10.2.1) and (10.2.3).

10.3. Convergence of quasi-Newton methods

There are a number of convergence results about quasi-Newton methods
based on the DFP and BFGS updates. The following propositions all
assume exact arithmetic is used (i.e., there are no rounding errors).

Proposition [12] If F (x) is an n-variable convex quadratic function
then a quasi-Newton algorithm, with perfect line search, will converge
to the minimum of F in at most n iterations with both the DFP and
BFGS update. Moreover Hn = ∇2F−1.

Proposition (Powell [54]) If F (x) is a twice-differentiable function
which is convex in some region R around a local minimum x∗, then a
quasi-Newton algorithm, with perfect line search and either the DFP or
BFGS update, will converge to x∗ from any starting point in R.

Proposition (Powell [55]) If F (x) is a twice-differentiable function
which is convex in some region R around a local minimum x∗, then a
quasi-Newton algorithm, with a weak line search and the BFGS update,
will converge to x∗ from any starting point in R.
(A similar result about convergence of a quasi-Newton algorithm with
a weak line search and the DFP update has also been proved [56] but
stronger conditions on steplength are needed than for the BFGS version.
This may help to explain the generally observed practical superiority of
the BFGS version.)

Because they do not use the exact Hessian, quasi-Newton methods
do not usually converge as quickly as the Newton method. Performance
near the solution is, however, superior to that of the steepest descent
approach.

Proposition [54] If Hk tends to the true inverse Hessian as xk

approaches x∗ and if the stepsize s = 1 satisfies Wolfe conditions (8.1.3),
(8.1.4) for all k ≥ K then quasi-Newton methods are capable of
ultimately superlinear convergence. This means that, for k sufficiently
large,

||xk+1 − x∗||
||xk − x∗|| → 0

or, equivalently, that the error norm decreases at a rate implied by

||xk+1 − x∗|| = C||xk − x∗||r
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for some constant C and for 1 < r < 2. This is not as good as the
quadratic (r = 2) convergence given by the Newton method but it is
superior to the linear (r = 1) convergence of the steepest descent algo-
rithm.

Because the updating formulae for Hk+1 involve only vector-vector
and matrix-vector products, the number of multiplications per iteration
of a quasi-Newton method varies with n2. This compares favourably
with the O(n3) multiplications per iteration needed by the Newton
method to form and factorize the Hessian ∇2F (x). On the other hand,
the Newton method may take significantly fewer iterations and so there is
not always a clear-cut advantage in runtime for quasi-Newton methods.

10.4. Results with quasi-Newton methods

The OPTIMA implementations of the quasi-Newton approach are called
QNp and QNw to denote the use of a perfect or a weak line search. In
both cases the BFGS updating formula (10.2.3) is used. Tables 10.1
and 10.2 show numbers of iterations and function calls needed to solve
Problems TD1–OC2. As in previous chapters, we quote results for three
levels of convergence accuracy.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 4/27 5/29 5/29

TD2 4/18 5/20 5/20

VLS1 2/5 2/5 2/5

TLS1 4/21 5/23 5/23

VLS2 3/43** 11/229 11/229

R1(1) 6/37 6/37 7/40

R1(2) 12/69 12/69 13/71

OC1(4) 3/7 4/10 4/10

OC2(4) 6/19 7/21 7/21

Table 10.1. QNp solutions for Problems TD1–OC2.

Noteworthy points about Tables 10.1 and 10.2 are as follows.

• Convergence of QNp on Problems VLS1 and OC1(4) matches theoretical
expectations in the first proposition of section 10.3. These are quadratic
problems with n = 2 and n = 4, respectively, and a quasi-Newton
method with perfect line search should converge in (at most) n itera-
tions. Note that, although QNw needs more iterations than QNp, it uses
fewer function calls per line search.
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Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 8/12 10/14 10/14

TD2 7/10 8/11 9/12

VLS1 2/5 2/5 2/5

TLS1 30/92 31/93 32/94

VLS2 21/78 22/79 23/80

R1(1) 10/22 11/23 13/25

R1(2) 19/37 22/40 22/40

OC1(4) 7/9 9/11 13/15

OC2(4) 8/10 9/11 9/11

Table 10.2. QNw solutions for Problems TD1–OC2.

• On the nonquadratic problems, QNw typically uses more iterations
than QNp. In terms of overall workload, this is sometimes outweighed
by a decrease in function calls per iteration of QNw. An exception occurs
on Problem TLS1 where QNp is much more efficient than QNw.
• The low-accuracy result by QNp for Problem VLS2 is anomalous. The
low tolerance on the gradient norm causes the search to stop prematurely
at a point which is not close to the true minimum. This is not a failing of
the quasi-Newton approach itself, but rather a warning that any iterative
technique can give misleading results if convergence tests are not strict
enough.
• Comparison with Tables 7.1, 8.1, 9.1 and 9.2 shows that the quasi-
Newton approach is quite competitive with the Newton method and is
considerably more efficient than steepest descent.
• Unlike the quadratically convergent Newton method, which seldom
needs more than one iteration to go from low to high accuracy, quasi-
Newton methods are only capable of superlinear convergence. As a
consequence, it is quite common for both QNp and QNw to take two
iterations to reduce the gradient norm from O(10−4) to O(10−6). This
performance is, however, much better than that of the linearly conver-
gent steepest descent method in Tables 7.1 and 8.1. (We no longer
consider the steepest descent method as a serious contender for solving
practical problems.)

Exercises
1. Use QNp and QNw to solve problem 1 from the exercises in Section 9.4.
2. Use QNp and QNw to solve problem 2 from the exercises in section 9.4.
3. Investigate the performance of quasi-Newton methods when applied

to Problems R1(1) and R1(2) as ρ increases.
4. Print out (and, if possible, plot) the iterates obtained by QNw applied

to Problem TLS1.
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5. Compare the performance of QNw and NMw on Problems OC2(8) and
OC2(10).

6. Apply QNp to a modified form of Problem TD2 which involves a closed
tank and has a target surface area S∗ = 40.

7. Implement a quasi-Newton algorithm which uses the DFP update
instead of the BFGS formula. Test its performance on Problems
TD1–OC2.

10.5. Some further updating formulae

The DFP and BFGS formulae change the matrix Hk in the
two-dimensional subspace spanned by δk and Hkγk. The symmetric
rank-one (SR1) formula, however, only alters Hk in the one-dimensional
space spanned by the vector (δk − Hkγk).

Definition The symmetric rank one updating formula [26] is

Hk+1 = Hk +
vkv

T
k

vT
k γk

where vk = (δk − Hkγk). (10.5.1)

It is easy to show that (10.5.1) satisfies the quasi-Newton condition. In
fact it is the only symmetric rank-one update which will do so.

The update (10.5.1) has an interesting “memory property” when used
with quadratic functions.

Proposition If Hkγk−1 = δk−1 (and so Hk agrees with the true inverse
Hessian for the vectors γk−1 and δk−1) then Hk+1 given by (10.5.1)
satisfies

Hk+1γ k = δk and Hk+1γk−1 = δk−1.

Proof of this property is left to the reader. From it there follows

Proposition If F (x) is an n-variable convex quadratic function then a
quasi-Newton algorithm, using a weak line search and the SR1 update
will obtain Hn = ∇2F−1, and therefore will converge to the minimum
of F in at most n + 1 iterations.

In one sense, SR1 is better than DFP or BFGS because it gives finite
termination on a quadratic function without perfect line searches. How-
ever (10.5.1) has the drawback that it may not keep Hk+1 positive
definite under the same, easy to check, condition (10.2.2) as applies
to the DFP or BFGS formulae. Indeed even when SR1 is used on a
positive-definite quadratic function some of the intermediate Hk may be
indefinite.
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Exercises
1. Prove that (10.5.1) satisfies the quasi-Newton condition and show

that there is no other suitable update of the form Hk+1 = Hk +αvvT .
2. Prove the “memory property” of the symmetric rank-one update,

namely:
If Hkγk−1 = δk−1 then the matrix Hk+1 given by (10.5.1) satisfies

Hk+1γk = δk and Hk+1γk−1 = δk−1.

3. Do two quasi-Newton iterations with weak search and SR1 update
on

F (x) = x2
1 + x1x2 +

x2
2

2
starting from x = (1, 1). Comment on the outcome.

4. Investigate conditions which will ensure that Hk+1 given by the SR1
update will inherit positive definiteness from Hk.

5. Implement a quasi-Newton procedure which uses the SR1 update.
How does it perform on problems considered in the previous section?
(Your answer should deal with both perfect and weak line searches.)

Updating estimates of the Hessian

Some implementations of the quasi-Newton technique work with
estimates, Bk, of ∇2F rather than ∇2F−1. (It can be argued that
approximating the Hessian is a more numerically stable process than
approximating its inverse.) The quasi-Newton condition for Bk+1 is, of
course,

Bk+1δk = γk. (10.5.2)

It can be shown that the DFP and BFGS formulae are dual in the
following sense. If Hk = (Bk)−1 then the update which gives Bk+1 =
(Hbfgs

k+1 )−1 is

Bk+1 = Bk −
Bkδkδ

T
k Bk

δT
k Bkδk

+
γkγ

T
k

δT
k γk

. (10.5.3)

This is precisely the DFP formula with B replacing H and with δ and γ

interchanged. Similarly Bk+1 = (Hdfp
k+1)

−1 is found by replacing H with
B and exchanging δ and γ in the BFGS update.

The SR1 formula (10.5.1) is self-dual because Bk+1 = (Hsr1
k+1)

−1 is
given by

Bk+1 = Bk +
wkw

T
k

wT
k δk

where wk = (γk − Bkδk). (10.5.4)
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It might seem inefficient in practice to use an algorithm involving B
instead of H because pk will then be obtained from

Bkpk = −gk (10.5.5)

which implies that Bk must be factorized. This factorization cost is
avoided when Hk approximates the inverse Hessian. However, Gill and
Murray [30] have shown it is possible to store and update the Cholesky
factors of Bk. This makes it much more economical to solve (10.5.5) on
every iteration.

Much more work has been done on the theory and implementation
of quasi-Newton methods than can be contained in a single chapter.
For fuller accounts of other updating formulae and algorithms see [26]
and [17].

Exercises
1. If a nonsingular matrix Q is updated to become Q̃ = Q + uuT show

that

Q̃−1 = Q−1 − Q−1uuT Q−1

1 + uT Q−1u
. (10.5.6)

(This is called the Sherman–Morrison–Woodbury formula.)
2. Use (10.5.6) to show that if Hk = B−1

k and if Bk+1 is given by (10.5.4)
then Hsr1

k+1 = B−1
k+1.



Loss adjusters (Part 1) [5]

They walk beside disused canals
wearing matching jackets. At the collars
slightly shiny uncut hair
has curled, untidy as an unkept promise.
Afterwards, behind uncurtained windows,
they resume a sleepless dialogue
on lists of post-disaster redesigns.

A strain-gauge to tell if the building is bulging;
foundations dug deeper to shore up the spire;
conventional spars should replace surface bracing;
make fuel-chamber gaskets resistant to fire.



Chapter 11

Conjugate Gradient Methods

11.1. Conjugate gradients for a quadratic Q(x)

We have already shown that the minimum of a convex quadratic function

Q(x) =
1
2
(xT Ax) + bT x + c

can be found by solving ∇Q = 0 which is equivalent to Ax = −b. When
A is symmetric and positive definite, the system Ax = −b can be solved
by an iterative technique called the conjugate gradient method [35]. The
theory behind this method is based on the following definition.

Definition Two vectors u and v are said to be conjugate with respect
to a symmetric matrix A if

uT Av = 0. (11.1.1)

Conjugate gradient method for solving Ax = −b

Choose x0 as an initial estimate of the solution
Calculate g0 = Ax0 + b. Set p0 = −g0

Repeat for k = 0, 1, 2, . . .
find s so that pT

k gk+1 = pT
k (A(xk + spk) + b) = 0

set xk+1 = xk + spk

determine β and pk+1 using

β =
gT
k+1gk+1

gT
k gk

and pk+1 = −gk+1 + βpk (11.1.2)

until ||gk+1|| is sufficiently small.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 11, c© Springer Science+Business Media, LLC 2008
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The step, s, along the search direction pk in the algorithm is given by

s = − pT
k gk

pT
k Apk

. (11.1.3)

This gives pT
k gk+1 = 0, and is equivalent to choosing s to minimize

Q(xk + spk).
The formula (11.1.2) for calculating β is designed to make the search

directions conjugate with respect to A, that is

pT
i Apj = 0 when i 
= j. (11.1.4)

For the moment we simply state (11.1.4) as a fact and show how it moti-
vates the conjugate gradient algorithm. We consider the justification of
(11.1.4) in a later section.

To show the significance of making the search directions mutually
conjugate with respect to A, we first state and prove a result involving
the first two iterations of the conjugate gradient algorithm.

Proposition After two iterations of the conjugate gradient method,
the gradient g2 = Ax2 + b satisfies

pT
1 g2 = pT

0 g2 = 0. (11.1.5)

Proof After the first iteration the new point is x1 and so g1 = Ax1 + b.
Because of the perfect line search we also have pT

0 g1 = 0.
Now consider iteration two. It will generate a point

x2 = x1 + sp1 where g2 = Ax2 + b and pT
1 g2 = 0.

To prove the second part of (11.1.5) we note that

pT
0 g2 = pT

0 (Ax1 + sAp1 + b) = pT
0 g1 + spT

0 Ap1.

The first term in the rightmost expression is zero because of the line
search on iteration one. The second is zero because p0 and p1 are con-
jugate w.r.t. A. Hence (11.1.5) holds.

This result means that the gradient after two iterations is orthogonal
to both search directions p0 and p1. Similarly, we can prove a more
general result.

Proposition After k iterations of the conjugate gradient method the
gradient gk = Axk + b satisfies

pT
j gk = 0 for j = 0, 1, 2, . . . , k − 1. (11.1.6)
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This proposition implies that, after k iterations, the gradient gk is
restricted to the (n− k)-dimensional subspace orthogonal to the vectors
p0, . . . , pk−1. From this we can deduce an important finite termination
property.

Proposition The conjugate gradient method solves an n × n system
Ax = −b in at most n iterations.

Proof Property (11.1.6) implies that, after n iterations, gn is orthogonal
to the n vectors p0, p1, . . . , pn−1. But this means that it must lie in a
subspace of dimension zero and so gn = 0 which implies Axn = −b.

This finite termination property is only guaranteed for calculations
involving exact arithmetic. In practice, (11.1.5), (11.1.6) may not be
satisfied exactly when the iterations are performed in real arithmetic
which is subject to rounding errors. Hence (a few) more than n conjugate
gradient iterations may be needed for convergence to the solution of some
n × n systems.

A worked example

We apply the conjugate gradient method to the function

f(x) = x2
1 + x1x2 +

x2
2

2
starting from x0 = (1, 1)T . The gradient vector is

g =
(

2x1 + x2

x1 + x2

)

and so the search direction away from x0 is

p0 = −g0 =
(

−3
−2

)
.

Hence the new point will be of the form x1 = (1− 3s, 1− 2s)T where s
is chosen so that pT

0 g1 = 0, where

g1 =
(

2 − 6s + 1 − 2s
1 − 3s + 1 − 2s

)
=
(

3 − 8s
2 − 5s

)
.

Hence
pT
0 g1 = −3(3 − 8s) − 2(2 − 5s).

By solving pT
0 g1 = 0 we get the perfect steplength and the new point as

s∗ =
13
34

and x1 =
1
34

(
−5

8

)
where g1 =

1
34

(
−2

3

)
.
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We now use g1 to find a search direction for the next iteration. First we
get

β =
gT
1 g1

gT
0 g0

=
1

342

and then

p1 = −g1 + βp0 =
1
34

(
2
−3

)
+

1
342

(
−3
−2

)
=

1
342

(
65

−104

)
.

The new solution estimate reached at the end of the second iteration
will be

x2 = x1 + sp1 =
(
− 5

34
+

65s
342

,
8
34

− 104s
342

)T

which gives

g2 =
(
− 2

34
+

26s
342

,
3
34

− 39s
342

)T

.

For a perfect line search the steplength s satisfies pT
1 g2 = 0. This means

−130
343

+
(65 × 26s)

344
− 312

343
+

(104 × 39s)
344

= 0.

After simplification this leads to

s∗ = 34 × 442
5746

≈ 2.5562.

Thus, after two iterations, the conjugate gradient method has reached

x2 =
(
− 5

34
+

(34 × 442 × 65)
5746 × 342

,
8
34

− (34 × 442 × 104)
5746 × 342

)T

.

On simplification this gives x2 = (0, 0)T . This point minimizes the
function because g(x2) = 0. Hence the example demonstrates the finite
termination property of the conjugate gradient method applied to a
quadratic function.

Exercises
1. Do two conjugate gradient iterations, starting from x = (0, 0)T ,

applied to
F (x) = 2x2

1 + x1x2 + x2
2 + x1 − x2.

What do you observe about the result?
2. When the conjugate gradient algorithm is used to solve g = Ax +

b = 0 show that the stepsize calculation (11.1.3) will ensure that
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pT
k gk+1 = 0. Show also that this value of s can be found, without

using A directly, from

s = − pT
k gk

pT
k (g+ − gk)

where g+ = Ax+ + b and x+ = xk + pk.
3. Extend the proof of (11.1.5) to prove (11.1.6).
4. Show that the eigenvectors of a symmetric matrix A are also conju-

gate directions with respect to A.
5. A quasi-Newton method with perfect line searches and using the DFP

update is applied to a quadratic function F . Show that successive
search directions are conjugate with respect to ∇2F .

Conjugacy of search directions given by (11.1.2)

We now turn to a justification of the conjugacy property (11.1.4). The
following propositions form part of a proof by induction.

Proposition The recurrence (11.1.2) ensures that pT
0 Ap1 = 0 and hence

makes p1 and p0 conjugate w.r.t. A.

Proof We know the following:

p0 = −g0; x1 = x0 + sp0; g1 = g0 + sAp0 (11.1.7)

and by the perfect line search

pT
0 g1 = 0 and s = − pT

0 g0

pT
0 Ap0

. (11.1.8)

We also have

β =
gT
1 g1

gT
0 g0

and p1 = −g1 + βp0 (11.1.9)

From (11.1.9)
pT
0 Ap1 = −pT

0 Ag1 + βpT
0 Ap0

and from (11.1.7)

Ap0 =
1
s
(g1 − g0)

and so
pT
0 Ap1 =

1
s
(−gT

1 g1 + gT
0 g1 + βgT

1 p0 − βgT
0 p0).

But p0 = −g0 and so gT
0 g1 = −pT

0 g1 = 0 by (11.1.8). Therefore

pT
0 Ap1 =

1
s
(−gT

1 g1 + βgT
0 g0).

Now the definition of β (11.1.9) implies pT
0 Ap1 = 0.
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Proposition The search direction calculation (11.1.2) implies pT
k gk =

−gT
k gk

Proof We know that pk = −gk + βpk−1 and so

pT
k gk = −gT

k gk + βpT
k−1gk.

But pT
k−1gk = 0 because of the perfect line search and so pT

k gk = −gT
k gk.

Proposition If p0, . . . , pk are conjugate w.r.t. A then gT
k gk+1 = 0.

Proof The definition of pk implies gk = −pk + βpk−1. Therefore

gT
k gk+1 = −pT

k gk+1 + βpT
k−1gk+1.

But the perfect line search implies pT
k gk+1 = 0 and the conjugacy of pk

and pk−1 implies pT
k−1gk+1 = 0. Hence gT

k gk+1 = 0.

Proposition If p0, . . . , pk are conjugate w.r.t. A then (11.1.2) makes
pk+1 conjugate to pk, that is, pT

k Apk+1 = 0.

Proof We know that

pk+1 = −gk+1 + βpk and Apk =
1
s
(gk+1 − gk).

Hence

pT
k Apk+1 =

1
s
[−gT

k+1gk+1 + gT
k gk+1 + β(gT

k+1pk − gT
k pk)].

The perfect line searches imply gT
k+1pk = 0; and we have already shown

that gT
k pk = −gT

k gk and gT
k gk+1 = 0. Hence

pT
k Apk+1 =

1
s
(−gT

k+1gk+1 + βgT
k gk)

which is zero by the definition of β.

Exercise
Complete the steps of a proof by induction which establishes (11.1.4).

11.2. Conjugate gradients and general functions

The conjugate gradient method can be used to minimize a positive
definite quadratic function in at most n iterations from any starting
point. We can also modify it as an algorithm for minimizing a general
function F (x).
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Conjugate gradient method for minimizing F (x)

Choose x0 as an initial estimate of the solution
Calculate g0 = ∇F (x0). Set p0 = −g0

Repeat for k = 0, 1, 2, . . .
find s by a perfect line search to minimize F (xk + spk)
set xk+1 = xk + spk, gk = ∇F (xk)
if k is not a multiple of n then
find β and pk+1 from (11.1.2)
else
set pk+1 = −gk+1

until ||gk+1|| is sufficiently small.

This algorithm proceeds in “cycles” of n iterations, with every n-th
search direction being reset as the steepest descent direction. Because
we cannot have more than n vectors which are mutually conjugate with
respect to a given matrix, each cycle of n steps is regarded as a search
for the minimum of a local quadratic model of F . If this does not yield
a suitable estimate of the true minimum then a fresh cycle must be
started.

The calculation of β in (11.1.2) is called the Fletcher–Reeves formula
[21]. An alternative, due to Polak and Ribiere [51], is

β =
gT
k+1(gk+1 − gk)

gT
k gk

. (11.2.1)

When F is quadratic (11.1.2) and (11.2.1) give the same β. When F is
not quadratic, however, (11.1.2) and (11.2.1) will lead to different search
directions. (Of course, when F (x) is not quadratic, the search directions
pk, pk−1 are not truly conjugate because there is not a constant Hessian
∇2F for them to be conjugate with respect to.) Other formulae for
obtaining conjugate search directions are also given in [26].

Exercises
1. Show that, when applied to a general nonquadratic function, the con-

jugate gradient method with perfect line searches generates a descent
direction on every iteration.

2. Show that the formulae (11.1.2) and (11.2.1) are equivalent when F
is a quadratic function.

3. Apply two iterations of the conjugate gradient method to the non-
quadratic function (x1 − 1)2 + x3

2 − x1x2, starting from the initial
point x = (1, 1)T .
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11.3. Convergence of conjugate gradient methods

We can establish convergence of the conjugate gradient method using
Wolfe’s theorem. We can show that pk is always a descent direction (see
Exercise 1 in the previous section) and the perfect line search ensures
that (8.1.3), (8.1.4) hold.

In practice the conjugate gradient algorithm usually needs more itera-
tions than a quasi-Newton method. Its ultimate rate of convergence is
n-step quadratic, which means that

||xk − x∗|| ≤ C||xk−n − x∗||2

for some constant C and for k sufficiently large. This implies that
convergence will usually be slower than for the Newton and quasi-Newton
approaches.

In spite of having slower convergence, the conjugate gradient method
does have some potential advantages over Newton and quasi-Newton
techniques. Because it does not use any matrices it requires less computer
memory when the number of variables, n, is large. Moreover, the number
of multiplications per iteration is O(n), compared with O(n2) for the
quasi-Newton method and O(n3) for the Newton approach. Thus,
although it may do more iterations than these matrix-based methods,
its overhead cost per iteration may be significantly less.

Convergence of conjugate gradient methods can be accelerated by use
of preconditioning. Prior to the solution of a system Ax + b = 0, trans-
formations can be applied to the matrix A to cause its eigenvalues to
become closer together. This is to exploit a stronger finite termina-
tion property of the conjugate gradient method which states that the
number of iterations required to solve Ax + b = 0 will be bounded
by the number of distinct eigenvalues of A. For more information on
this and on the many other variants of the conjugate gradient approach
see [11].

Exercises
1. Estimate the number of multiplications used to evaluate β and

calculate a search direction in the conjugate gradient method applied
to an n-variable function. Compare this with the number of multi-
plications used to update the inverse Hessian and calculate a search
direction in a quasi-Newton method.

2. The function F = x2
1+x2

2+10x2
3 has a Hessian matrix with two equal

eigenvalues. Show that the conjugate gradient method converges in
two iterations from the starting guess x1 = x2 = x3 = 1.
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11.4. Results with conjugate gradients

The OPTIMA implementations of the conjugate-gradient method are
denoted by CGp and CGw, signifying, respectively, the use of perfect
and weak linesearches. They both use the Fletcher–Reeves recurrence
(11.1.2). The theory behind the conjugate-gradient method makes it
much more strongly dependent on the use of perfect searches than any
of the other minimization techniques we have considered. Indeed there is
no theoretical justification for expecting that CGw will converge even in
the case when F (x) is quadratic. Tables 11.1 and 11.2 show numbers of
iterations and function calls needed by CGp and CGw to solve Problems
TD1–OC2. Some points to note from Tables 11.1 and 11.2 are as follows.

• On the quadratic problems VLS1 and OC1(4), CGp behaves like QNp and
terminates within n iterations, in agreement with theoretical expecta-
tions. When CGw is applied to problems VLS1 and OC1(4), however, its
performance is inferior to that of QNw (see Table 9.2). The conjugate
gradient approach is more sensitive to the accuracy of the line search.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 6/34 6/34 7/36

TD2 6/23 6/23 7/25

VLS1 2/5 2/5 2/5

TLS1 6/24 6/24 7/26

VLS2 6/64 6/64 6/64

R1(1) 6/40 7/43 7/43

R1(2) 55/330 63/354 63/354

OC1(4) 3/7 4/10 4/10

OC2(4) 10/29 15/39 18/45

Table 11.1. CGp solutions for Problems TD1–OC2.

Low Accuracy Standard Accuracy High Accuracy
Problem itns/fns itns/fns itns/fns

TD1 12/26 12/26 12/26

TD2 9/18 10/19 14/25

VLS1 2/5 2/5 2/5

TLS1 21/37 24/40 27/44

VLS2 10/40 10/40 12/44

R1(1) 27/79f 27/79f 27/79f

R1(2) 6/9f 6/9f 6/9f

OC1(4) 54/83 78/119 106/161

OC2(4) 15/23 22/34 30/47

Table 11.2. CGw solutions for Problems TD1–OC2.
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• On the nonquadratic problems, conjugate gradient methods are more
expensive than the Newton and quasi-Newton approaches. CGw some-
times does better than CGp in terms of function calls but such occasional
successes do not justify the use of weak line searches. CGw is much more
expensive than CGp on Problems OC1 and OC2 and fails with an uphill
search direction on Problems R1(1) and R1(2).
• The n-step quadratic convergence of the conjugate gradient method
means that, in practice, it needs more iterations and function calls to
go from low- to high-accuracy convergence than does the (superlinearly
convergent) quasi-Newton approach. However, the ultimate convergence
rates for the conjugate gradient method are better than those for the
steepest descent method.

In summary we can say that conjugate gradient methods may have an
advantage over Newton or quasi-Newton methods only if their reduced
arithmetic cost per iteration can compensate for the extra iterations and
function calls they require.

Exercises
1. Use CGp to solve a variant of Problem TD1 in which the target volume

is V ∗ = 15.
2. Modify Problem TLS1 to find the best straight-line approximation

to the points (1, 3), (1.1, 3.2), (1.3, 4), (1.6, 4.7), (1.9, 5.7) and then
find a solution using CGp. Does CGw succeed in solving this problem?

3. Modify Problem VLS2 to find an approximation to the data points
(0, 1), (0.2, 0.95), (0.4, 0.85), (0.6, 0.65), (0.8, 0.35)

using the model y = cos(ax + b). Attempt this problem using CGp

and CGw.
4. Investigate the solutions obtained by CGp applied to Problems R1(1)

and R1(2) as ρ increases.
5. Use CGp and CGw to solve Problems OC1(8) and OC2(8). How does

their performance compare with that of QNp and QNw?
6. Combine the results from Tables 5.1–11.2 so that for each problem

TD1–OC2(4) we can compare the numbers of iterations and function
calls needed by all the methods to achieve standard accuracy.

7. Implement a version of the conjugate gradient method which uses
the Polak–Ribiere formula (11.2.1) for β rather than the Fletcher–
Reeves form. How does it perform on the problems in the first three
questions?
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11.5. The truncated Newton method

We now describe an approach which combines the Newton and conjugate
gradient methods. As explained in Section 9.1, the essential feature of
a Newton iteration for minimizing F (x) is the calculation of a search
direction, p, from the linear system

Gp = −g, (11.5.1)

where G = ∇2F and g = ∇F . However, the solution of (11.5.1) can
be computationally expensive and the development of quasi-Newton
methods was motivated by the wish to avoid forming and factorizing
the exact Hessian.

It can also be argued that we could do less arithmetic and yet retain
some benefits of the Newton method if we were to form G as the true
Hessian matrix and then obtain p by only approximately solving (11.5.1),
using a method significantly cheaper than the Cholesky method. One
way of getting such an approximate solution is to apply the conjugate
gradient method with a fairly large tolerance on the residuals ||Gp + g||
so that the iteration terminates in appreciably fewer than n steps. The
truncated Newton approach introduced by Dembo et al. [16] makes use
of this idea. We give below a version of this algorithm for minimizing
a convex function F (x). (This restriction is to ensure that the system
Gp + g = 0 will always involve a positive definite matrix and hence the
conjugate gradient method will be applicable.)

Truncated Newton method for minimizing convex F (x)

Choose x0 as an initial estimate of the solution
Choose C as a constant > 1
Repeat for k = 0, 1, . . .
Calculate gk = ∇F (xk) and Gk = ∇2F (xk).
Set νk = min{C||gk||, k−1}
Apply conjugate gradient iterations to the system Gkp = −gk

and take pk as the first solution estimate for which ||Gkpk + gk|| < νk.
Find s so (xk + spk) satisfies Wolfe conditions 2 and 3 for some η1, η2

Set xk+1 = xk + spk

until ||gk|| is sufficiently small.

The algorithm differs from the standard Newton approach mainly in
its use of the parameter νk which governs the accuracy with which the
Newton system Gp = −g is solved in order to obtain a search direction.
The formula for choosing νk on each iteration means that it decreases as
k increases and as the gradient gk becomes smaller. Hence pk tends to
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the Newton direction as the search gets nearer to an optimum and so the
ultimate convergence can be expected to be fast. The potential benefit
of the method lies in the fact that it costs less per iteration than the
classical Newton technique while the search is still far from a minimum
of F.

The truncated Newton method can be extended to apply to a non-
convex function F (x). To deal with the possibility that Gk may not be
positive-definite on some iterations the inner conjugate gradient itera-
tions must terminate if the calculation of the stepsize, s, from (11.1.3)
encounters a denominator that is negative or zero. Additional safeguards
may be needed to ensure that any such premature exit from the conju-
gate gradient solver still yields pk as a descent direction satisfying Wolfe
condition 1.

Exercise
If G is positive-definite, investigate whether the direction p returned
after each iteration of a conjugate gradient solution of Gp = −g satisfies
the descent condition pT g < 0. What can be said in the case when G is
not positive-definite?



Chapter 12

A Summary of Unconstrained Methods

At this, the approximate midpoint of the book, it may be helpful to give
a brief checklist of distinguishing features of the unconstrained optimiza-
tion methods described so far.

Univariate search
Performs one-dimensional minimizations along each axis in turn.
Can be a direct search or a gradient method.
Convergence is not guaranteed and can be slow.

Hooke and Jeeves method
Adds a pattern move at the end of each cycle of univariate search.
More efficient than basic univariate search.

Nelder and Mead Simplex
Direct search approach.
Explores by moving a “simplex” of trial points in n-dimensional space.
Simplex explores by expansion away from high function values.
Simplex converges by contracting onto a local minimum.
Usually more efficient than univariate search or Hooke and Jeeves method.

DIRECT

Direct search which seeks a global minimum within a hyperbox.
Samples function values at centres of potentially optimal boxes.
Choice of potential optimal sub-boxes is based on Lipschitz constants.
Quite effective at locating global minimum approximately.
Slow convergence if accurate solutions required.

Steepest descent
Uses gradients only.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 12, c© Springer Science+Business Media, LLC 2008
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Works with perfect or weak line search.
Uses O(n) multiplications per iteration.
Ultimate convergence is linear.
Not a very efficient approach.

Newton method
Uses gradient and Hessian matrix.
Works with perfect or weak line search.
Uses O(n3) multiplications per iteration.
Ultimate convergence is quadratic.
Very efficient approach on convex functions.
May fail (and need backup strategy) when Hessian is not positive-definite.

Gauss–Newton method
Special method for minimizing sums of squared terms.
Uses gradients of individual terms and approximates the Hessian.
Uses O(n3) multiplications per iteration.
Ultimate convergence can be quadratic in special cases; otherwise it is
linear.
Can be more efficient than Newton or quasi-Newton.

Quasi-Newton method
Uses gradient and approximates (inverse) Hessian.
Works with perfect or weak line search.
Uses O(n2) multiplications per iteration.
Ultimate convergence is superlinear.
Quite effective on convex and nonconvex functions.
Competitive with Newton method when n is large.

Conjugate gradient method
Uses gradients only.
Works with perfect line search only.
Searches along directions which are conjugate w.r.t. the Hessian.
Uses no matrix calculations and takes O(n) multiplications per iteration.
Ultimate convergence is n-step quadratic.
Usually takes more iterations than Newton or quasi-Newton.
Can be efficient in computing effort and memory when n is large.



Chapter 13

Optimization with Restrictions

13.1. Excluding negative variables

We mentioned in Chapter 1 that constraints are often included in
optimization problems, as in (1.1.1) and (1.1.3). However, we have so
far confined ourselves to methods for solving unconstrained problems.
We now show how some relatively simple restrictions on optimization
variables can be incorporated into a problem formulation and still give
rise to an unconstrained optimization calculation to be performed by the
methods described in the preceding chapters. We begin with a reformu-
lation of the tank design problems TD1 and TD2 and then introduce a
new application.

We have already noted in Problem TD1 that spurious and meaningless
solutions can occur if any of the tank dimensions becomes negative. One
way of preventing this from happening is to introduce a transformation
into the form (1.1.2). Suppose now we let the optimization variables be
y1, y2 and then let the tank dimensions be defined by

xi = y2
i , i = 1, 2.

Then the tank dimensions cannot be negative and the objective function
in (1.1.2) becomes

S = 2y2
1y

2
2 + 2V ∗y−2

2 + V ∗y−2
1 . (13.1.1)

Hence we can define a new example Problem TD1s which involves mini-
mizing (13.1.1), starting from the initial guess y1 = y2 =

√
2. The local

minima are at y∗1 ≈ ±1.3077, y∗2 ≈ ±1.8493 which correspond to the
same physical solution as obtained by minimizing (1.1.2).

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 13, c© Springer Science+Business Media, LLC 2008
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We can obtain Problem TD2s by a similar transformation of the
maximum-volume problem TD2. This replaces the objective function
(4.3.3) by

V = −y2
1y

2
2(S

∗ − 2y2
1y

2
2)

2y2
1 + y2

2

(13.1.2)

with S∗ = 35 and starting from y1 = y2 =
√

2. Local minima are given
by y∗1 ≈ ±1.3068, y∗2 ≈ ±1.8481 which all correspond to the physical
solution of Problem TD2.

The software which can be downloaded along with OPTIMA includes
programs for solving problems TD1s and TD2s by the unconstrained
optimization methods discussed in previous chapters.

Exercises

1. Obtain expressions for the first and second partial derivatives of the
functions (13.1.1) and (13.1.2) with respect to the new variables y1

and y2.
2. Obtain contour plots of the functions (13.1.1) and (13.1.2).
3. The squared-variable transformation used in (13.1.1) does not pre-

vent the singularity which occurs when either y1 or y2 is zero. How-
ever if we define xi = 0.1 + y2

i then we effectively put a lower
limit on the tank dimensions and the function S is bounded above.
Write down the expressions derived from (1.1.2) and (4.3.3) when
this change of variables is used and then derive the corresponding
expressions for their gradient and Hessian.

Solutions of Problems TD1s and TD2s

It would not be surprising if the modified problems TD1s and TD2s turned
out to be harder to solve than the original TD1 and TD2 because the
squared-variable transformation increases the nonlinearity of the objec-
tive functions. This need not necessarily be the case, however. If we use
SDp then Problem TD1 is solved (to standard accuracy) in 24 iterations
and 83 function calls while for TD1s the corresponding figures are 22
iterations and 74 function calls. On the other hand SDp solves TD2 in 20
iterations and 56 function calls but needs 21 iterations and 64 function
calls on problem TD2s.

A more significant difference in performance occurs if we minimize
(1.1.2) and (13.1.1) using the equivalent starting points x1 = x2 = 0.01
and y1 = y2 = 0.1. To solve the first problem SDp takes 9 iterations
(97 function calls); but for the second SDp needs 22 iterations and 116
function calls. A similar comparison using the same pair of starting
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points shows that SDp minimizes (1.1.3) in 14 iterations and 36 function
calls but takes 24 iterations and 94 function calls to minimize (13.1.2).

A final example which demonstrates the usefulness of the squared-
variable transformation involves the starting guess x1 = x2 = 4 for
(1.1.2) and the corresponding initial point y1 = y2 = 2 for (13.1.1).
When SDp is applied to (1.1.2) the first iteration takes a step which
makes x1 and x2 negative and – as explained in Chapter 1 – the search
then continues to reduce the objective function by driving the variables
towards −∞. (The program TD1 eventually fails with numerical over-
flow.) A similar failure does not take place, however, when SDp is applied
to (13.1.1) and this function is successfully minimized in 8 iterations.

The exercises below allow the reader to observe how Newton, quasi-
Newton and conjugate gradient methods perform on Problems TD1s and
TD2s.

Exercises
1. Solve Problem TD1s using SDw, NMw, QNp and CGp and compare the

numbers of iterations and function evaluations with those required
to solve Problem TD1. Make a similar comparison of solutions to
problems TD2s and TD2.

2. Investigate (and discuss) the differences in performance of NMw, QNw

and CGp when used to minimize (1.1.3) starting from x1 = x2 = 0.01
and (13.1.2) starting from y1 = y2 = 0.1.

13.2. The preventive maintenance problem

Maintenance plays an important part in reducing the operating costs
and increasing the working life of any mechanical system, from a family
car to a power station. In this section we consider the optimal scheduling
of preventive maintenance (PM), basing our approach on the idea that a
system which is regularly maintained can have an effective age less than
its calendar age.

The cost of operating a system can be expected to increase nonlinearly
with time. In the early part of a system’s life its cost may be near-linear
with fuel and raw materials being used at a steady rate per day. But
as the system becomes older it may get less efficient and also begin to
incur costs due to the need for repairs or adjustments. If it actually
breaks down there will be further costs (such as lost production). Let
us suppose that we have determined an expression for a function H(t)
which gives the total cost of operating the system up to time t.

In practice, preventive maintenance (PM) is used to lengthen the
lifetime of a system (and hence to decrease its average running cost).
Under the effective age model (Kijima et al. [41, 42]) we assume that
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maintenance makes a system’s effective age, y, less than its calendar age,
t. This means that the operating costs after a PM will depend on H(y)
rather than H(t). Hence, if H is a monotonically increasing function,
running costs after a PM will be less than would have been the case if
it had not been carried out.

Suppose a system enters service at time t = 0 and the first PM occurs
at time t1 = x1. Just before this maintenance, the system’s effective age
y1 is the same as its calendar age x1. Immediately after PM, however,
the effective age is reduced to y+

1 = b1x1, where b1 is some constant
(0 < b1 < 1). Then, during the period until the next PM at time t2, the
effective age of the system is given by y = b1x1+x, 0 < x < x2 = t2−t1.
In particular, the effective age just before the second PM at time t2 is
y2 = b1x1 + x2.

Immediately after the second PM, the effective age becomes

y+
2 = y+

1 + b2x2 = b1x1 + b2x2 = y2 − (1 − b2)x2.

That is, the effect of maintenance is to undo some of the aging that
has taken place since the first PM. More generally, the effective age
immediately after the (k − 1)-th PM is

y+
k−1 = yk−1 − (1 − bk−1)xk−1. (13.2.1)

We can now say that the operating cost between times tk−1 and tk is
given by H(yk)−H(y+

k−1) rather than by H(tk)−H(tk−1). If n−1 is the
total number of PMs to be performed in a systems’s lifetime (i.e., from
time t = 0 until its replacement at time t = tn) then its total running
cost is

H(y1) +
n∑

k=2

[H(yk) − H(y+
k−1)].

If cp is the cost of each PM then the total operating and maintenance
cost of the system throughout its life is

cp(n − 1) + {H(y1) +
n∑

k=2

[H(yk) − H(y+
k−1)]}.

If we also allow for the cost, cr, of system replacement at time tn then
we can write the mean lifetime cost of the system as

C =
cr + cp(n − 1) + {H(y1) +

∑n
k=2[H(yk) − H(y+

k−1)]}
tn

. (13.2.2)

To find an optimal PM schedule we want to find values of t1, . . . , tn which
will minimize C. We can express this problem in terms of x1, . . . , xn the
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intervals between PMs. Clearly

tn =
n∑

k=1

xk

and the value yk in the numerator is given by

yk =

⎛

⎝
k−1∑

j=1

bjxj

⎞

⎠+ xk.

Furthermore, by (13.2.1),

y+
k−1 = yk−1 + (1 − bk−1)xk−1 =

⎛

⎝
k−2∑

j=1

bjxj

⎞

⎠+ (1 − bk−1)xk−1.

We assume a cubic polynomial form for the operating cost function

H(t) = cm(t + a2t
2 + a3t

3).

We also assume that the age-reduction factors appearing in (13.2.1) are
such that bk = b = constant, for k = 1, . . . , n − 1. (In practice, it may
be a nontrivial problem of data analysis to derive values for a2, a3 and b
which accurately reflect the behaviour of a system.)

We can now define Problem PM1(n) in which the cost function C is
expressed only in terms of relative costs of replacement, maintenance
and repair. Therefore we minimize

C =
γr + (n − 1) + γm{Ĥ(y1) +

∑n
k=2[Ĥ(yk) − Ĥ(y+

k−1)]}
tn

(13.2.3)

where

γr =
cr

cp
, γm =

cm

cp
and Ĥ(t) = t + a2t

2 + a3t
3. (13.2.4)

Solutions of PM problems

In order to minimize (13.2.3) we need to choose a value for n, the number
of PMs to be performed. The appropriate number of PMs will depend
on γr and γm. If γr is large (because the system has a high replace-
ment cost cr) then we can expect that it will be efficient to extend the
system’s working life by performing many PMs. On the other hand, as
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γr decreases, repeated maintenance has less and less economic advantage
compared with replacement. For a particular system, defined by values
of γr, γm, a2, a3 and b, we will have to determine the optimum value of
n by trial and error.

We can now define an example of Problem PM1(n) which uses the
values

a2 = 0.075, a3 = 0.025 and b = 0.5. (13.2.5)

If we take the unit of time as a year, the coefficients a2, a3 imply that –
without maintenance – the system running costs increase by 10% after
one year and by 50% after two years. The cost data values for our
example problem are

γr = 1000, γm = 100 (13.2.6)

which indicate that PM is relatively cheap compared with both system
replacement and annual running costs. Program PM1 from the OPTIMA

software allows us to solve this problem by a range of optimization
methods.

If we solve Problem PM1 with n = 1 then we find the optimum opera-
ting life of the system when no maintenance is performed. With the data
(13.2.5), (13.2.6), the minimum value of (13.2.3) is about 398.6 which
is obtained if the system is replaced after about 5.4 years. To see how
matters can be improved by preventive maintenance we choose n = 5
and and solve PM1(5). At the solution the cost is reduced to about 315
by using maintenance intervals

x1 ≈ 1.86, x2 ≈ 1.63, x3 ≈ 1.47, x4 ≈ 1.36, x5 ≈ 1.28.

This shows that the system lifetime is extended to about 7.6 years.
Table 13.1 shows how (13.2.3) and system lifetime change as n increases.

n Mean Lifetime Cost Lifetime (years)

1 398.6 5.4

5 315.0 7.6

10 305.4 8.0

15 302.7 8.2

20 301.7 8.24

25 301.3 8.3

Table 13.1. Optimum PM solutions based on (13.2.5), (13.2.6).

Clearly the beneficial effect of each PM decreases as n increases. The
inter-maintenance times become shorter as n gets larger so that 0.6 ≥
xk ≥ 0.3 when n = 20 and 0.5 ≥ xk ≥ 0.25 when n = 25. In practice
we might not want a PM schedule which interrupts normal operation
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very frequently in pursuit of small savings in cost. In the next section
we show how to avoid such schedules.

Excluding small intervals in the PM problem

In order to exclude solutions involving very short inter-PM times, we can
use a variation of the squared-variable transformation from the previous
section. Problem PM1s(n) is expressed in terms of artificial variables
v1, . . . , vn such that xk = xmin+v2

k, where xmin is the smallest acceptable
interval between PMs. It involves the unconstrained minimization of
C̃(v), the cost function (13.2.3) rewritten as a function of v1, . . . , vn.

The squared-variable transformation in PM1s is also important in pre-
venting breakdown of solutions to the maintenance scheduling problem.
If we try to extend Table 13.1 to the case n = 30 then the minimiza-
tion of (13.2.3) may take a step which makes some of the variables xk

negative. This, in turn, causes the cost function (13.2.3) to be negative.
As with the tank design problems, it is then impossible for a minimiza-
tion algorithm to recover and obtain a sensible solution in which all the
inter-PM times are positive.

If we choose xmin = 0.5 (so that PM cannot occur at less than six-
monthly intervals) then solutions of Problem PM1s are given in Table
13.2. For n ≤ 10 the results are the same as those obtained for Problem
PM1; but when n ≥ 15 the restriction on PM intervals begins to take
effect. When n = 15 the minimum-cost solution has the last eight PMs
equally spaced at six-monthly intervals; however, the optimal cost func-
tion is only slightly worse than that given in Table 13.1 when there is no
lower limit on the times between maintenance. In the cases n = 20 and
n = 25 the solutions returned by PM1s are markedly worse than those
produced by PM1.

n Mean Lifetime Cost Lifetime (years)

1 398.6 5.4

5 315.0 7.6

10 305.4 8.0

15 302.8 8.2

20 308.7 10.0

25 334.4 12.5

Table 13.2. Optimum PM solutions with PM intervals > 0.5.

Table 13.3 compares the performances of gradient-based optimization
methods when applied to Problems PM1 and PM1s in the case n = 15
(using the same data as in Tables 13.1 and 13.2). Both problems are
started from the same initial guess with all the PM intervals equal to 1.
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PM1 PM1s

NMw 5/6 12/13

NMp 3/10 8/34

QNw 14/38 23/26

QNp 10/82 20/77

CGp 14/95 31/110

Table 13.3. Performance of NM, QN and CG on Problems PM1 and PM1s.

Table 13.3 shows that, for all the methods considered, the squared-
variable transformation makes PM1s a more difficult problem than PM1.
The ranking order between the optimization methods is similar to what
we have seen in previous examples.

Exercises
1. Obtain and discuss solutions of PM1 and PM1s when the balance

of costs among replacement, repair and maintenance are different.
What happens, for example, if replacement is even more expensive
so that γr = 5000, γm = 100? What happens if minimal repair is
not much more costly than PM so that γr = 1000, γm = 10? What
happens if both replacement and repair are relatively less expensive
so that γr = 100, γm = 10?

2. What is the optimum maintenance schedule using (13.2.5) and (13.2.6)
if the minimum allowable PM interval is given by xmin = 0.1?

3. Carry out a similar comparison to that in Table 13.3 for the case
n = 10, when both problems should return the same solution.



Chapter 14

Larger-Scale Problems

14.1. Control problems with many time steps

Most of the examples considered so far have involved only a few variables.
Practical optimization problems often deal with very many unknowns
and methods which perform well for small problems may become less
efficient as the number of variables increases. We now investigate the
behaviour of the methods described in Chapters 7–11 as n becomes
larger. The problems we use for our comparison are OC1(n) and OC2(n)

from Section 4.3 of Chapter 4. Table 14.1 shows numbers of iterations
and function calls needed to solve Problem OC1(n) for various values of
n. The figures relate to the high-accuracy convergence test (4.3.2).

n = 50 n = 100 n = 200

NMw 1/2 1/2 1/2

GNw 1/2 1/2 1/2

QNw 104/105 155/158 236/238

QNp 26/73 29/83 57/163

CGp 26/73 39/113 54/158

Table 14.1. Performance of NM, GN, QN and CG on Problem OC1(n).

We can make the following observations about Table 14.1.

• Both NM and GN converge on the quadratic problem OC1 in just one
iteration. No line search is needed and so NMp and GNp would behave
in the same way as NMw and GNw.
• Because OC1(n) is a quadratic problem we would expect QNp to
terminate in at most n iterations. In fact we see that convergence
occurs in considerably fewer than n steps. This is presumably because

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 14, c© Springer Science+Business Media, LLC 2008
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the optimum is rather “flat” and the gradient is near zero in quite a
large region round the solution. If we run the problems again with the
very high accuracy stopping rule ||g||2 < 10−14√n then QNp takes 42
iterations to solve OC1(50) (and from iteration 26 onwards the function
value agrees with the optimum to six significant figures). The very high
accuracy solutions to OC1(100) and OC1(200) are found in 58 and 114 QNp

iterations, respectively. Thus the n-step finite termination property of
QNp is sometimes pessimistic because it relates to the number of itera-
tions (in perfect arithmetic) needed to reduce ||g|| exactly to zero.
• The behaviour of CGp is quite similar to that of QNp.
• On these problems QNw is less efficient than QNp in terms of both
iterations and function calls.

Table 14.2 shows numbers of iterations and function calls needed
to solve OC2(n) for various values of n. Bracketed numbers for NM

show how many iterations involved a non positive-definite Hessian. As
with Table 14.1, the figures relate to the high-accuracy convergence test
(4.3.2) with ε = 10−6.

n = 25 n = 50 n = 100

NMw 9(4)/33 18(13)/52 120(115)/139

NMp 9(4)/23 20(15)/32 108(103)/267

GNw 10/15 10/16 13/38

GNp 12/28 10/32 9/44

QNw 85/87 162/163 321/322

QNp 45/132 94/259 193/513

CGp 91/222 190/447 476/1086

Table 14.2. Performance of NM, QN and CG on Problem OC2(n).

Points to note about Table 14.2 are as follows.

• Problem OC2 is not quadratic and therefore we do not expect the
Newton and Gauss–Newton methods to converge in one iteration. Nor
do we expect QNp or CGp to converge in fewer than n iterations.
• The Newton methods spend most of their effort using the back-up trust
region procedure in Section 9.3 in order to traverse a region where the
Hessian is not positive-definite. The Gauss–Newton method, however,
has no such difficulties because the approximation to the Hessian based
on the Jacobian of subfunctions is positive-definite throughout.
• The numbers of iterations and function calls needed by the quasi-
Newton methods seem roughly to double when n doubles. This is not
necessarily a general pattern followed for all problems.
• CGp behaves in a similar way to QNp when n = 25 and 50. How-
ever, the conjugate gradient method is more expensive than might have
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been expected when n = 100. This is possibly a reflection of the fact
that CGp is sensitive to rounding errors. The conjugacy and orthogo-
nality properties on which the algorithm depends will not be achieved
precisely in finite precision arithmetic. This is particularly noticeable
when there are large numbers of variables, because this tends to increase
the amount of round-off in key calculations such as the computation of
scalar products. Hence conjugate gradient methods can converge more
slowly than quasi-Newton methods on nonquadratic problems. Even on
quadratic problems, the termination properties predicted by theory are
not necessarily observed in practice.

Exercise
Construct a table similar to Table 14.2 which shows the performance of
optimization methods on Problem PM1s(n) as n increases from 20 to 50.
Make comments on the results similar to those following Table 14.2.

14.2. Overhead costs and runtimes

The problem sizes used in the previous section are an order of magnitude
larger than our earlier test problems but they are not what would be
regarded as genuinely large problems. It is quite common for engineers
and scientists to solve problems involving thousands or tens of thousands
of variables. Such problems can be tackled by the kinds of methods
described in this book; but in order for the computations to be done
efficiently it is important to pay careful attention to implementation
issues.

As n increases, it is relevant to compare methods not only on the basis
of numbers of iterations and function calls but also in terms of the time
they need to find a solution. This will depend on the overhead costs
of each iteration – i.e., the work done in computing a search direction,
updating second derivative information and so on. These matters are,
in practice, not simply properties of the algorithm but are also affected
by the way in which the algorithm is coded.

One of the most significant implementation issues concerns the effi-
cient handling of large matrix computations, such as the factorization
of ∇2F in the Newton method. Hessian matrices in large problems are
often sparse; that is, they may have as many as 90% of their elements
equal to zero. There are then great gains to be made in arithmetic
efficiency by use of specialised sparse matrix software. This is able to
recognize the presence of zero elements and to avoid such pointless com-
putations as 0 + x = x and 0 × x = 0. Discussion of the ideas behind
sparse matrix operations is outside the scope of this book. However, it
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is mentioned here as just one among several factors which can greatly
improve the performance of an algorithm for large-scale optimization.

Other factors which can affect the computational cost of solving an
optimization problem include the way that derivatives are calculated
(hand-crafted, with automatic differentiation tools or by finite differ-
ences) and the kind of line search that is used (perfect or weak, gradient-
based or direct search).

The foregoing discussion implies that runtimes may give a picture of
an algorithm’s efficiency that is quite different from that suggested by
counts of iterations or function evaluations. Table 14.3 shows the com-
puting effort required for the solutions quoted in Table 14.1 for problem
OC1(n). The figures are runtimes relative to the time taken by the the
Newton method NMw. (Absolute runtimes vary from computer to com-
puter whereas relative runtimes are fairly machine independent.)

n = 50 n = 100 n = 200

GNw 0.03 0.017 0.008

QNw 0.5 0.4 0.32

QNp 0.37 0.2 0.21

CGp 0.39 0.29 0.2

Table 14.3. Relative runtimes for GN, QN and CG on Problem OC1(n).

Rather unexpectedly, the figures in Table 14.3 show that all the
methods are faster than NMw even in spite of the fact that the Newton
method converges in only one iteration. This is partly because the
single Newton iteration uses O(n3) multiplications to compute the search
direction whereas the quasi-Newton and conjugate gradient methods
only use O(n2) or O(n) multiplications for each iteration. However
the main overhead cost in NMw is the computation of the Hessian by
finite differences. OPTIMA does this via the central difference formulae
(6.2.8), (6.2.9) and so the gradient has to be calculated at 2n points.
The cost of the Newton method could be reduced by up to a half
by using forward differences (although this might give a less accurate
computed Hessian). The NMw runtimes might be reduced even more
if analytical second derivatives were employed. Without debating this
issue further, we simply underline the point made previously that compu-
tational performance of an optimization method can be strongly affected
by implementation issues not directly related to the theory behind the
underlying algorithm.

The extremely good performance of GNw comes about because the
Gauss–Newton method, when applied to a quadratic sum-of-squares
function, is able to obtain the exact Hessian without the cost of obtaining
second derivatives.
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We can use the results in Table 14.3 to make predictions of runtimes
for problems involving larger values of n. Suppose that ti(M, n) denotes
the runtime per iteration of method M when applied to an n-variable
problem. If we combine Tables 14.1 and 14.3 we can deduce that

ti(QNw, 50) ≈ 0.5
104

ti(NMw, 50) and ti(QNw, 100) ≈ 0.4
155

ti(NMw, 100).

If we assume that, for some constants, kN , kQ,

ti(NMw, n) ≈ kNn3 and ti(QNw, n) ≈ kQn2

then we can deduce that the relative time-per-iteration satisfies

ti(QNw, n)
ti(NMw, n)

≈ kQ

kN
n−1.

In other words, if problem size doubles we expect the time per iteration
of QNw to be halved relative to the time per iteration of NMw. The
measurements above show that

ti(QNw, 100)
ti(NMw, 100)

ti(NMw, 50)
ti(QNw, 50)

≈ 0.4
155

× 104
0.5

≈ 0.54

which is in good agreement with expectation. A similar calculation gives

ti(QNw, 200)
ti(NMw, 200)

ti(NMw, 100)
ti(QNw, 100)

≈ 0.32
236

× 155
0.4

≈ 0.53

and so the theory still holds quite well. Similar analysis can be done
with regard to the times per iteration for QNp and CGp (see exercises
below).

We note that CGp is slightly faster than QNp when n = 200. Because
the overhead costs for CGp are O(n) and those for QNp are O(n2) we
can conjecture that CGp may be significantly faster than QNp as n gets
larger, even if the conjugate gradient method requires more iterations.
(This conjecture can be tested by running the OPTIMA software.)

Table 14.4 shows runtimes for solving Problem OC2(n) relative to the
time taken by NMw. Perhaps the most striking feature is that GN, QN

and CG are all much faster than NM for this nonquadratic problem.
The cost of forming and factorizing ∇2F is now incurred many times
because the Newton method takes more than one iteration to converge.
Clearly NMp and NMw could do better if the Hessian were handled more
efficiently. In other words, the OPTIMA implementation of the Newton
method could almost certainly be improved. The results presented here
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n = 25 n = 50 n = 100

NMp 1.04 0.93 0.93

GNw 0.075 0.01 0.002

GNp 0.1 0.021 0.0023

QNw 0.225 0.082 0.014

QNp 0.29 0.13 0.021

CGp 0.46 0.21 0.043

Table 14.4. Relative runtimes for GN, QN and CG on Problem OC2(n).

show that implementation issues can be as important as the theoretical
properties of an algorithm.

The pattern of behaviour among the other methods is broadly similar
to that in Table 14.3 except that QNp is now slower than QNw. This
is due to the relative numbers of iterations. On the quadratic problem
OC1, QNw uses four or five times as many iterations as QNp whereas on
Problem OC2, QNw takes only about twice as many. The savings made by
QNp on iteration count are now not sufficient to outweigh the arithmetic
costs of the perfect line search.

Exercises
1. Run NMp on Problems OC1(50), OC1(100), OC1(200) and add the results

to the comparisons in this section.
2. Using the data in Tables 14.1 and 14.3, consider the timings ti(CGp, n)

in a similar way to those discussed in the main text for QNw. Hence
deduce a value for the ratios

ti(CGp, n)
ti(QNw, n)

and
ti(CGp, n)
ti(QNp, n)

.

3. Repeat the analysis of Question 2 using results from Tables 14.2 and
14.4.

4. Run program OC1 to see if CGp runs faster than QNp when applied
to Problem OC1(n) with n > 200.

5. Consider a modified version of problem OC2(n) which uses the data

tf = 5, τ =
tf
n

, u0 = s0 = 0, sf = 4, uf = 1

and perform a comparison similar to that in Tables 14.2 and 14.4 by
solving it for n = 50, 75, 100.

6. Perform a comparison similar to that in Tables 14.2 and 14.4 based
on solving Problems PM1(n) and PM1s(n) for n = 20, 30, 40.



Chapter 15

Global Unconstrained Optimization

A practical optimization problem may have several local solutions. We
have already seen this in the case of the routing problem R1(1). Contours
of the objective function for R1(1) are illustrated in Figure 4.9 and show
that there are two locally optimal routes which pass on different sides
of the obstacle. As discussed in Section 4.3 of Chapter 4, one of these
local solutions gives a lower objective function value than the other and
would be regarded as the global minimum.

For problems in more than two variables we cannot plot contours and
hence it is not easy to detect multiple solutions. Therefore, when we
apply one of the minimization methods described in previous chapters,
we cannot usually be certain whether it has terminated at a local or
a global solution. Unfortunately there are no computable conditions
which will, in general, establish whether x∗ is a global optimum. Hence
the global optimization problem is inherently more difficult than the
problem of finding any local minimum.

Methods for tackling the global optimization problem cannot in
general be guaranteed to be successful. In practice they will usually
terminate at a point which has a fairly high degree of probability of
being the global solution and they may require a considerable amount
of computing effort even to achieve this much.

We have already introduced one global optimization technique:
DIRECT, described in Chapter 5. This uses function values only and
hence is suitable for nonsmooth problems. In the next section we con-
sider an alternative approach which can use gradient information. For a
much fuller account of the global optimization problem and its solution
see [26].

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 15, c© Springer Science+Business Media, LLC 2008
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15.1. Multistart methods

A heuristic approach to the global minimization problem would be to
run a local minimization algorithm from many different starting points
and then pick the best of the solutions. This strategy can sometimes
be effective, but its drawbacks are (i) it is wastefully expensive because
many local searches may yield the same result; and (ii) it provides no
assurance that the local optima found do actually include the global
solution. The approach can be formalised and made more efficient by
the incorporation of some statistical theory. To illustrate this we mention
two ideas which are used in a global optimization method proposed by
Rinnooy-Kan and Timmer [57, 58].

Cluster analysis can be used to see if different local optimizations are
tending to the same result. If we allow all the optimizations to perform
a fixed number of iterations (not too large) we can estimate how many
of the searches seem to be heading for different solutions. We can then
perform another set of iterations of a (probably much smaller) number
of optimization calculations and repeat the cluster analysis. Continuing
in this way, we would expect to locate multiple minima more cheaply
than with the basic “scattergun” approach.

Bayesian estimation can be used to determine an expected number of
minima of the objective function on the basis of the number found so
far (W ) and the number of local searches used (Ns). A formula for the
expected total number of local solutions is

Wt =
W (Ns − 1)
Ns − W − 2

. (15.1.1)

Thus, if 5 minima are found in 30 searches, we get Wt ≈ 6.3, which
suggests that further solutions may exist. If no more minima are found
when 100 searches have been completed then Wt ≈ 5.3 and it is now
more reasonable to suppose that there are only five local solutions.

The global optimization algorithm given in [57, 58] uses both these
ideas. An initial iteration (using Ns starting points and clustering) pro-
duces W local optima, say. If Wt � W then further cycles of local
optimization and clustering are performed from new starting points until
Wt < W + 0.5 (say). The algorithm also includes strategies, not
described here, to ensure that additional starting points are not chosen
too close to minima that have already been found or to starting points
that have been used previously.
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15.2. Global solution of routing problems

Consider Problem R1(1) (see Section 4.3) and suppose we seek the optimal
turning point in the box with corners (0,0), (8,8). We first adopt a
very simplified multistart approach and perform a quasi-Newton mini-
mization from twenty randomly chosen starting points in this search
region.

Using the program R1g from the OPTIMA software we find the local
solution x∗ ≈ 3.03, y∗ ≈ 5.31, F ∗ ≈ 11.27 on four occasions and the
global minimum x∗ ≈ 4.98, y∗ ≈ 1.18, F ∗ ≈ 9.25 on the remaining
sixteen trials. Using the formula (15.1.1) it follows that the expected
total number of local minima is

Wt =
2 × 19

16
≈ 2.3.

Hence, even if we did not already know that there were only two minima,
it would be reasonable to conclude that there were no further solutions.
The twenty minimizations use a total of 232 quasi-Newton iterations
and 474 function and gradient calls. We can apply DIRECT to the same
problem and, with the parameter ε = 0.01, it converges in 43 iterations
and 421 function calls to

x∗ ≈ 4.95, y∗ ≈ 1.17, F ∗ ≈ 9.25

which is close to the global optimum. We do not normally expect DIRECT

to produce high-accuracy solutions (because it does not use gradient
information and only samples the objective function at discrete points).
We can usually improve on the best point returned by DIRECT if we use
it as a starting point for a local quasi-Newton search. In this case, the
local search gives accurate values for x∗ and y∗ in just 6 iterations and
12 function and gradient calls.

We now turn to Problem R2g involving two circular obstacles and two
turning points. The route is from (0,0) to (10, 4.5) and the first obstacle
is centred on (4,3) with radius 2 while the second has centre (8,4) and
radius 1. The search region for the first turning point is the box with
corners (0,0) and (6 ,8) and the search region for the second turning
point has corners (6,0) and (12, 8). There are three local solutions,
shown in Figure 15.1. The route OABP is the global solution where the
route-cost function ≈ 11.17. Route OCDP has a cost about 12.97 and
the over-and-under route OEFP costs about 14.99.

Using the OPTIMA program R2g, twenty random starts of the quasi-
Newton method yield route OCDP ten times. The global optimum is
found eight times and the worst route OEFP only once. Interestingly,
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Figure 15.1. Multiple solutions of a two-obstacle routing problem.

one of the quasi-Newton runs terminates with the first turning point
almost at (0,0) and the second at (6.94, 1.64). This solution gives a cost
function value of about 11.32 which is the optimal route with only one
turning point (because the first turn has effectively been eliminated).
On the evidence of these twenty local searches the formula (15.1.1)
suggests that there are 5.4 minima in total. In order to be reasonably
certain that there are no further solutions we would need to perform
over thirty further quasi-Newton minimizations.

The total cost of the twenty randomly-started minimizations is 747
quasi-Newton iterations and 2618 function and gradient calls. Once
again, DIRECT appears more efficient because it takes 126 iterations
and 997 function calls to find a good estimate of route OABP (with
cost function value ≈ 11.23). Using this as a starting point, we can
find the gobal minimum accurately by one further application of the
quasi-Newton method (using 17 iterations and 103 function and gradient
calls).

Exercise
Solve variants of Problem R2g to investigate how the optimum route
changes as the target point changes in the range between (10, 2) and
(10, 7).

15.3. Global solution of a feed-blending problem

Suppose that a brand of animal feed is to be produced from n ingre-
dients. Let c1, . . . , cn denote the costs per kilogram of each ingredient.
Suppose also that the feed must meet a specification for nutrient content
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(i.e., levels of vitamins, fat, fibre, and so on). We assume that 1 kg of
ingredient i contains αji kg of nutrient j (where 1 ≤ j ≤ m). If the feed
is to be produced in 50 kg bags then the amount, xi, of ingredient i to
be packed in each bag must satisfy

n∑

i=1

xi = 50; and
n∑

i=1

αjixi = βj for j = 1, . . . ,m (15.3.1)

where the values βj are given nutrient specifications.
If m < n, the conditions (15.3.1) do not determine the xi uniquely.

Therefore we can seek the xi to minimize the cost of producing a feed
which meets the nutrient specifications as closely as possible. If we
minimize the function

C(x) =
n∑

i=1

cixi + ρ

⎡

⎣
(

n∑

i=1

xi − 50

)2

+
m∑

j=1

(
n∑

i=1

αjixi − βj

)2
⎤

⎦ ,

(15.3.2)
for some positive weighting factor ρ, then we get a low-cost mixture
which takes account of nutrient requirements. By increasing ρ we enforce
more strongly the satisfaction of these requirements.

C(x) in (15.3.2) is a quadratic function of the xi and so is easy to
minimize. However, as with the tank design and preventive maintenance
problems, there is a possibility that some of the xi will be negative at
the minimum of (15.3.2). To avoid such impractical solutions we could
use the squared-variable transformation introduced in Chapter 13. Thus
would involve minimizing the non-quadratic function

C̃(y) =
n∑

i=1

ciy
2
i + ρ

⎡

⎣
(

n∑

i=1

y2
i − 50

)2

+
m∑

j=1

(
n∑

i=1

αjiy
2
i − βj

)2
⎤

⎦

(15.3.3)
and then setting xi = y2

i , i = 1, . . . , n.
The function (15.3.3) will have multiple minima because for any local

solution defined by the values ŷ1, . . . , ŷn there will also be a solution
at −ŷ1, . . . , ŷn. (The same is true for sign changes in any or all of the
variables.) However, all such local minima are equivalent in that they
yield the same value of C̃. We now consider a more interesting version of
the feed-blending problem in which there may be multiple minima with
different objective function values.

Suppose that, for convenience in the production process, we do not
want the feed to contain very small amounts of any ingredient which
might be difficult, in practice, to measure accurately. Therefore we would



152 15. Global Unconstrained Optimization

like to look for a mix of ingredients which meets the nutrient specification
at low cost while also satisfying a restriction of the form

either xi = 0 or xi ≥ xmin.

We can attempt to solve this feed-blending problem by minimizing an
extended form of (15.3.2), namely

Ĉ(x) = C(x) + ρ̂
n∑

i=1

ψ(xi)2 (15.3.4)

where

ψ(xi) =

{
0 if xi > xmin

4xi(xmin − xi)/x2
min if 0 ≤ xi ≤ xmin.

(15.3.5)

The function ψ(xi) takes values between zero and one and is used to
penalise any xi values which lie in the unacceptable range between 0
and xmin. The function (15.3.4) is likely to have several local minima –
each corresponding to some xi being close to zero or xmin – and so we
need to approach it using a global minimization technique. Problem FBg

involves (15.3.4) and (15.3.5) in the case when n = 3 and m = 1. The
cost function coefficients are such that (15.3.2) is

C(x) = 1.5x1 + x2 + 0.8x3 + 80(x1 + x2 + x3 − 50)2

+ 80(0.12x1 + 0.08x2 + 0.06x3 − 3.75)2.

The function Ĉ to be minimized is then given by (15.3.4), (15.3.5) with
ρ̂ = 4 and xmin = 1.

If we solve FBg using both simplified multistart and DIRECT the results
are as follows. Twenty quasi-Newton minimizations from random star-
ting points in the range 0 ≤ xi ≤ 50 give three candidate local minima:

(i) x1 ≈ 0, x2 ≈ 34.4, x3 ≈ 15.6; Ĉ ≈ 47.2

(ii) x1 ≈ 1, x2 ≈ 31.4, x3 ≈ 17.6; Ĉ ≈ 47.3

(iii) x1 ≈ 11.3, x2 ≈ 0, x3 ≈ 38.7; Ĉ ≈ 48.3

The second solution is found eighteen times out of the twenty trials and
the others occur only once each.

When DIRECT is applied to the problem, starting from the midpoint
of the hyperbox 0 ≤ xi ≤ 50, it terminates at a point close to local
minimum (ii) and a subsequent quasi-Newton refinement locates solution
(ii) exactly. This example illustrates the fact that DIRECT may not do so
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well on problems where the global minimum has a function value which is
quite close to the function value at one or more of the local solutions. The
exploration technique used by DIRECT will not easily identify potentially
optimal regions which offer only a small improvement to the currently
best solution estimate.

Exercise
Use FBg to do a comparison between DIRECT and the quasi-Newton
multistart approach when the range for the variables is 0 ≤ xi ≤ 40.

15.4. Global solution of a sensitivity problem

When a function F (x) has been minimized we might wish to know
how much the optimal values of the variables could be changed with-
out causing a more than 1% increase in the function value. This could
be important if the variables are physical dimensions and we need to set
manufacturing tolerances.

Consider Problem TD1 whose solution is x∗
1 = 1.71, x∗

2 = 3.42, giving
a minimum surface area S(x∗) = 35.09 (given by (1.1.2) with V ∗ = 20).
To estimate the smallest change to the variables that will cause the
surface area to increase by 1% we can minimize

F (x) = (x1 − x∗
1)

2 + (x2 − x∗
2)

2 + ρ(2x1x2 + 40x−1
2 + 20x−1

1 − 35.44)2.
(15.4.1)

Figure 15.2 shows the contours of this function. There are two local
minima near the points marked A and B. There is a local maximum
near the point C; and in the regions around D and E there are saddle
points.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
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4.2
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B 
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D 

E 

Figure 15.2. Multiple solutions of a sensitivity problem for TD1.

The left-hand contour plot in Figure 4.4 shows why there are two local
minima. The contour lines around the solution of Problem TD1 indicate
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that the objective function increases most rapidly in roughly the
east-west direction. The contour lines are not symmetrical about the
minimum but are flattened more on one side than the other. Hence any
small step away from x∗ in the eastward direction will produce a bigger
increase in the objective function than a step of the same size in the
westward direction. In particular, for a specified increase in the func-
tion there will be a minimum length step in the eastward direction and
another, different, minimum length step in a westward direction.

Exercises
1. Use any minimization method together with a range of starting points

to find all the local minima of (15.4.1).
2. Construct a contour plot similar to Figure 15.2 for the function whose

minimum estimates the maximum change to the solution of Problem
TD1 which will produce a 1% increase in surface area.



Chapter 16

Equality Constrained Optimization

16.1. Problems with equality constraints

So far, we have dealt only with methods for solving unconstrained opti-
mization problems. However, as shown in Chapter 1, we can also express
the minimum surface area problem TD1 in the form Problem TD1a

Minimize 2x1x2 + 2x1x3 + x2x3 subject to x1x2x3 = V ∗ (16.1.1)

which involves an objective function and a nonlinear equality constraint.
Similarly the maximum volume problem TD2 can be written as Problem
TD2a

Minimize −x1x2x3 subject to 2x1x2+2x1x3+x2x3 = S∗. (16.1.2)

(Both TD1a and TD2a could also be formulated using the xi = y2
i trans-

formation from Chapter 13 to prevent negative dimensions occurring.
However there are better ways of dealing with this issue using inequality
constraints. These are considered in a later chapter.)

Other equality constrained problems can be based on the least squares
examples introduced in Chapter 3. If we wish to force the model curve
to pass through one or more of the data points we can use modified
forms of VLS1 and VLS2, such as

Problem VLS1a

Minimize
m∑

i=2

(zi−x1−x2ti)2 subject to z1−x1−x2t1 = 0. (16.1.3)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 16, c© Springer Science+Business Media, LLC 2008
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Problem VLS2a

Minimize
m−1∑

i=1

(zi−x1e
x2ti)2 subject to zm−x1e

x2tm = 0. (16.1.4)

We can treat also total least squares approximation as a constrained
optimization problem. Suppose we have data points (t1, z1), . . . ,
(tm, zm) and a model function z = φ(x, t). Then, as pointed out in
Section 3.1, the footpoint, tf , corresponding to the ith data point solves
the unconstrained problem

Minimize Ψ(tf ) = (ti − tf )2 + (zi − φ(x, tf ))2.

Hence tf must satisfy
dΨ
dtf

= 0

which leads to

(ti − tf ) + (zi − φ(x, tf ))φt(x, tf ) = 0 (16.1.5)

where φt denotes the first partial derivative of φ w.r.t. t. In forming
the problem TLS1 we obtained tf by solving this equation. We could,
however, regard (16.1.5) as a constraint and treat each footpoint as an
additional variable. If we let τi denote the footpoint for the ith data
point then, by adapting (3.1.5) and (3.1.8), we can solve the total least
squares problem by treating x1, . . . , xn and τ1, . . . , τm as variables and
minimizing

m∑

i=1

(ti − τi)2 + (zi − φ(x, τi))2

subject to (ti − τi) + (zi − φ(x, τi))φt(x, τi) = 0 for i = 1, . . . ,m.

If φ(x, t) is the linear model z = x1 + x2t then, on letting xi+2 = τi, we
obtain Problem TLS1a

Minimize
m∑

i=1

(ti − xi+2)2 + (zi − x1 − x2xi+2)2 (16.1.6)

subject to (ti − xi+2) + (zi − x1 − x2xi+2)x2 = 0 for i = 1, . . . ,m.
(16.1.7)

In a similar way, the exponential model from VLS2 leads to Problem
TLS2a

Minimize
m∑

i=1

(ti − xi+2)2 + (zi − x1e
x2xi+2)2 (16.1.8)
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subject to

(ti − xi+2) + (zi − x1e
x2xi+2)x1x2e

x2xi+2 = 0 for i = 1, . . . ,m.

(16.1.9)

We can consider variants of the optimal control problems from
Section 3.3, in which the terminal conditions are treated explicitly as
constraints rather than simply being included with the smoothness con-
ditions in a weighted sum-of-squares function. Problem OC1a(n) is

Minimize x2
1 + x2

n +
n∑

k=2

(xk − xk−1)2 s.t. sn = sf and un = uf

(16.1.10)
where sn and un are given by (3.3.1). Problem OC2a(n) is of the same
form as (16.1.10) but has a different objective function, namely

Minimize x2
1 + x2

n +
n∑

k=2

(
1 − xk

xk−1

)2

s.t. sn = sf and un = uf .

(16.1.11)
We can also consider an optimal control problem which includes a drag

term. We make the fairly common assumption that drag is proportional
to speed squared and so suppose that the actual acceleration during
the k-th timestep is modelled by xk − cDu2

k where xk is the applied
acceleration and cD is a drag coefficient. Problem OC3(n) has x1, . . . , xn

and u1, . . . , un−1 as variables and the objective function is, as before,

F = x2
1 + x2

n +
n∑

i=2

(xi − xi−1)2. (16.1.12)

There are now n + 1 equality constraints

uk − uk−1 − (xk − cDu2
k)τ = 0 for k = 1, . . . , n − 1 (16.1.13)

uf − un−1 − (xn − cDu2
f )τ = 0 (16.1.14)

and
sn − sf = 0 (16.1.15)

where sn is given by the recurrence relation

sk = sk−1 + uk−1τ +
1
2
(xk − cDu2

k)τ
2 for k = 1, . . . , n. (16.1.16)
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Problem FBc is a version of the feed-blending problem from
Chapter 15. It involves the minimization of

F (x) =
n∑

i=1

cixi +
n∑

i=1

ψ(xi)2 (16.1.17)

where ψ(xi) is given by (15.3.5). The constraints are
n∑

i=1

xi = 50 and
n∑

i=1

αjixi = βj for j = 1, . . . ,m. (16.1.18)

The routing problem from Chapter 3 can be rewritten using con-
straints to enforce the condition that the vehicle must not enter the
no-go regions. Using the notation of Section 3.2, Problem R1(2)c is

Minimize d(0, 0, x1, y1) + d(x1, y1, x2, y2) + d(x2, y2, x3, y3) (16.1.19)

subject to

ν(0, 0, x1, y1) = 0; ν(x1, y1, x2, y2) = 0; ν(x2, y2, x3, y3) = 0.
(16.1.20)

As we show in Section 16.5, however, this problem presents some diffi-
culties which are not present in the other examples of this section.

16.2. Optimality conditions

All the problems in the previous section are instances of the general
equality-constrained minimization or nonlinear programming problem,
namely

Minimize F (x) (16.2.1)

subject to ci(x) = 0 i = 1, . . . , l. (16.2.2)

Definition If x satisfies the constraints (16.2.2) it is said to be feasible.
Otherwise it is called infeasible.

If x∗ is a solution of (16.2.1), (16.2.2) then it must be a feasible point.
The optimality of x∗ can be thought of as a balance between the function
and the constraints. By this we mean that a move away from x∗ cannot
be made without either violating a constraint or increasing the function
value. This can be stated formally as follows.

Proposition If x∗ solves (16.2.1), (16.2.2) and x∗+δx is a nearby point
then

(i) if F (x∗ + δx) < F (x∗) then ci(x∗ + δx) 
= 0 for some i
(ii) if c1(x∗ + δx) = · · · = cl(x∗ + δx) = 0 then F (x∗ + δx) ≥ F (x∗).
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First-order conditions

The following proposition (stated without proof) gives optimality
conditions for an equality constrained problem when the function and
constraints are differentiable. These are called the Karush–Kuhn–Tucker
(KKT) conditions.

Proposition If x∗ is a local solution of (16.2.1), (16.2.2) then (i) the
point x∗ must be feasible and so

ci(x∗) = 0 (i = 1, . . . , l) (16.2.3)

and (ii) there must exist scalars λ∗
1, . . . , λ

∗
l such that

∇F (x∗) −
l∑

i=1

λ∗
i∇ci(x∗) = 0. (16.2.4)

Definition The scalars λ∗
1, . . . , λ

∗
l in (16.2.4) are called Lagrange multi-

pliers.

Definition The vectors ∇c1(x), . . . ,∇cl(x) are called the constraint
normals.

For the Lagrange multipliers λ∗
i to be unique the constraint normals

∇ci(x∗) must be linearly independent. (See Exercise 4 at the end of this
section and Exercise 2 in Section 16.3.)

Definition The l × n matrix with rows ∇c1(x)T , . . . ,∇cl(x)T is known
as the Jacobian of the constraints.

If N is the Jacobian of the constraints (16.2.2) then (16.2.4) can be
written

∇F (x∗) − NT λ∗ = 0. (16.2.5)

Conditions (16.2.4) and (16.2.5) imply that ∇F (x∗) is linearly dependent
on the constraint normals. This reflects the fact that a constrained
minimum occurs when the gradients of the function and the constraints
interact in such a way that any reduction in F can only be obtained by
violating the constraints.

The left-hand side of (16.2.4) can be regarded as the gradient of a
function

L(x, λ∗) = F (x) −
l∑

i=1

λ∗
i ci(x) = F (x) − λ∗T c(x). (16.2.6)

Definition L(x, λ∗) is the Lagrangian function for problem (16.2.1),
(16.2.2).
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Feasible directions and second-order conditions

Definition An n-vector, z, is said to be a feasible direction at x∗ if
Nz = 0, where N is the matrix of constraint normals appearing in
(16.2.5).

Let us assume z is a feasible direction normalized so that ||z|| = 1. If
we consider the Taylor expansion

c(x∗ + εz) = c(x∗) + εNz + O(||εz||2)

then c(x∗ + εz) = O(ε2). Therefore a move away from x∗ along z keeps
the constraints satisfied to first-order accuracy. In particular, if all the
constraints (16.2.2) are linear then x∗ + εz is a feasible point for all ε.
If any of the ci(x) are nonlinear then z defines a direction tangential to
the constraints at x∗.

Proposition Condition (16.2.5) implies that, for any feasible direction
z,

zT∇F (x∗) = 0. (16.2.7)

Proof The result follows on premultiplying (16.2.5) by zT .

Expressions (16.2.3) and (16.2.4) are first-order conditions that hold
at any constrained stationary point. To distinguish a minimum from a
maximum or a saddle point we need a second-order condition which can
be stated as follows.

Proposition When the constraint functions ci are all linear, the second-
order condition guaranteeing that x∗ is a minimum of problem (16.2.1),
(16.2.2) is

zT∇2F (x∗)z > 0 (16.2.8)

for any feasible direction z.

For problems with nonlinear constraints it is the Hessian of the
Lagrangian function (16.2.6) which appears in the second order opti-
mality condition.

Proposition When the constraint functions are nonlinear, the second
order condition that guarantees x∗ is a minimum of problem (16.2.1),
(16.2.2) is

zT∇2L(x∗, λ∗)z > 0 (16.2.9)

for any feasible direction z.
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Exercises
1. Use Taylor series arguments to show that for a problem with all linear

constraints the optimality conditions (16.2.3), (16.2.4) and (16.2.8)
ensure that if δx is such that if c1(x∗ + δx) = · · · = cl(x∗ + δx) = 0
then

F (x∗ + δx) ≥ F (x∗). (16.2.10)

If the constraints are all quadratic show that conditions (16.2.3),
(16.2.4) and (16.2.9) will cause (16.2.10) to hold when ci(x∗ + δx) =
· · · = cl(x∗ + δx) = 0.

2. Show that, if G is positive definite, the problem

Minimize
1
2
xT Gx + hT x subject to xT x = 1

has a solution given by x = −(λI + G)−1h for some scalar λ. How
does this result relate to trust region methods (Chapter 9)?

3. Show that, if the constraints (16.2.2) are all divided by a constant
factor k, the solution of the modified nonlinear programming problem
is unchanged except that the new Lagrange multipliers are given by
kλ∗

1, . . . , kλ∗
l .

4. If (16.2.1), (16.2.2) has a solution x∗ where the constraint normals
are not linearly independent show that λ∗

1, . . . , λ
∗
l are not uniquely

defined.

16.3. A worked example

In some cases the optimality conditions (16.2.3), (16.2.4) can be used
directly to find a solution (x∗, λ∗). Consider the problem

Minimize F (x) = x2
1 + 3x1x2 subject to c1(x) = x1 + 5x2 − 1 = 0.

(16.3.1)
The optimality conditions mean that x∗

1, x∗
2 and λ∗

1 satisfy the three
equations

x1 + 5x2 − 1 = 0

∂F

∂x1
− λ1

∂c1

∂x1
= 2x1 + 3x2 − λ1 = 0

∂F

∂x2
− λ1

∂c1

∂x2
= 3x1 − 5λ1 = 0.

From the last equation we get λ1 = 3x1/5 and then the second equation
gives x2 = −7x1/15. Hence the first equation reduces to −4x1/3−1 = 0
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and so the constrained minimum occurs at

x∗
1 = −3

4
, x∗

2 =
7
20

with Lagrange multiplier λ∗
1 = − 9

20
.

We can confirm that x∗ satisfies the second-order optimality condi-
tions if we can show that zT Gz > 0 when z is a feasible direction. The
constraint normal matrix is N = (1, 5) and so z = (−1, 0.2)T is a
feasible direction because

Nz = (1, 5)
(

−1
0.2

)
= 0.

In fact z is the only feasible direction and

zT Gz = (−1 0.2)
(

2 3
3 0

)(
−1
0.2

)
= 0.8.

Because this is positive we can be sure that we have found a constrained
minimum (rather than a maximum or saddle point).

Exercises
1. Use the optimality conditions to solve

Minimize x2
1 + x2

2 subject to x1x2 = 1.

2. Find a solution to the problem

Minimize − x2
1 − x2

2 + x2
3

subject to x1 + x2 = −1 and x2
1 + x2

2 =
1
2

and comment on the values of the Lagrange multipliers.
Explain what happens if the first constraint is x1 + x2 = −3

2 .

3. Write down the optimality conditions for Problems TD1a, TD2a and
VLS1a and consider how easy they would be to solve.

16.4. Interpretation of Lagrange multipliers

The Lagrange multipliers at the solution of a constrained optimization
problem are not simply mathematical abstractions. They can be used
as measures of the sensitivity of the solution with respect to changes in
the constraints. Suppose that x∗ solves the problem

Minimize F (x) subject to c1(x) = 0 (16.4.1)
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and consider the perturbed problem

Minimize F (x) subject to c1(x) = δ. (16.4.2)

If the solution to (16.4.2) is x∗ + ε then a first-order estimate of the
optimum function value is

F (x∗ + ε) ≈ F (x∗) + εT∇F (x∗).

But the optimality condition for (16.4.1) states

∇F (x∗) = λ∗
1∇c1(x∗).

Hence
F (x∗ + ε) ≈ F (x∗) + λ1ε

T∇c1(x∗). (16.4.3)

Furthermore, because x∗ + ε solves (16.4.2), we must have

c1(x∗ + ε) = δ

and so, to the first order,

c1(x∗) + εT∇c1(x∗) ≈ δ.

Because c1(x∗) = 0 we get

εT∇c1(x∗) ≈ δ

and so (16.4.3) implies

F (x∗ + ε) − F (x∗) ≈ δλ∗
1. (16.4.4)

Hence we have shown that the Lagrange multiplier is an approximate
measure of the change in the objective function that will occur if a unit
amount is added to the right-hand side of the constraint. In particular,
in Problem TD1a the Lagrange multiplier will indicate the extent to
which the minimum surface area is changed by an increase or decrease
in target volume.

The result we have just obtained generalises for problems with more
than one constraint. (The proof of this is left to the reader.) Even though
λ∗

i δ only gives an estimate of how much the objective function would
change if the ith constraint were shifted by δ, these approximations are
qualitatively, as well as quantitatively, useful in practice. The Lagrange
multipliers with the larger magnitudes indicate which constraints have
the most significant effect on the solution. Hence it would be worthwhile
to try relaxing the corresponding conditions in the original problem.
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Exercises
1. Extend the analysis in this section to apply to problems with more

than one constraint and show that λ∗
i δi is an estimate of the

change in the objective function if the ith constraint is changed to
ci(x) = δi.
Do a similar analysis to deal with the case when constraints i and j
are shifted to become ci(x) = δi and cj(x) = δj .

2. In the worked example in Section 16.3, use the Lagrange multiplier
to predict the optimum function value when the constraint is

x1 + 5x2 −
4
3

= 0.

Solve the problem with this modified constraint and hence determine
the accuracy of the prediction. Also do similar calculations for the
modified constraint

x1 + 5x2 −
2
3

= 0.

16.5. Some example problems

We now list some test problems which are used to illustrate the behavi-
our of constrained optimization methods. Programs implementing these
problems can be downloaded along with the OPTIMA routines.

Problem TD1a is given by (16.1.1) with V ∗ = 20. We take the starting
guess as x1 = x2 = 2, x3 = 5 and the solution is the same as for
Problem TD1. The Lagrange multiplier associated with the constraint
x1x2x3 = 20 is λ∗

1 ≈ 1.17. This enables us to estimate the minimum
surface area for a different target volume. If, for example, V ∗ were
changed to 20.5 then the minimum surface area could be expected to
increase by about 0.5 × 1.17 ≈ 0.585.

Problem TD2a is given by (16.1.2) with S∗ = 35. We take the starting
guess as x1 = x2 = 2, x3 = 5 and the solution is the same as for Problem
TD2. The Lagrange multiplier associated with the constraint on surface
area is λ∗

1 ≈ −0.854.

Problem VLS1a is given by (16.1.3) with data points

(ti, zi) = (0, 3), (1, 8), (2, 12), (3, 17)

and the same starting guess as for the unconstrained problem VLS1. The
solution is x1 = 3, x2 ≈ 4.643. The sum-of-squares objective function
in (16.1.3) has an optimum value ≈ 0.2143 which is greater than the
minimum function value when the equality constraint is not present.
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Problem VLS2a is given by (16.1.4) with the data points

(ti, zi) = (0, 1), (1, 0.5), (2, 0.4), (3, 0.3), (4, 0.2)

and the same starting guess as for Problem VLS2. Figure 16.1 shows the
contours of the function with a dotted line indicating the constraint. The
solution of the unconstrained problem VLS2 (marked with an asterisk)
is infeasible and the constrained solution is marked by a circle at x1 ≈
0.926, x2 ≈ −0.383.

0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure 16.1. Contour plot for Problem VLS2a.

Problem TLS1a is given by (16.1.6), (16.1.7) with data points

(ti, zi) = (0, 3), (1, 8), (2, 12), (3, 17).

The starting guess has x1 = · · · = x6 = 0. The solution values for the
parameters in the model function are x1 ≈ 3.087, x2 ≈ 4.608. The
footpoints are

−0.0181, 1.063, 1.937, 3.018

and the sum-of-squares error function (16.1.6) is approximately 0.009.

Problem TLS2a is given by (16.1.8), (16.1.9) with the data points

(ti, zi) = (0, 1), (1, 0.5), (2, 0.4), (3, 0.3), (4, 0.2)

and the starting guess x1 = · · · = x7 = 0. The solution gives the model
function

z = x1e
x2t with x1 ≈ 0.9486, x2 ≈ −4.406
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and the footpoints, τi, are approximately

−0.0184, 1.027, 1.999, 2.995, 3.997.

The sum-of-squares error function is approximately 0.0173.

Problems OC1a(n) and OC2a(n) are given, respectively, by (16.1.10) and
(16.1.11). We use the values

τ =
3
n

, u0 = uf = 0, s0 = 0 and sf = 1.5.

The starting guess is the same as for the corresponding unconstrained
problems OC1(n) and OC2(n). Solutions differ from those of OC1 chiefly
in the fact that the terminal conditions uf = 0, sf = 1.5 are satisfied
exactly. At the solution to OC1, the errors in the final speed and position
are simply included as part of the overall objective function and the
unconstrained minimization of (3.3.2) does not force them to zero. Thus,
in the case n = 4 the solution of OC1 is given by

x1 ≈ 0.746, x2 ≈ 0.378, x3 ≈ −0.362, x4 ≈ −0.735

giving uf ≈ 0.02, sf ≈ 1.49. The solution of OC1a on the other hand is

x1 ≈ 0.762, x2 ≈ 0.381, x3 ≈ −0.381, x4 ≈ −0.762

giving uf = 0, sf = 1.5.

(The reader can compare the solutions of OC2a with those of OC2.)

Problem OC3(n) is defined by (16.1.12)–(16.1.16) using the same defi-
nitions of τ, u0, uf and sf as in OC1a(n) and OC2a(n). The value of cD

is taken as 0.1. For the case when n = 4, Table 16.1 shows how the
quadratic drag term affects the solution of OC3 as cD increases from
zero. The reader is invited to explain why the symmetry in the optimal
accelerations when cD = 0 (i.e., x4 = −x1 and x3 = −x2) is not main-
tained when cD is nonzero.

cD x1 x2 x3 x4 F ∗

0.0 0.762 0.381 −0.381 −0.762 2.032

0.033 0.773 0.401 −0.367 −0.764 2.069

0.067 0.785 0.421 −0.353 −0.767 2.108

0.1 0.797 0.441 −0.339 −0.769 2.147

Table 16.1. Solutions of Problem OC3(4) for varying cD.
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Problem FBc is given by (16.1.17) and (16.1.18). The function ψ(x)
is defined by (15.3.5) with xmin = 1. We use n = 3 and m = 1 and the
data values

c1 = 1.5, c2 = 1, c3 = 0.8;

α11 = 0.12, α12 = 0.08, α13 = 0.06; β1 = 3.75.

The starting guess is x1 = x2 = x3 = 17. There are (at least) three local
solutions:

x1 ≈ 0, x2 ≈ 37.5, x3 ≈ 12.5 giving C ≈ 47.5;

x1 ≈ 1, x2 ≈ 34.5, x3 ≈ 14.5 giving C ≈ 47.6;

x1 ≈ 12.5, x2 ≈ 0, x3 ≈ 37.5 giving C ≈ 48.75.

The methods described in the chapters which follow are all local opti-
mization techniques and can be said to have behaved acceptably if they
converge to any one of these solutions. (The feed-blending problem is
one example of a larger class of resource allocation problems in which
demands have to be met by the most economical use of several sources of
supply. Another instance would be the optimal use of several generating
sets to meet a known demand in an electrical supply network.)

We conclude this section by noting that we do not use R1(2)c as a
practical example because it is a poorly-posed problem for gradient-
based methods. The constraint functions in (16.1.20) are identically
zero for any route which does not pass through the no-go region and
therefore all the first derivatives of ν are also identically zero for any
feasible point. If any of the ∇ν = 0 then the constraint normals cannot
be linearly independent. This will lead to difficulties in the calculation
or estimation of Lagrange multipliers. A further drawback for gradient-
based methods of constrained optimization is that the first derivatives
of ν are discontinuous at the boundaries of the no-go region.
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Partnership or kinship means
they share a common blueprint. One’s left-handed
so they sidle counter crab-wise
scavenging round tragedies.
Beyond too late, there’s always time
for lodging ever-overdue objections
to tenders that should not have won the contract.

The signals defaulting to safe not to danger;
no lightning rod earthing the main mooring mast;
not enough lifeboats for all the ship’s complement;
the iron bridge girders imperfectly cast.



Chapter 17

Linear Equality Constraints

17.1. Quadratic programming

We consider first the special case when the function (16.2.1) is quadratic
and the constraints (16.2.2) are linear. The problem is then an equality
constrained quadratic programming problem (EQP). It can be written as

Minimize
1
2
(xT Gx) + hT x + c subject to Ax + b = 0 (17.1.1)

where the n × n matrix G and the l × n matrix A are both constant.
The first-order optimality conditions for (17.1.1) are

Ax∗ + b = 0 (17.1.2)

Gx∗ + h − AT λ∗ = 0. (17.1.3)

After rearrangement, these become a system of n + l linear equations
(

G −AT

−A 0

)(
x∗

λ∗

)
=
(

−h
b

)
. (17.1.4)

One way of solving (17.1.1) is simply to form the linear system (17.1.4)
and find x∗, λ∗ using (say) Gaussian elimination. (Although (17.1.4) is
symmetric, the zeros on the diagonal imply that it is not positive-definite
and so the Cholesky method is not suitable.)

If G is positive-definite then the feasible stationary point obtained
from (17.1.4) will be a minimum. Otherwise we must check the second-
order condition

zT Gz > 0 for all z s.t. Az = 0,

to confirm that x∗ is not a constrained maximum or saddle point.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 17, c© Springer Science+Business Media, LLC 2008
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Forming and solving the whole system of equations (17.1.4) may be
computationally efficient when the matrices G and A are sparse. How-
ever, we can also find x∗ and λ∗ separately. For instance, if we multiply
(17.1.3) by AG−1 and then use (17.1.2) to eliminate x∗, we can get λ∗

from
(AG−1AT )λ∗ = AG−1h − b. (17.1.5)

It then follows that
Gx∗ = AT λ∗ − h. (17.1.6)

Solving (17.1.5) and (17.1.6) separately costs O(l3) + O(n3) multipli-
cations. This is less than the O((n + l)3) multiplications needed to
solve (17.1.4). However, we must also allow for the cost of forming
AG−1AT . This matrix product takes l2n + ln2 multiplications. More-
over, the inversion of G takes O(n3) multiplications (but then we can
use G−1 to avoid the cost of solving (17.1.6) from scratch). This fuller
analysis suggests that there may be little computational advantage in
using (17.1.5), (17.1.6) except when G−1 is already known. In this case
the solution cost is O(l3 + l2n + ln2) multiplications which is much less
than O((n + l)3), especially when l � n.

17.2. Sample EQP solutions

Let us consider the constrained data-fitting problem similar to VLS1a

Minimize
4∑

i=2

(x1 + x2ti − zi)2 s.t. x1 + x2t1 − z1 = 0 (17.2.1)

where the data points (ti, zi) are (0,5), (1,8), (2,12), (3,16).
On substituting the data values, the objective function becomes

F (x) = (x1 + x2 − 8)2 + (x1 + 2x2 − 12)2 + (x1 + 3x2 − 16)2

which simplifies to

F (x) = 3x2
1 + 14x2

2 + 12x1x2 − 72x1 − 160x2 + 464.

Hence the objective function in (17.2.1) can be written as

1
2
xT Gx + hT x + c

where

G =
(

6 12
12 28

)
, h =

( −72
−160

)
and c =

4∑

i=2

z2
i = 464.
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The constraint is x1 + x2t1 = z1 and so the Jacobian is

A = (1, t1).

On substituting the data values, the constraint is x1 − 5 = 0 and the
Jacobian is A = (1, 0). Therefore the optimality conditions give (17.1.4)
as ⎛

⎜⎝
6 12 1
12 28 0
1 0 0

⎞

⎟⎠

⎛

⎜⎝
x∗

1

x∗
2

λ∗

⎞

⎟⎠ =

⎛

⎜⎝
72
160
5

⎞

⎟⎠ .

This system is easy to solve. We get x∗
1 = 5 immediately from the third

equation and then, from the second equation, we obtain

x∗
2 =

1
28

(160 − 12x∗
1) =

100
28

=
25
7

.

Finally we can find λ∗ from the first equation as

λ∗ = 72 − 6x∗
1 − 12x∗

2 = −6
7
. (17.2.2)

As a second example we consider (16.3.1) which is a quadratic pro-
gramming problem that can be written as

Minimize
1
2
xT

(
2 3
3 0

)
x s.t. (1 5)x − 1 = 0.

Hence, in the notation of 17.1.1),

G =
(

2 3
3 0

)
, h =

(
0
0

)
, c = 0, A = (1 5), b = −1.

We can use the solution method (17.1.5), (17.1.6). Because

G−1 =
(

0 1/3
1/3 −2/9

)

we obtain

AG−1AT = (1 5)T
(

0 1/3
1/3 −2/9

)(
1
5

)
= −20

9

and AG−1h − b = 1.

Hence, from (17.1.5), the Lagrange multiplier is

λ∗ = (AG−1AT )−1(AG−1h − b) = − 9
20

.
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From (17.1.6), the optimal x is given by

x∗ = G−1(AT λ∗ − h) =
(

0 1/3
1/3 −2/9

)( −9/20
−9/4

)
=
( −3/4

7/20

)
.

This agrees with the solution obtained in Section 16.3.

Exercises
1. Evaluate the function in (17.2.1) at the solution x1 = 5, x2 =

25/7. Use the Lagrange multiplier in (17.2.2) to estimate the optimal
objective function value if the point (t1, z1) is changed to (0, 6).
Compare your result with the actual solution obtained by forming
and solving (17.1.4).

2. Use the Lagrange multiplier in (17.2.2) to estimate the function value
at the solution of (17.2.1) when the first data point is (0, 4). Show
that the actual solution to this problem has a zero function value and
explain why the Lagrange multiplier is also zero.

3. Use (17.1.5) and (17.1.6) to solve the problem

Minimize x2
1 + 3x2

2 − 2x1 − 4x2 + 6 s.t. 7x1 − 3x2 + 10 = 0.

4. Form and solve an extended version of problem (17.2.1) which involves
two more data points (4, 21) and (5, 25) and in which the model func-
tion is z = x1 + x2t + x3t

2.

17.3. Reduced-gradient methods

Reduced-gradient methods use linear equality constraints to eliminate
some of the variables. The linear constraints in (17.1.1) are

Ax + b = 0

and we suppose that A is partitioned as (Ã : Ā) where Ã has n − l
columns and Ā has l columns. If we similarly partition the vector of
variables as (x̃ : x̄) then the constraints can be written

Ãx̃ + Āx̄ = b.

Hence, if Ā is nonsingular,

x̄ = Ā−1(b − Ãx̃) (17.3.1)

and we have expressed the last l variables in terms of the first n− l. This
means we can write

x = v + Mx̃
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where v is a column vector of length n and M is an n × (n − l) matrix.
These are given, in partitioned form, by

v =

⎛

⎝
0(n−l)×1

−−−
Ā−1b

⎞

⎠ ; M =

⎛

⎝
I(n−l)×(n−l)

−−−
−Ā−1Ã)

⎞

⎠ .

Substituting in the objective function in (17.1.1) we get

F̃ (x̃) =
1
2
(x̃T MT + vT )G(v + Mx̃) + hT (v + Mx̃) + c

which simplifies to

F̃ (x̃) =
1
2
x̃T (MT GM)x̃ + (vT GM + hT M)x̃ + vT Gv + hT v + c.

Thus solving (17.1.1) has been reduced to finding the unconstrained
minimum of the (n − l)-variable quadratic function F̃ in terms of the
variables x̃.

As a simple illustration of the reduced-gradient approach we consider
problem (16.3.1) and use the constraint to eliminate x1. Because x1 =
1 − 5x2 we can rewrite the objective function in terms of x2 only and
obtain

F̃ = x2
1 + 3x1x2 = 1 − 10x2 + 25x2

2 + 3x2 − 15x2
2 = 10x2

2 − 7x2 + 1.

We can find the minimum by setting dF̃/dx2 = 0 which gives x2 = 7/20.
Hence x1 = 1−35/20 = −3/4 and (of course) we obtain the same solution
as that given by previous approaches.

Exercises
1. Solve problem (16.3.1) by the reduced-gradient method based on

using the constraint to eliminate x2.
2. Solve the problem

Minimize xT Qx

s.t. 0.2x1 + 0.3x2 + 0.15x3 = 0.2 and x1 + x2 + x3 = 1.

where

Q =

⎛

⎜⎝
0.06 −0.02 0
−0.02 0.05 0

0 0 0

⎞

⎟⎠

and use the reduced-gradient approach to transform it to an uncon-
strained problem involving x1 only.
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3. Use both (17.1.5), (17.1.6) and the reduced gradient approach to find
a solution to

Minimize x1x2 s.t. x1 − x2 = 1

and confirm that the point obtained is a constrained minimum.
What happens if you apply the reduced-gradient method to

Minimize x1x2 s.t. x1 + x2 = 1?

Range- and null-spaces

The reduced-gradient approach can be implemented in a more general
way that does not require us to partition the constraint matrix to find a
nonsingular Ā. Instead we consider a solution in terms of its components
in two subspaces which are normal and tangential to the constraints.

The optimality conditions (16.2.7) and (16.2.8) in Chapter 16 involve
feasible directions which lie in the tangent space of the constraints. If an
n-variable optimization problem involves l linear constraints, Ax+b = 0,
then a feasible direction can be any member of the (n − l)-dimensional
subspace of vectors z which satisfy Az = 0.

Definition The (n− l)-dimensional subspace of vectors z giving Az = 0
is called the null-space of A.

We now let Z be an n × (n − l) matrix whose columns span the null-
space of A. This means that Zw is a feasible direction for any (n − l)-
vector. The choice of Z is not unique: but one way of obtaining it is by
orthogonal factorization of the constraint Jacobian A. This factorization
(see [38] for more details) yields an orthonormal n×n matrix Q and an
l × l lower triangular matrix L such that

AQ = R = (L : 0) and QTQ = I. (17.3.2)

If we now let Y be the matrix composed of the first l columns of Q and
Z the matrix consisting of the remaining (n− l) columns then it can be
shown that

AZ = 0, AY = L and Y T Z = 0. (17.3.3)

Definition The l-dimensional subspace spanned by the columns of Y is
called the range-space of the constraint Jacobian A.

Definition ZT∇F (x) and ZT∇2F (x)Z are called, respectively, the
reduced gradient and reduced Hessian of F (x).

The reduced-gradient approach can be based on considering sepa-
rately the components of the solution x∗ which lie in the range- and



17.3. Reduced-gradient methods 175

null-spaces of the constraint Jacobian. In the next subsection we show
how this is done for equality constrained QP problems. Subsequently
we describe the method for more general linearly constrained problems.

Exercise
Use (17.3.2) to verify the relationships in (17.3.3).

Reduced gradients and EQP

If x∗ solves (17.1.1) we can find its components in Y - and Z-space.
Suppose that ȳ is an l-vector and z̄ is an (n − l)-vector such that

x∗ = Y ȳ + Zz̄. (17.3.4)

The components Y ȳ and Zz̄ are sometimes called the vertical step and
the horizontal step. Because AZ = 0, optimality condition (17.1.2)
implies

AY ȳ + b = 0. (17.3.5)

From (17.3.3) we get AY = L and this means that ȳ can be found by
solving a lower triangular system of equations.

On premultiplying optimality condition (17.1.3) by ZT we get

ZT GZz̄ = −ZT h − ZT GY ȳ (17.3.6)

which is a symmetric system of equations for z̄. If the EQP has a
minimum then the reduced Hessian ZTGZ is positive-definite and so
the Cholesky method can be used to solve (17.3.6).

If we premultiply (17.1.3) by Y T we get an upper triangular system

Y T AT λ∗ = Y T h + Y T Gx∗ (17.3.7)

which can be solved to give the Lagrange multipliers.
Solving (17.3.5), (17.3.6) and (17.3.7) requires O(l2) + O((n − l)3)

multiplications which can be appreciably less than O((n + l)3) multi-
plications needed to solve the system (17.1.4) – especially when l ≈ n.
This comparison, however, neglects the cost of finding the Y and Z basis
matrices.

We can illustrate the above approach by considering problem (16.3.1)
again. Recall from Section 17.2 that this problem is a standard EQP of
the form (17.1.1) with

G =
(

2 3
3 0

)
, h =

(
0
0

)
, c = 0, A = (1 5), b = −1.
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We can show that the matrices

Y =

(
1/
√

26
5/
√

26

)
Z =

(
5/
√

26
−1/

√
26

)

satisfy the conditions

AZ = 0, AY =
√

26, Y T Z = 0, Y T Y = ZT Z = 1.

Hence Y and Z span the range- and null-space of the constraint Jacobian
A.

From (17.3.5)

AY ȳ + b = 0 implies
√

26ȳ − 1 = 0

and so ȳ = 1/
√

26. Hence

Y ȳ =
(

1/26
5/26

)
.

We also have
ZT G = (7/

√
26, 15/

√
26)

and so
ZTGZ = 20/26 and ZT GY ȳ = 82/(26

√
26).

Therefore, from (17.3.6),

ZT GZz̄ = −ZT h − ZT GY ȳ implies
20
26

z̄ = − 82
26
√

26
.

Hence

z̄ = − 41
10
√

26
and Zz̄ =

( −41/52
41/260

)
.

We now have

x∗ = Y ȳ + Zz̄ =
( −39/52

91/260

)
=
( −3/4

7/20

)
.

Once again we have obtained the same optimal values of the variables as
those found in Section 16.3. In order to obtain the Lagrange multiplier
from (17.3.7) we calculate

Y T G = (1/
√

26 5/
√

26)
(

2 3
3 0

)
= (17/

√
26, 3/

√
26)
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and so
Y T Gx∗ = −117/(10

√
26).

Then (17.3.7) becomes
√

26λ∗ = −117/(10
√

26) giving λ∗ = −117/260 = −9/20

which also agrees with previous results.

Exercise
Consider the two-variable problem

Minimize xT Mx s.t. x1 + x2 = 1. (17.3.8)

The constraint Jacobian A is then the row-vector (1, 1). Show that
AQ = (l11, 0) when Q is a 2 × 2 matrix defined by

Q = I − 2
wwT

wT w
with w =

(
1 +

√
2

1

)

and hence find l11. Use (17.3.5)–(17.3.7) to solve (17.3.8).

General linearly constrained problems

The reduced-gradient approach can be applied to (16.2.1), (16.2.2) when
the constraints are linear but the function is nonquadratic and the prob-
lem is of the form

Minimize F (x) subject to Ax + b = 0. (17.3.9)

As in unconstrained optimization, a common strategy is to use an iter-
ative scheme based on local quadratic approximations to F . That is, in
the neighbourhood of a solution estimate, x, we suppose

F (x + p) ≈ Q(p) = F + pT∇F +
1
2
(pT Bp) (17.3.10)

where either B = ∇2F (x) or B ≈ ∇2F (x). The following algorithm
solves problem (17.3.9) by using the quadratic approximation (17.3.10)
to generate a search direction on each iteration. For reasons explained
below, it is based on using an updated approximation to the Hessian
matrix rather than the exact ∇2F (x).

Reduced-gradient algorithm for linear equality constraints

Choose an initial feasible point x0 and set λ0 = 0
Choose B0 as a positive definite estimate of ∇2F (x0).
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Obtain Y and Z as basis matrices for the range and null spaces of A
Repeat for k = 0, 1, 2, . . .
Set gk = ∇F (xk)
Determine z̄ from ZT BkZz̄ = −ZT gk and set pk = Zz̄
Obtain λk+1 by solving Y T AT λ = Y T gk + Y T Bkpk

Perform a line search to get xk+1 = xk + spk where F (xk+1) < F (xk)
Obtain Bk+1 from Bk by a quasi-Newton update (see below).
until ||ZT gk|| is less than a specified tolerance.

This algorithm proceeds in a similar way to the reduced-gradient
method for an EQP. Each iteration makes a “horizontal” move in the
subspace satisfying the constraints. No “vertical” move is needed because
the algorithm described above is a feasible point technique. This means
that it must be provided with a feasible guessed solution and then all
subsequent iterates will also be feasible. (In practice, the algorithm
could be preceded by some initial iterations to find a feasible
point.)

The algorithm includes a line search because the nonquadraticity of
F means that x + p is not guaranteed to be a “better” point than x.
The algorithm can use either a perfect line search to minimize F (x+sp)
or a weak line search to ensure that F (x + sp) − F (x) is negative and
satisfies the Wolfe conditions.

The advantage of using Bk as an updated estimate of ∇2F is that it
enables us to keep Bk positive-definite. This will ensure that the matrix
ZTBkZ is positive-definite and hence that pk is a descent direction on
every iteration.

The BFGS update (Chapter 10) generates matrices Bk+1 as successive
estimates of ∇2F which satisfy the quasi-Newton condition (10.5.2).
These estimates are all positive-definite provided (10.2.2) is satisfied.
There are also modified updating formulae which yield positive-definite
B even when δT

k γk ≤ 0. One such (called Powell’s modification [52])
involves replacing the actual change in gradient, γk, in (10.5.3) by

ηk = (1 − θ)γk + θBkδk (17.3.11)

with θ being chosen so that δT
k ηk > 0.

In the unconstrained case we can justify the use of updates which
force Bk to be positive-definite because we know that ∇2F (x∗) must
be positive-definite. In constrained problems, however, the true Hessian
∇2F (x∗) is often indefinite. This suggests that a positive-definite
updating scheme may be inconsistent with making Bk a good approxi-
mation. In fact there is no conflict of interest because the second-order
optimality condition (16.2.8) only relates to the null space of the binding
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constraint normals. In this subspace the optimality conditions require
the Hessian to be positive-definite.

It is of course possible to implement reduced-gradient methods which
use exact second derivatives, but then the search direction calculation
must be adapted to ensure that a descent direction is still obtained even
when ∇2F (x) is indefinite.

Proofs of convergence for reduced-gradient algorithms can be based
on ideas already discussed in relation to unconstrained minimization
algorithms. Under fairly mild assumptions about the functions and
constraints and about the properties of the Hessian (or its updated
estimate) it can be shown that the search directions and step lengths
in the feasible subspace will satisfy the Wolfe conditions. It then follows
that the iterations will converge to a point where the reduced gradient is
zero. The ultimate rate of convergence can be superlinear (or quadratic
if exact second derivatives are used instead of updated approximations
to the Hessian).

17.4. Results with a reduced-gradient method

A powerful reduced-gradient method, known as GRG (see Lasdon et al.
[43]) is implemented in the SOLVER tool in Microsoft Excel [29, 48].
When applied to a linearly constrained problem, the GRG method works
in a way that is broadly similar to the algorithm described in section 17.3
above. The SOLVER implementation uses approximate derivative infor-
mation and so it will not usually deal with an EQP in a single iteration
because the Hessian matrix is not available for use in equations (17.1.4).
SOLVER can be used on problems where the function is not quadratic
and – unlike the algorithm in section 17.3 above – it can be started from
an infeasible point. As we show in later chapters, SOLVER can also deal
with nonlinear constraints.

We now apply SOLVER to the linearly constrained example problems
VLS1a, OC1a, OC2a and FBc. The first two are quadratic programming
problems but the second two have nonquadratic objective functions.
Table 17.1 shows the number of iterations used by SOLVER. The
figure in brackets is the number of iterations needed to obtain a feasible
point. (The software does not report the number of function evaluations
used.) We note that, for these problems, the number of iterations is
roughly the same as the number of variables except in the case of the
highly nonconvex problem FBc.

VLS1a OC1a(4) OC1a(6) OC2a(4) OC2a(6) FBc

3(1) 3(1) 5(1) 5(1) 7(1) 9(2)

Table 17.1. Iteration counts for SOLVER with linear constraints.
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Exercises
1. Write an implementation (e.g., a spreadsheet calculation or a MATLAB

script) of a solution method for an EQP of the form (17.1.1). Given
the matrices and vectors G,h,A, b it should form and solve the system
(17.1.4).
Apply your implementation to Problems VLS1a and OC2a(4) and show
that the same results are obtained if (17.1.5) and (17.1.6) are used
instead of (17.1.4).

2. Apply a reduced-gradient method to problems similar to OC1a and
OC2a using the data tf = 5, τ = tf/n, u0 = s0 = 0, sf = 3 with no
restriction on uf .

3. By using different starting guesses, see how many local solutions you
can find for problem FBc.

4. Form an extended version of Problem VLS1a which involves two more
data points (4, 21) and (5, 25) and uses the quadratic model function
z = x1 + x2t + x3t

2. Use SOLVER to obtain a solution.

17.5. Projected-gradient methods

If xk is a feasible point for the linearly constrained problem

Minimize F (x) subject to Ax + b = 0.

then we can obtain a search direction by projecting a descent direction
for F into the feasible subspace. For instance,

pk = −(I − AT (AAT )−1A)gk (17.5.1)

is a projection of the negative gradient −gk. The matrix P = I −
AT (AAT )−1A is called a projection matrix and it is easy to show that
AP = 0. Hence the search direction (17.5.1) satisfies Apk = 0 and a new
point

xk+1 = xk + spk

will be feasible if xk is feasible. Given an initial feasible point x0, we can
use line searches along directions given by (17.5.1) for k = 0, 1, 2, . . . in
order to minimize F in the feasible subspace.

The projected-gradient (17.5.1) is, in general, no more efficient than
the steepest descent direction for unconstrained minimization. However,
we can also obtain projections of more effective descent directions. If
B ≈ ∇2F (xk) is a positive definite matrix then

pk = −B−1(I − AT (AB−1AT )−1A)B−1gk (17.5.2)

is a projected quasi-Newton direction.
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Clearly, projected-gradient approaches work in much the same way
as reduced-gradient methods, by restricting the search to the feasible
subspace. Reduced gradients have a practical advantage for large-scale
problems, however, because some of their algebra involves (n−l)×(n−l)
matrices, whereas the projection methods use n×n matrices throughout.

Exercises
1. If xk is a feasible point for EQP (17.1.1), obtain an expression for the

step p such that xk + p is the solution. By writing the expression for
p in the form (17.1.6), show that p can also be viewed as a projected
Newton direction.

2. Write an algorithm which uses projected quasi-Newton directions to
minimize F (x) subject to linear constraints Ax + b = 0.
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Why make attempts to make amends
for other parties’ negligence or crimes?
After blaming’s had its day
in court, no praise awaits portfolios
of hindsights. Sorting should-have-beens,
to salvage just one could-be: this, they must
believe, does more than set a record straight.

No missing bulkheads to weaken the vessel;
fill no more airships with porous gas-bags;
add reinforcement at corners of windows;
let cracks be acknowledged, not hidden by flags.



Chapter 18

Penalty Function Methods

18.1. Introduction

We now turn to methods for dealing with nonlinear constraints in
problem (16.2.1), (16.2.2). These are usually considered to present
more difficulties than nonquadraticity in the objective function. This
is largely because it is hard to ensure all iterates remain feasible. Hence
the main focus of this chapter is on methods which do not generate fea-
sible points on every iteration but merely force the solution estimates
xk to approach feasibility as they converge. We begin, however, by con-
sidering the extension of the reduced-gradient approach to deal with
nonlinear equality constraints.

Reduced-gradients and nonlinear constraints

The reduced-gradient method, described in Section 17.3, can be extended
to deal with nonlinear constraints. The chief difficulty to be overcome is
that of maintaining feasibility because a step along a horizontal search
direction p does not now ensure that ci(x + sp) = 0 for each constraint.
Thus we need a restoration strategy in which a basic horizontal move is
followed by a vertical step back onto the constraints. A first estimate of
this restoration step can be obtained by defining

ĉi = ci(x + sp) for i = 1, . . . , l

then finding y to solve AY y = −ĉ and finally setting p̂ = Y y. If the
constraints (16.2.2) are near-linear then the point

x+ = x + sp + p̂

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 18, c© Springer Science+Business Media, LLC 2008
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may be near-feasible and suitable for the start of a new iteration.
However, when the ci are highly nonlinear the calculation of a suitable
restoration step may itself be an iterative process.

Another aspect of the reduced-gradient algorithm that must be modi-
fied when dealing with nonlinear constraints concerns the Hessian matrix
in the local quadratic model (17.3.10). The second-order optimality con-
dition for nonlinearly constrained problems is (16.2.9) which involves
the Hessian of the Lagrangian rather than the objective function. This
means that, in the discussion of the reduced gradient algorithm in
Section 17.3, the matrix B should be regarded as an approximation
to ∇2L∗ where

∇2L∗ = ∇2F −
l∑

i=1

λ∗
i ∇2ci.

If the matrix Bk in the reduced-gradient algorithm is to be calculated
via a quasi-Newton approach then a suitable update can be obtained by
redefining γk in the quasi-Newton condition Bk+1δk = γk as

γk = ∇L(xk+1) −∇L(xk)

where L is a local approximation to L∗ based on Lagrange multiplier
estimates, λki

, determined at xk. Hence

∇L(x) = ∇F (x) −
l∑

i=1

λki
∇ci(x).

If δT
k γk is not positive then we can use (17.3.11) to define ηk as a replace-

ment for γk so that the BFGS update will make Bk+1 positive-definite.

Numerical results with SOLVER

Table 18.1 summarises the performance of the SOLVER implementation
of the reduced-gradient method when applied to some nonlinearly con-
strained problems. As in Table 17.1, the entries are numbers of itera-
tions needed for convergence with a bracketed figure showing how many
iterations are needed to obtain feasibility.

TD1a TD2a VLS2a TLS1a TLS2a OC3(6)

5(0) 7(1) 20(4) 62(3) 14(4) 12(7)

Table 18.1. Iteration counts for SOLVER with nonlinear constraints.

Results for TLS1a illustrate the practical difficulties that sometimes
occur when the reduced-gradient method is used with nonlinear
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constraints. SOLVER locates a feasible point in just 3 iterations but,
unfortunately, this point is not very close to the optimum and so a fur-
ther 59 iterations are needed during which the search has to work its way
round the curved constraint until it reaches the constrained minimum.
This behaviour also occurs in a less extreme form on Problems VLS2a and
TLS2a. Because the reduced-gradient approach may make slow progress
around curved constraints it is worth considering methods which do not
depend on maintaining feasibility on every iteration.

18.2. Penalty functions

We can avoid the difficulties of maintaining feasibility with respect to
nonlinear constraints by converting (16.2.1), (16.2.2) into a sequence of
unconstrained problems.

Definition A penalty function associated with (16.2.1), (16.2.2) is

P (x, r) = F (x) +
1
r

l∑

i=1

ci(x)2 where r > 0. (18.2.1)

The quantity r is called the penalty parameter. When x is a feasible
point, P (x, r) = F (x). When x is infeasible then P exceeds F by
an amount proportional to the square of the constraint violations. An
important property of the penalty function (18.2.1) is as follows.

Proposition Suppose that, in the problem (16.2.1), (16.2.2), F (x) is
bounded below for all x and that there is a unique solution x∗ where
the constraint normals ∇c1(x∗), . . . ,∇cl(x∗) are linearly independent.
Suppose also that ρ is positive and that, for all rk < ρ, the Hessian
matrix ∇2P (x, rk) is positive-definite for all x. Then if xk solves the
unconstrained problem

Minimize P (x, rk) (18.2.2)

it follows that
xk → x∗ as rk → 0 (18.2.3)

and also
− 2ci(xk)

rk
→ λ∗

i as rk → 0. (18.2.4)

Proof The fact that ∇2P (x, rk) is positive-definite for rk sufficiently
small means that xk is the unique minimum of P (x, rk) as rk → 0. We
now show, by contradiction, that c1(xk), . . . , cl(xk) all tend to zero as
rk → 0.
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Suppose this statement is false and that, for some positive constant ε,

l∑

i=1

ci(xk)2 > ε for all rk.

Then
P (xk, rk) > F (xk) +

1
rk

ε.

Now let F ∗ be the least value of F (x) at a feasible point. Because xk is
the unique minimum of P (x, rk) it must be the case that

P (xk, rk) ≤ F ∗.

Therefore
F (xk) +

1
rk

ε < F ∗.

Rearranging, we get

F (xk) < F ∗ − 1
rk

ε.

But, as rk → 0, this implies that F (xk) can be arbitrarily large and
negative, which contradicts the condition that F (x) is bounded below.
Therefore, as rk → 0,

ci(xk) → 0, i = 1, . . . , l. (18.2.5)

At each unconstrained minimum, xk,

∇P (xk, rk) = ∇F (xk) +
1
rk

l∑

i=1

2ci(xk)∇ci(xk) = 0. (18.2.6)

If we define
λ̃i(xk) = − 2

rk
ci(xk) (18.2.7)

then (18.2.6) is equivalent to

∇P (xk, rk) = ∇F (xk) −
l∑

i=1

λ̃i(xk)∇ci(xk) = 0. (18.2.8)

Now suppose that, as rk → 0, the limit point of the sequence {xk} is x̄
and that λ̄i = λ̃i(x̄), for i = 1, . . . , l. Then, from (18.2.5) and (18.2.8),

ci(x̄) = 0, i = 1, . . . , l (18.2.9)

∇F (x̄) −
l∑

i=1

λ̄i∇ci(x̄) = 0. (18.2.10)
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Hence x̄ satisfies the optimality conditions for problem (16.2.1), (16.2.2).
But the assumptions imply that the problem has a unique solution x∗

and unique multipliers λ∗
1, . . . , λ

∗
l . Therefore (18.2.3) and (18.2.4) must

hold.
This result motivates the Sequential Unconstrained Minimization

Technique (SUMT) outlined below. Propositions similar to (18.2.3) can
still be proved under weaker assumptions about the problem (16.2.1),
(16.2.2) and so, in practice, SUMT can usually be applied successfully
without the need for a strict verification of the properties of the func-
tion and constraints. A full theoretical background to SUMT is given by
Fiacco and McCormick [20].

Penalty function SUMT (P-SUMT)

Choose an initial guessed solution x0

Choose a penalty parameter r1 and a constant β(< 1)
Repeat for k = 1, 2, . . .
starting from xk−1 use an iterative method to find xk to solve (18.2.2)
set rk+1 = βrk

until ||c(xk)|| is sufficiently small

This algorithm is an example of an infeasible or exterior-point
approach. The iterates xk do not satisfy the constraints until convergence
has occurred. The method does not directly calculate the Lagrange mul-
tipliers at the solution, but we can deduce their values using (18.2.4).
(It should now be clear that we have used a weak form of the penalty
function approach in the formulation of some of our example problems
such as R1, OC1 and OC2.)

The rate of convergence of P-SUMT can be viewed in two parts. Con-
vergence to each penalty function minimum will be governed by the
choice of unconstrained method (i.e., we can expect it to be at least
superlinear if we use a quasi-Newton or Newton technique.) However,
the convergence of the computed minima xk to the solution x∗ is typi-
cally linear because the errors ||xk − x∗|| are proportional to rk.

An example

We can demonstrate the penalty function approach on Example (16.3.1).
The penalty function associated with this problem is

P (x, r) = x2
1 + 3x1x2 +

1
r
(x1 + 5x2 − 1)2.
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For any value of r, the minimum of P (x, r) satisfies the equations

∂P

∂x1
= 2x1 + 3x2 +

2
r
(x1 + 5x2 − 1) = 0

∂P

∂x2
= 3x1 +

10
r

(x1 + 5x2 − 1) = 0.

The second equation gives (x1+5x2−1) = −3rx1/10 and on substitution
in the first equation we get x2 = −7x1/15. Eliminating x2 from the
second equation gives (9r − 40)x1 − 30 = 0 and so the minimum of
P (x, r) is at

x1 =
30

(9r − 40)
, x2 = − 210

(135r − 600)
.

Hence, as r → 0, the minima of P (x, r) tend to

x∗
1 = −3

4
, x∗

2 =
7
20

which can be shown to solve (16.3.1) by direct use of the optimality
conditions. The value of the constraint in (16.3.1) at the minimum of
P (x, r) is

c1(x) =
30

(9r − 40)
− 1050

(135r − 600)
− 1 = − 9r

(9r − 40)

and hence
−2

r
c1(x) =

18
(9r − 40)

.

If we let r → 0 in the right hand side we can use (18.2.4) to deduce
that the Lagrange multiplier λ∗

1 = −9/20. This agrees with the result
obtained directly from the optimality conditions.

Exercises
1. Use a penalty function approach to solve the problem

Minimize x3
1 + x2

2 subject to x2 − x2
1 = 1.

2. Write down the penalty function P (x, r) for Problem VLS1a and hence
obtain an expression for x̂(r). (Hint: use the Sherman–Morrison–
Woodbury formula (10.5.6).) Show that, as r → 0, x̂(r) approaches
the solution of the problem.

3. Suppose that we have obtained xk, xk+1 as the unconstrained minima
of P (x, rk) and P (x, rk+1), respectively. Show how linear extrapo-
lation could be used to obtain a first estimate of the minimum of
P (x, rk+2). Could we use a similar technique to predict the overall
solution x∗(= limrk→0 xk)?



18.3. The augmented Lagrangian 189

18.3. The augmented Lagrangian

It might be imagined that we could accelerate the progress of P-SUMT

by choosing r1 to be very small in the hope of getting an acceptable
estimate of x∗ after only one unconstrained minimization. In practice,
however, this is not a good idea because of the limitations of finite-
precision arithmetic.

When r is near zero, the second term in P (x, r) may dominate the first
and so, when we evaluate P , the contribution of the objective function
may be lost in rounding error. Numerical evaluations of ∇P and ∇2P
are also likely to be inaccurate when r is small. In particular, ∇2P is
said to become ill-conditioned when r → 0 because its condition number,
defined as

maximum eigenvalue of ∇2P

minimum eigenvalue of ∇2P
,

can get arbitrarily large. As a consequence of all this, the numerical
solution of the Newton equation (∇2P )p = −∇P is very susceptible
to rounding error when r ≈ 0 and the resulting search directions can
be inaccurate and ineffective. Similar difficulties can occur during the
minimization of P (x, r) by quasi-Newton or conjugate gradient methods.

The only way to avoid these numerical difficulties is to ensure that
values of the ci(x) are already near-zero by the time we are dealing with
very small values of r. We can best achieve this if we follow the SUMT

algorithm and obtain x1, x2, . . . by relatively easy minimizations using
moderately large values of the penalty parameter so that a near-feasible
approximation to x∗ is available by the time the unconstrained algorithm
has to deal with r close to zero.

The ill-conditioning difficulties which occur when minimizing P (x, r)
have motivated the use of another form of penalty function [53].

Definition The augmented Lagrangian is given by

M(x, v, r) = F (x) +
1
r

l∑

i=1

(
ci(x) − r

2
vi

)2
. (18.3.1)

Compared with P (x, r), the function M involves extra parameters
v1, . . . , vl and can also be written as

M(x, v, r) = F (x) −
l∑

i=1

vici(x) +
1
r

l∑

i=1

ci(x)2 +
r

4

l∑

i=1

v2
i .

If we assume (16.2.1), (16.2.2) has a unique solution x∗ (where linear
independence of ∇c1(x∗), . . . ,∇cl(x∗) implies uniqueness of the
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multiplier vector λ∗) then we can establish important properties of the
augmented Lagrangian.

Proposition The function (18.3.1) has a stationary point at x = x∗ for
all values of r if the parameters vi are chosen so that vi = λ∗

i , i = 1, . . . , l.

Proof Differentiating (18.3.1) we get

∇M(x, v, r) = ∇F (x) +
1
r

l∑

i=1

2
(
ci(x) − r

2
vi

)
∇ci(x). (18.3.2)

and because ci(x∗) = 0 for i = 1, . . . , l, it follows that

∇M(x∗, v, r) = ∇F (x∗) −
l∑

i=1

vi∇ci(x∗).

If we set vi = λ∗
i (i = 1, . . . , l) then condition (16.2.4) implies

∇M(x∗, λ∗, r) = 0.

Proposition Suppose that ρ, σ are positive constants such that, when
r < ρ and ||v − λ|| < σ, the Hessian matrix ∇2M(x, v, r) is positive-
definite for all x. Suppose also that xk solves

Minimize M(x, vk, r). (18.3.3)

Then, for all r < ρ,
xk → x∗ as vk → λ∗. (18.3.4)

Moreover
vk,i −

2
rk

ci(xk) → λ∗
i as xk → x∗. (18.3.5)

Proof The result (18.3.4) follows because we have already shown that
M has a stationary point at x∗ when v = λ∗. The additional conditions
ensure that this stationary point is a minimum. Moreover, the rela-
tionship (18.3.5) follows because ∇M(xk, vk, rk) = 0 and a comparison
between the terms in (18.3.2) and the corresponding ones in (16.2.4)
implies the required result.

Hence we can locate x∗ by minimizing M when the penalty parameter
r is chosen “sufficiently small”. This is not the same as requiring r to
tend to zero and so it follows that we can use the penalty function
(18.3.1) in a sequential unconstrained minimization technique without
encountering the ill-conditioning difficulties which can occur with the
function P (x, r) as r → 0.

A sequential unconstrained minimization approach based on the
augmented Lagrangian M(x, v, r) needs a method of adjusting the v
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parameters so that they tend towards the Lagrange multipliers. A suit-
able technique is given in the following algorithm. The update that
it uses for the parameter vector vk+1 is based on (18.3.5) which shows
the relationship between the Lagrange multipliers and the constraints
as r → 0. As with the algorithm P-SUMT, the augmented Lagrangian
approach can still be used in practice even when the strict conditions
leading to (18.3.4) cannot be verified.

Augmented Lagrangian SUMT (AL-SUMT)

Choose an initial guessed solution x0

Choose a penalty parameter r1 and a constant β(< 1)
Choose an initial parameter vector v1

Repeat for k = 1, 2, . . .
starting from xk−1 use an iterative method to find xk to solve (18.3.3)
set vk+1 = vk − 2c(xk)/rk and rk+1 = βrk

until ||c(xk)|| is sufficiently small

Exercise
Obtain expressions for the gradient and Hessian of the augmented
Lagrangian function M for the equality constrained problems VLS1a and
OC1(3).

A worked example

We now demonstrate the augmented Lagrangian approach on Example
(16.3.1). For this problem,

M(x, v, r) = x2
1 + 3x1x2 − v(x1 + 5x2 − 1) +

1
r
(x1 + 5x2 − 1)2.

For any value of r, the minimum of M(x, v, r) satisfies the equations

∂M

∂x1
= 2x1 + 3x2 − v +

2
r
(x1 + 5x2 − 1) = 0 (18.3.6)

∂M

∂x2
= 3x1 − 5v +

10
r

(x1 + 5x2 − 1) = 0. (18.3.7)

If we take v = 0 and r = 0.1 as our initial parameter choices then we
can solve (18.3.6), (18.3.7) and show that the minimum of M(x, 0, 0.1)
occurs at

x1 ≈ −0.7675, x2 ≈ 0.3581.
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The value of the constraint at this point is approximately 0.023 and, by
(18.3.5), the next trial value for v is

v ≈ 0 − 2
0.1

(0.023) = −0.46.

With this value of v (but still with r = 0.1), equations (18.3.6), (18.3.7)
become

22x1 + 103x2 = 20 + v = 19.54

103x1 + 500x2 = 100 + 5v = 97.7.

These yield x1 ≈ −0.7495 and x2 ≈ 0.3498 and so c ≈ −0.0005. The
new value of v is

v = −0.46 − 2
0.1

(−0.0005) ≈ −0.45.

We can see that the method is giving x1, x2 and v as improving approxi-
mations to the solution values of (16.3.1), namely

x∗
1 ≈ −0.75, x∗

2 ≈ 0.35, λ∗ ≈ −0.45.

Exercises
1. Repeat the solution of the worked example above, but using −0.5 as

the initial guess for the v-parameter in the augmented Lagrangian.
2. Apply the augmented Lagrangian method to the problem

Minimize F (x) = x2
1 − 4x1x2 +4x2

2 subject to x1 +3x2 +1 = 0.

18.4. Results with P-SUMT and AL-SUMT

P-SUMT and AL-SUMT are OPTIMA implementations of the sequential
unconstrained minimization techniques based on P (x, r) and M(x, v, r).
The unconstrained minimizations can be done with either QNp or QNw.

Table 18.2 shows the results for Problem TD1a with the initial penalty
parameter r1 = 0.1 and the rate of decrease of r given by β = 0.25. For
AL-SUMT the initial v-parameter vector is taken as v1 = 0. For each
SUMT iteration, k, Table 18.2 shows the values of the function F (xk), the
constraint norm ||c(xk)|| and the cumulative numbers of QNw iterations
and function calls used for the unconstrained minimizations so far.

We can see how successive unconstrained minima converge towards
the constrained solution. Note that, for P-SUMT, the rate of reduc-
tion of the constraint norm is approximately the same as the scaling
factor β. AL-SUMT, however, reduces ||c|| more rapidly. Adjustment of
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P-SUMT AL-SUMT
k F (xk) ||c(xk)|| QNw Cost F (xk) ||c(xk)|| QNw Cost

1 35.02 5.8 × 10−2 25/34 35.02 5.8 × 10−2 25/34
2 35.07 1.4 × 10−2 27/41 35.09 1.8 × 10−5 27/41
3 35.08 3.7 × 10−3 29/48 35.09 7.8 × 10−6 28/46
4 35.09 9.1 × 10−4 32/56
5 35.09 2.3 × 10−4 33/62
6 35.09 5.7 × 10−5 34/68
7 35.09 1.4 × 10−5 35/74

Table 18.2. P-SUMT and AL-SUMT solutions to Problem TD1a.

the v-parameters speeds up convergence of AL-SUMT, whereas P-SUMT

depends only on the reduction of r to drive the iterates xk towards the
constrained optimum.

Table 18.3 shows how performance of P-SUMT is affected by changes
in the initial penalty parameter. (In each case the scaling factor is
β = 0.25.) These results, for Problem TD2a, show that P-SUMT becomes
appreciably less efficient as smaller values of r1 are used. This confirms
the comments made in Section 18.3, that it is better to start with a
moderately large value of the penalty parameter in order to ensure that
we have near-feasible and near-optimal starting points for the minimiza-
tions of P (x, r) when r is very small.

P-SUMT Iterations QNw Cost

r1 = 1 9 35/72

r1 = 10−1 7 32/72

r1 = 10−2 5 62/107

r1 = 10−3 4 165/308

Table 18.3. P-SUMT solutions to Problem TD2a for varying r1.

Table 18.4 summarises the performance of P-SUMT and AL-SUMT on
the test problems TD1a–OC3, showing the differences between perfect
and weak line searches. The quoted figures were all obtained with the
standard initial parameter settings r1 = 0.1, β = 0.25 and v1 = 0. For
some of the examples, better results might have been obtained if we
had used different values for r1 and β: the interested reader can use the
OPTIMA software to investigate this.

Table 18.4 confirms that AL-SUMT is usually more efficient than
P-SUMT. However, a comparison with corresponding figures in Tables
17.1 and 18.1 shows that both the SUMT approaches often take more
iterations than SOLVER for the linearly constrained problems. When the
constraints are nonlinear the SUMT approaches can be more competitive
(as in the case of AL-SUMT/p applied to Problems VLS2a and TLS2a).
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TD1a TD2a VLS1a VLS2a TLS1a TLS2a

P-SUMT/w 35/74 32/72 13/36 46/91 145/231 25/47

P-SUMT/p 26/126 22/115 12/36 26/145 123/450 16/69

AL-SUMT/w 28/46 22/39 7/17 36/69 149/228 25/47

AL-SUMT/p 20/97 16/86 6/17 21/132 158/569 16/69

OC1a(4) OC2a(4) FBc OC3(6)

P-SUMT/w 37/96 49/115 54/126 88/245

P-SUMT/p 30/93 38/157 47/376 82/259

AL-SUMT/w 19/45 23/45 28/53 48/112

AL-SUMT/p 16/43 17/76 16/169 45/121

Table 18.4. Total QN iterations/function calls for P-SUMT and AL-SUMT.

On Problems TLS1a and TLS2a, AL-SUMT does not outperform P-SUMT.
This appears to be because the Lagrange multipliers for both problems
are zero and so the classical penalty function – by chance – is the same
as the augmented Lagrangian with v = λ∗. The calculated values of
the v-parameters in AL-SUMT will be slightly worse estimates of the true
Lagrange multipliers.

Exercises
1. Use P-SUMT to solve Problem TD1a and use the Lagrange multipli-

ers to deduce an estimate of the surface area for a target volume
V ∗ = 21. Check your estimate by solving a suitably modified form of
Problem TD1a.

2. Obtain results like those in Tables 18.2 and 18.3 but using Prob-
lem VLS1a. Do you observe any behaviour that is different from
that described in the section above? If so, can you explain why it
occurs?

3. Use P-SUMT to solve Problem OC1a(4). Deduce from the Lagrange
multipliers what the objective function would be if sf were increased
from 1.5 to 2. Check your predictions by solving a modified version
of Problem OC1a(4).

4. Perform numerical tests for Problem TD2a to discover how the speed
of convergence of AL-SUMT varies with the initial choice of r1. Why
is the performance ultimately the same as P-SUMT?

5. Perform tests to estimate the choices of r1 and β for which AL-SUMT

solves Problems VLS2a, OC3(6) in the smallest number of iterations.
How do these results compare with the figures for SOLVER?

6. Using the results in Table 18.4, comment on the advantages and
drawbacks of using a perfect line search in P-SUMT and AL-SUMT.
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18.5. Exact penalty functions

The approaches described so far are based on converting a constrained
problem to a sequence of unconstrained ones. It is also possible to solve
(16.2.1), (16.2.2) via a single unconstrained minimization. A function
whose unconstrained minimum coincides with the solution to a con-
strained minimization problem is called an exact penalty function. As
an example, consider

E(x, r) = F (x) +
1
r

{
l∑

i=1

|ci(x)|
}

. (18.5.1)

This is called the l1 penalty function and it has a minimum at x∗ for all
r sufficiently small. It has no parameters requiring iterative adjustment
and a solution of (16.2.1), (16.2.2) can be found by minimizing (18.5.1).
In making this remark, of course, we assume that r has been chosen
suitably. In fact there is a “threshold” condition (r < 1/||λ∗||∞) but
normally this cannot be used in practice because the Lagrange multi-
pliers will not be known in advance.

The function E has the undesirable property of being nonsmooth
because its derivatives are discontinuous across any surface for which
ci(x) = 0. This fact may cause difficulties for many unconstrained mini-
mization algorithms which assume continuity of first derivatives.

For equality constrained problems there is a smooth exact penalty
function,

E′(x, r) = F − cT (AAT )−1Ag +
1
r
cT c (18.5.2)

where c is the vector of constraints ci(x), A is the Jacobian matrix whose
rows are the constraint normals ∇ci(x)T and g is the gradient vector
∇F (x). The second term on the right of (18.5.2) includes a continuous
approximation to the Lagrange multipliers. This follows because λ∗ can
be obtained from the Lagrangian stationarity condition, g − AT λ∗ = 0,
by solving

(AAT )λ∗ = −Ag.

Hence E′ is a form of augmented Lagrangian function in which the
multiplier estimates, λ, vary continuously instead of being adjusted at
periodic intervals. The use of (18.5.2) was first proposed by Fletcher
and Lill [24] and subsequent work based on the idea is summarised
in [26].

As with (18.5.1), the exact penalty function E′ has a practical dis-
advantage. The right hand side of (18.5.2) involves first derivatives of
the function and constraints and so second derivatives of F and ci have
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to be obtained if E′ is to be minimized by a gradient method. Worse still,
third derivatives will be needed if we wish to use a Newton algorithm.

Exercise
Solve Problem TD1a by forming and minimizing the exact penalty func-
tion (18.5.2) (e.g., by using SOLVER as an unconstrained minimization
method). What is the largest value of r with which you obtain the
correct solution?
Investigate what happens when SOLVER is applied to the nonsmooth
penalty function (18.5.1).



Chapter 19

Sequential Quadratic Programming

Sequential quadratic programming (SQP) methods have become more
popular than the SUMT approaches. There have been two strands
of development in this area. One involves the use of successive QP
approximations to (16.2.1), (16.2.2) based on linearisations of the ci

and a quadratic model of F . Another approach uses QP subproblems
which are derived from the unconstrained minimization calculations in
AL-SUMT.

19.1. Quadratic/linear models

In what follows we write

g(x) = ∇F (x), G(x) = ∇2F (x), c = (c1, . . . , cm)T . (19.1.1)

We also let A denote the matrix whose ith row is ∇ci(x)T .
The first-order optimality conditions at the solution (x∗, λ∗) of the

equality constrained problem (16.2.1), (16.2.2) are

g(x∗) −
l∑

i=1

λ∗
i∇ci(x∗) = 0 and ci(x∗) = 0, i = 1, . . . , l.

If x, λ are estimates of x∗, λ∗, we can introduce an error measure

T (x, λ) =

∥∥∥∥∥g(x) −
l∑

i=1

λi∇ci(x)

∥∥∥∥∥+ κ||ci(x)|| (19.1.2)

where κ is a positive weighting parameter.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 19, c© Springer Science+Business Media, LLC 2008
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Now suppose that δx = x∗ − x. Then δx and λ∗ satisfy

g(x + δx) −
l∑

i=1

λ∗
i ∇ci(x + δx) = 0

and
ci(x + δx) = 0, for i = 1, . . . , l.

Using first order Taylor expansions we see that δx and λ∗ approximately
satisfy

g(x) + G(x)δx −
l∑

i=1

λ∗
i {∇ci(x) + ∇2ci(x)δx} = 0 (19.1.3)

and
ci(x) + ∇ci(x)T δx = 0, for i = 1, . . . , l. (19.1.4)

If we define

Ĝ = G(x) −
m∑

i=1

λ∗
i ∇2ci(x) (19.1.5)

then, on dropping the explicit dependence on x, (19.1.3), (19.1.4) simplify
to

Ĝδx − AT λ∗ = −g (19.1.6)

and
− Aδx = c. (19.1.7)

By comparing (19.1.6), (19.1.7) with (17.1.4) we see that these are
optimality conditions for the quadratic programming problem

Minimize
1
2
(δxT Ĝδx) + gT δx subject to c + Aδx = 0. (19.1.8)

Hence δx and λ∗ can be approximated by solving EQP (19.1.8). The
objective function in (19.1.8) involves the gradient of the objective func-
tion, but its Hessian Ĝ includes second derivatives of the constraints
and hence is an estimate of ∇2L rather than of the Hessian G. Thus
nonlinearities in the constraints do appear in the problem (19.1.8), even
though its constraints are only linearisations of the ci.

The EQP (19.1.8) can be used to calculate a search direction in an
iterative algorithm for a general equality constrained minimization prob-
lem. The version of the algorithm outlined below uses a quasi-Newton
estimate of Ĝ rather than calculating (19.1.5) from second derivatives.
We refer to this as a Wilson–Han–Powell algorithm because these
authors (independently) did much of the pioneering work in this area
[52], [64], [33].
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Wilson–Han–Powell SQP algorithm (WHP-SQP)

Choose an initial point x0 and an initial matrix B0 approximating
(19.1.5)
Repeat for k = 0, 1, 2 . . .
Obtain pk and λk+1 by solving the QP subproblem

Minimize
1
2
pTBkp + ∇F (xk)T p

subject to ci(xk) + ∇ci(xk)T p = 0 i = 1, . . . , l

Obtain a new point xk+1 = xk + spk via a line search.
Obtain Bk+1 by a quasi-Newton update of Bk

until T (xk+1, λk+1), given by (19.1.2), is sufficiently small

The line search in WHP-SQP may be based on ensuring P (xk+1) <
P (xk), where P denotes some penalty function. Various choices for P
have been tried. Some authors recommend the l1 exact penalty func-
tion (18.5.1) but others use versions of the augmented Lagrangian. The
line search is important because, by forcing a reduction in a composite
function involving both F and the ci, it ensures that the new point xk+1

is, in a measurable sense, an improvement on xk, thereby providing a
basis for a proof of convergence. The WHP-SQP approach is shown in
[52] to be capable of superlinear convergence providing the updating
strategy causes Bk to agree with the true Hessian of the Lagrangian in
the tangent space of the constraints.

The quasi-Newton update in WHP-SQP is typically performed using
the modified BFGS formula [52] based on the gradient of the Lagrangian
function as outlined in section 18.1.

Exercises

1. Perform one iteration of WHP-SQP applied to the problem

Minimize x2 subject to x2
1 + x2

2 = 1

starting from x1 = x2 = 1
2 and using B = ∇2[x2 + λ(x2

1 + x2
2 − 1)]

with λ = 1.
2. Perform one iteration of WHP-SQP applied to

Minimize x2
2 subject to x2

1 + x2
2 = 1 and x1 + x2 = 0.75

starting from x1 = x2 = 1
2 and using B = ∇2(x2

2).
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19.2. SQP methods based on penalty functions

In the Wilson–Han–Powell SQP algorithm there is no necessary connec-
tion between the QP which gives the search direction and the penalty
function used in the line search. We now derive an SQP algorithm in
which the subproblem and the step length calculation are more closely
related. In fact, the QP subproblem approximates the minimum of
the augmented Lagrangian function (18.3.1). A Taylor expansion of
∇M(x, v, r) about x gives

∇M(x + δx, v, r) = g − AT v +
2
r
AT c +

(
Ḡ +

2
r
AT A

)
δx + O(||δx||2)

(19.2.1)
where

Ḡ = ∇2F (x) −
l∑

i=1

∇2ci(x)vi +
2
r

[
l∑

i=1

∇2ci(x)ci(x)

]
. (19.2.2)

When x = x∗ and v = λ∗ then, because all the ci(x∗) are zero, (19.2.2)
gives

Ḡ = ∇2F (x∗) −
l∑

i=1

λ∗
i∇2ci(x∗).

Hence we can regard Ḡ as an approximation to ∇2L.
If x + δx minimizes M(x, v, r) then the left-hand side of (19.2.1) is

zero. Hence, neglecting higher-order terms and rearranging, we get
(

Ḡ +
2
r
AT A

)
δx = −g + AT v − 2

r
AT c. (19.2.3)

Solving (19.2.3) gives δx as the Newton step towards the minimum of
M(x, v, r). If we now define

u = v − 2
r
(Aδx + c)

then we can also write

Aδx = −r

2
(u − v) − c. (19.2.4)

Hence (19.2.3) simplifies to

Ḡδx − AT u = −g. (19.2.5)
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Comparing (19.2.5), (19.2.4) with (17.1.4) we can see that δx and u are,
respectively, the solution and the Lagrange multipliers of the EQP

Minimize
1
2
(δxT Ḡδx) + gT δx subject to c + Aδx = −r

2
(u − v).

(19.2.6)
From (19.2.4) we get

c(x + δx) ≈ c + Aδx = −r

2
(u − v).

This is a first-order estimate of constraint values at the minimum of
M(x, v, r). If ||δx|| and ||c|| are both small (which will be the case
when x is near a solution) then u ≈ v. Hence the constraints in (19.2.6)
tend to linearisations of the actual problem constraints, even when r 
= 0.
It follows that u – the Lagrange multipliers for (19.2.6) – can also be
regarded as approximating the multipliers of the original problem.

Equations (19.2.4), (19.2.5) can be rewritten as the symmetric system

Ḡδx − AT u = −g (19.2.7)

−Aδx − r

2
u = c − r

2
v. (19.2.8)

If we define
δv = −2

r
(Aδx + c),

so that u = v + δv then we can rewrite (19.2.7), (19.2.8) in terms of δx
and δv to obtain

Ḡδx − AT δv = −g + AT v (19.2.9)

−Aδx − r

2
δv = c. (19.2.10)

It can also be shown (Exercise 1, below) that we can obtain u and δx to
satisfy (19.2.7), (19.2.8) by solving

(r

2
I + AḠ−1AT

)
u = AḠ−1g − c +

r

2
v (19.2.11)

and then using
δx = Ḡ−1(AT u − g). (19.2.12)

We can now give an algorithm based on the preceding discussion. As
with WHP-SQP, we describe a version which uses a quasi-Newton update.
In this case we use an estimate of the matrix Ḡ−1 which approximates
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the inverse Hessian of the Lagrangian. If Hk ≈ G−1 at the start of
iteration k then a search direction pk and multipliers uk are obtained by
solving a QP subproblem of the same form as (19.2.6), namely,

Minimize
1
2
pTH−1

k p + pT∇F (xk)

subject to c(xk) + A(xk)p = −rk

2
(uk − λk)

where λk are the Lagrange multiplier estimates at the start of the itera-
tion. The subproblem solution is based on (19.2.11) and (19.2.12).

Augmented Lagrangian SQP algorithm (AL-SQP)

Choose initial values x0 , λ0, r0

Choose a matrix H0 approximating the inverse of (19.2.2)
Choose a scaling factor β < 1. Set μ = 0, T = T (x, λ0).
Repeat for k = 0, 1, 2, . . .
Compute ck = c(xk), gk = G(xk) and Ak = A(xk).
Obtain pk and uk from

(rk

2
I + AkHkA

T
k

)
uk = AkHkgk − ck +

rk

2
λk (19.2.13)

pk = Hk(AT
k uk − gk) (19.2.14)

Obtain a new point xk+1 = xk + spk via a line search to give

M(xk+1, λk, rk) < M(xk, λk, rk)

If T (xk, uk) < T then
set rk+1 = βrk , λk+1 = uk and T = T (xk+1, λk+1)
otherwise
set rk+1 = rk and λk+1 = λk

Obtain Hk+1 by a quasi-Newton update of Hk

until T (xk+1, λk+1) is sufficiently small

The update for Hk+1 uses the quasi-Newton condition Hk+1γk = δk in
which γk = ∇L(xk+1) −∇L(xk) and L is the approximate Lagrangian,
given by

L(x) = F (x) −
l∑

i=1

λk+1ci(x).

As was discussed in relation to the reduced-gradient algorithm, it is
preferable to use an updating strategy such as the modified BFGS
formula [52] that ensures Hk is positive-definite.



19.2. SQP methods based on penalty functions 203

AL-SQP can be viewed as a method for constructing an approximation
to a trajectory of augmented Lagrangian minima. The parameters r and
λ are adjusted as soon as a better estimate of an optimal point is found,
rather than after a complete minimization of M . This gives a quicker
approach to x∗ than that offered by AL-SUMT.

SQP algorithms based on the penalty function P (x, r) were first
suggested by Murray [49] and Biggs [10]. The augmented Lagrangian
version AL-SQP given above was first described in [8].

It can be shown that the subproblems in AL-SQP are guaranteed to
have a solution. This is a significant advantage over the QP subproblems
of WHP-SQP in which the linearisations of nonlinear constraints may
be inconsistent even when the original constraints give a well-defined
feasible region. An overview of developments of both the WHP-SQP and
the AL-SQP approaches can be found in [26].

Exercises
1. Show that the solution of (19.2.7), (19.2.8) can be obtained by solving

(r

2
I + AḠ−1AT

)
u = AḠ−1g − c +

r

2
v

and then using
δx = Ḡ−1(AT u − g).

Show also that these expressions are together algebraically equivalent
to (19.2.3) and provide an alternative way of calculating the Newton
step δx.

2. How could AL-SQP be modified if we wanted to get the search direc-
tion and Lagrange multiplier estimates on each iteration from (19.2.4)
and (19.2.5) but using a matrix B which is a quasi-Newton estimate
of the matrix Ḡ given by (19.2.2)?

3. Derive an algorithm similar to AL-SQP which is based on estimating
the minimum of P (x, r) rather than M(x, v, r).

A worked example

Consider the problem

Minimize F (x) =
1
2
(x2

1 + 2x2
2) subject to c1(x) = x1 + x2 − 1 = 0.

(19.2.15)
Note that F is quadratic and c1 is linear and so (19.2.2) gives Ḡ =
∇2F (x). Suppose x1 = x2 = 1 is a trial solution and that λ1 = v
is the initial Lagrange multiplier estimate. We now show the result of
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one iteration of AL-SQP for any v and penalty parameter r. We have
g = ∇F = (1, 2)T and c1 = 1. Moreover

Ḡ = ∇2F =
(

1 0
0 2

)
and so H = Ḡ−1 =

(
1 0
0 1

2

)
.

The matrix A is simply (1, 1). Hence

AHAT = (1, 1)
(

1 0
0 1

2

)(
1
1

)
=

3
2

AHg = (1, 1)
(

1 0
0 1

2

)(
1
2

)
= 2.

Equation (19.2.13) now becomes
(

r

2
+

3
2

)
u = 2 − 1 +

r

2
v

so that
u =

2
r + 3

(
1 +

r

2
v
)

.

Equation (19.2.14) then gives

p =
(

1 0
0 1

2

)(
u − 1
u − 2

)

from which we get

p1 =
2

r + 3

(
1 +

r

2
v
)
− 1 =

rv − r − 1
r + 3

p2 =
1

r + 3

(
1 +

r

2
v
)
− 1 =

rv − 2r − 4
2(r + 3)

.

Hence, the new approximation, x + p, to the minimum of M(x, v, r) is
given by

x+ =
(

1 +
rv − r − 1

r + 3
, 1 +

rv − 2r − 4
2(r + 3)

)T

.

It is now clear that, for any value of v, x+ tends to the solution of
(19.2.15) at (2

3 , 1
3)T as r → 0.

The Lagrange multiplier at the solution of (19.2.15) can easily be
shown to be λ∗

1 = 2
3 . If we use the parameter value v = λ∗

1 = 2
3 in the

calculations for u and p then (19.2.13) gives

u =
2

r + 3

(
1 +

r

2
v
)

=
2

r + 3

(
1 +

r

3

)
=

2
3
.
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Now from (19.2.14) we get

p1 = −1
3

and p2 = −2
3
.

Hence, when v = λ∗
1, we get x+ = x∗ and u = λ∗

1 for any value of r.

Exercises
1. Repeat the worked example from this section but calculating u and

p from (19.2.7) and (19.2.8).
2. Perform one iteration of AL-SQP applied to

Minimize F (x) = x2
2 subject to x2

1+x2
2 = 1 and x1+x2 = 0.75

starting from x1 = x2 = 1
2 and using B = ∇2F (x). How does this

compare with the behaviour of WHP-SQP?

19.3. Results with AL-SQP

AL-SQP denotes the OPTIMA implementation of the augmented
Lagrangian SQP method, in which the inverse Hessian estimate H is
obtained using the Powell modification to the BFGS update [52]. This
method is only implemented with a weak line search.

If we apply AL-SQP to Problem TD1a (with r1 = 0.1, β = 0.25) we
obtain the convergence history shown in Table 19.1.

k F (xk) ||c(xk)|| Itns/ Function Calls

1 3.646 3.2 × 10−1 1/3

2 3.549 2.8 × 10−1 5/11

3 3.502 5.8 × 10−1 11/22

4 3.509 1.3 × 10−3 12/23

5 3.509 1.1 × 10−4 13/24

Table 19.1. AL-SQP solution to Problem TD1a with r1 = 0.1.

Table 19.1 shows progress at the end of each iteration which produces
a “sufficiently large” decrease in the Kuhn–Tucker error measure T
(19.1.2). On these “outer” iterations the algorithm adjusts the values
of r and the multiplier estimates λk. By comparing Table 19.1 with
Table 18.2 we see that AL-SQP converges faster than either of the SUMT

methods with the same values of r1 and β. Progress towards the solution
is much more rapid when penalty parameter and multiplier estimates are
updated frequently, rather than being changed only after an exact mini-
mization of the augmented Lagrangian.

Table 19.2 shows the numbers of iterations and function calls needed
by AL-SQP to solve Problems TD1a–OC3. Comparison with Table 18.4
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TD1a TD2a VLS1a VLS2a TLS1a TLS2a

14/24 7/9 4/6 27/41 57/107 23/37

OC1a(4) OC2a(4) OC1a(6) OC2a(6) FBc OC3(6)

7/8 7/10 8/11 10/16 43/71 10/13

Table 19.2. Performance of AL-SQP on Problems TD1a–OC3.

confirms the advantage of the SQP approach over SUMT. The figures in
Tables 17.1 and 18.1 show that AL-SQP and SOLVER give broadly similar
performance on nonlinearly constrained problems.

Exercise
1. Apply AL-SQP to a modified form of Problem TD1a in which the target

volume is V ∗ = 21.
2. Apply AL-SQP to a modified form of Problem VLS2a which involves

an extra data point (5, 0.1).
3. Extend the comparison between SUMT and SQP methods to include

Problems OC1a(10), OC2a(10) and OC3(10).
4. The sensitivity problem (15.4.1) can be expressed as a constrained

minimization problem

Minimize (x1−x∗
1)

2+(x2−x∗
2)

2 s.t. 2x1x2+40x−1
2 +20x−1

1 = 35.44.

Solve this problem using AL-SQP.
5. Use the results in Tables 17.1, 18.1, 18.4 and 19.2 to discuss the

relative performance of reduced-gradient, SUMT and SQP approaches
on problems with linear and nonlinear constraints.

6. Transform Problems TD1a and TD2a using the yi = x2
i substitution

to obtain solutions which exclude negative dimensions. Solve the
transformed problems using AL-SQP (or other available software) and
compare the results with those for the unmodified problems.

7. Compare the Lagrange multiplier values calculated by P-SUMT,
AL-SUMT and AL-SQP on the problems in Table 19.2 and comment on
their accuracy.

8. Use the problems in Table 19.2 to investigate how the performance
of AL-SQP can be improved by adjustment of the initial penalty
parameter r1 and the reduction factor β.

Overhead costs and runtimes

As in Chapter 14, we can use the optimal control problems to compare
the numbers of iterations and function evaluations needed by constrained



19.3. Results with AL-SQP 207

OC3(50) OC3(75) OC3(100)

P-SUMT 503/1336 716/1949 804/2099

AL-SUMT 297/684 420/980 535/1256

AL-SQP 48/79 62/109 70/118

Table 19.3. Performance of SUMT and SQP on Problem OC3.

minimization problems for larger numbers of variables and constraints.
Results for Problem OC3 are shown in Table 19.3.

In comparison with P-SUMT, AL-SQP uses about one-tenth as many
iterations and AL-SUMT takes about three-fifths as many. The results
in Table 19.3 were all obtained using weak line searches and with the
standard settings r1 = 0.1, β = 0.25. Obviously the behaviour would
be somewhat different if other choices were made but the figures quoted
give a good indication of the relative efficiencies of the SQP and SUMT
approaches.

We now consider how the counts of iterations and function calls in
Table 19.3 translate into execution times. We define

ρ1 =
runtime needed by AL-SQP

runtime needed by P-SUMT

ρ2 =
runtime needed by AL-SUMT

runtime needed by P-SUMT
.

For OC3(50) we find ρ1 ≈ 0.35 and ρ2 ≈ 0.5. For OC3(75) we get ρ1 ≈ 0.41
and ρ2 ≈ 0.47. The relative runtimes of the two SUMT methods seem
to be roughly proportional to numbers of iterations but the compu-
tational cost per iteration of AL-SQP is evidently greater than that of
each QN iteration within SUMT. This can be explained by the fact that
each quasi-Newton step in P-SUMT and AL-SUMT does a similar amount
of work – namely, obtaining a search direction from a matrix-vector
product costing n2 multiplications. For AL-SQP, however, the calcula-
tion of a search direction involves the formation and solution of the l× l
system of equations (19.2.13) which costs about nl2 + ln2 + 1

6 l3 multipli-
cations. Hence, if l = qn (where we assume q ≤ 1) each AL-SQP search
direction is about qn times as expensive as a SUMT one.

In the case of Problem OC3, l ≈ 1
2n and so the search direction calcu-

lation in AL-SQP costs about 3
4n3 multiplications. If we assume that

the other operations on each iteration – the line search, the matrix
update and so on – are similar for both methods then if AL-SQP takes
k1 iterations and P-SUMT takes k2 iterations we can expect ρ1 to satisfy
a relationship of the form

ρ1 ≈ k1

k2
(αn + β). (19.3.1)
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The entries in Table 19.3 indicate that α and β can be obtained from

0.35 =
48
503

(50α + β); 0.41 =
62
716

(75α + β).

and so we deduce
ρ1 ≈ k1

k2
(0.043n + 1.53). (19.3.2)

Thus, for large n, the time advantage of AL-SQP over P-SUMT may not
be as significant as the iteration counts suggest.

For Problems OC1a and OC2a, l does not depend on n. In such cases,
the cost of forming and solving (19.2.13) varies roughly with n2 and ρ1

can be expected to be more nearly proportional to k1/k2. When this
happens (and also when l = qn and q � 1) Al-SQP is likely to have a
greater advantage over SUMT.

Exercises
1. Use the results in Table 19.3 to derive an expression similar to (19.3.2)

for ρ2, the ratio of run-times for AL-SUMT and P-SUMT on Problem
OC3.

2. Obtain results similar to those in Table 19.3 to compare the perfor-
mance of the SUMT and SQP approaches on Problem OC2a(n). Use
measured runtimes to deduce expressions similar to (19.3.2) to give
the relative runtimes of AL-SQP and AL-SUMT compared with P-SUMT.

19.4. SQP line searches and the Maratos effect

We have already mentioned that a penalty function can be used as the
basis of the line search in WHP-SQP. For problems with highly nonlinear
constraints, penalty function line searches can experience a difficulty
which can be explained by considering a problem with just one con-
straint c(x) = 0. Suppose xk is an estimate of the solution and p is the
search direction given by an SQP subproblem at xk. If the constraint is
nonlinear and if c(xk) is close to zero then it is possible that

||xk + p − x∗|| < ||xk − x∗|| and also |c(xk + p)| > |c(xk)|.

In such a case it would probably be appropriate to accept the new point
xk +p. However, if the line search is based on the exact penalty function

E(x, r) = F (x) +
1
r
|c(x)|

then, for small values of r, the increase in constraint violation may imply

E(xk + p, r) > E(xk, r)
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and so the line search will reject xk + p. The subsequent step-length
calculation may yield xk+1 = xk + sp where s � 1. This phenomenon
is called the Maratos effect [46]. It can sometimes cause very slow con-
vergence of SQP methods when the iterates are close to the constraints
(especially when near the solution).

The situation just outlined can arise whatever penalty function is used
in the SQP line search. All penalty functions involve a weighted com-
bination of the function and the constraints and the Maratos effect can
occur whenever the constraint contribution is overemphasised. Unfor-
tunately there are no hard-and-fast rules for choosing penalty parameters
to ensure that the function and constraints are well balanced on every
SQP iteration.

Replacing line searches with filters

We may be able to avoid the Maratos effect by dealing with function
values and constraint violations separately, rather than combining them
in a penalty function. We give a brief description of this approach, again
using an example with a single equality constraint c(x) = 0.

We let x0 be the initial guessed solution and write Fk = F (xk),
ek = |c(xk)|. If p is the search direction then we can accept the new
point x1 = x0 + sp if

either F1 < F0 or e1 < e0.

If only one of these inequalities holds then both x0 and x1 are included
in a list of reference points called a filter. However, if both inequalities
are satisfied then x1 is said to dominate x0 and the filter will contain
only the point x1.

Now let us suppose the filter consists of x0 and x1. Then the next
SQP iteration will accept a point x2 = x1 + sp if, for j = 0, 1,

either F2 < Fj or e2 < ej .

That is, a new point must be better (in terms of either function value
or constraint violation) than all the points in the current filter. If this
happens, the point x2 will be added to the filter for use on the next
iteration. Furthermore, either x0 or x1 can be removed from the filter
if it is dominated by x2.

We can illustrate the idea by using a plot in (F, e)-space. In
Figure 19.1, A, B, C and D are points in the filter at the start of an
iteration.

Any new point below or to the left of the dotted line is acceptable
(e.g., P, Q and R). However, P does not dominate any of A, B, C or D
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F-value
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| :
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| :
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|________________________:_____________________________ e-value

| :

| D...........................

| R

|

Figure 19.1. An illustration of a filter.

and if this represents the new point then the filter for the next iteration
will be defined by P, A, B, C, D. The point Q dominates A and B and
if this were the outcome of the SQP step then the next filter would be
Q, C, D. Finally, if R were the new point then it would dominate all of
the current filter and the next iteration would only accept points to left
of or below R.

The above description can be extended easily to problems with several
constraints if we let ek denote ||c(xk)||. For more details, see the original
work by Fletcher and Leyffer [23].



Chapter 20

Inequality Constrained Optimization

20.1. Problems with inequality constraints

Up till now, we have dealt with restrictions like xi ≥ 0 by using
transformations of the variables such as xi = y2

i . We now consider
better ways of handling inequality constraints. This enables us to solve
the problems listed below (some of which are extended forms of earlier
examples).

Problem TD1b is a version of TD1a with lower bounds on the tank dimen-
sions:

Minimize 2x1x2 + 2x1x3 + x2x3 (20.1.1)

subject to x1x2x3 = V ∗ and xi ≥ xmin, i = 1, 2, 3. (20.1.2)

Problem TD2b is a similar variant of the maximum-volume problem
TD2a.

Minimize − x1x2x3 (20.1.3)

s.t. 2x1x2 + 2x1x3 + x2x3 = S∗ and xmax ≥ xi ≥ xmin, i = 1, 2, 3.
(20.1.4)

We can obtain modified forms of the data-fitting problems VLS1 and
VLS2 by restricting the maximum size of the residuals. Problem VLS1b is

Minimize
m∑

i=1

(zi − x1 − x2ti)2 (20.1.5)

subject to rmax ≥ zi −x1 −x2ti ≥ −rmax for i = 1, . . . ,m. (20.1.6)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 20, c© Springer Science+Business Media, LLC 2008
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Problem VLS2b is

Minimize
m∑

i=1

(zi − x1e
x2ti)2 (20.1.7)

subject to rmax ≥ zi − x1e
x2ti ≥ −rmax for i = 1, . . . ,m. (20.1.8)

The optimal control problems from Section 3.3 can be extended to
include bounds on the size of the applied accelerations. Problem OC1b(n)

is

Minimize x2
1 + x2

n +
n∑

k=2

(xk − xk−1)2 (20.1.9)

s.t. sn = sf and un = uf and xmax ≥ xi ≥ −xmax for i = 1, . . . , n
(20.1.10)

where sn and un are given by (3.3.1).

Problem OC2b(n) has the same constraints (20.1.10) but a different
objective function

Minimize x2
1 + x2

n +
n∑

k=2

(
1 − xk

xk−1

)2

. (20.1.11)

Problem OC3a(n) is an inequality constrained variant of Problem OC3

given by (16.1.12)–(16.1.16) which features an upper bound on speed.
It is written as

Minimize x2
1 + x2

n +
n∑

i=2

(xi − xi−1)2 (20.1.12)

subject to

uk − uk−1 − (xk − cDu2
k)τ = 0 for k = 1, . . . , n − 1 (20.1.13)

umax ≥ uk for k = 1, . . . , n − 1 (20.1.14)

uf − un−1 − (xn − cDu2
f )τ = 0 (20.1.15)

sn − sf = 0 (20.1.16)

where sn is given by

sk = sk−1 + uk−1τ +
1
2
(xk − cDu2

k)τ
2 for k = 1, . . . , n. (20.1.17)
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We can also consider a constrained version of the preventive
maintenance problem (see Section 13.2) in which the variables x1, . . . , xn

(the intervals between PMs) are subject to a lower bound. From the
values of these xi we deduce other dependent variables

tn =
n∑

k=1

xk; yk =

⎛

⎝
k−1∑

j=1

bjxj

⎞

⎠+xk and y+
k−1 = yk−1+(1−bk−1)xk−1.

Using notation from the section preceding (13.2.3), Problem PM1a(n) is

Minimize
γr + (n − 1) + γm{Ĥ(y1) +

∑n
k=2[Ĥ(yk) − Ĥ(y+

k−1)]}
tn

(20.1.18)

subject to xi ≥ xmin, for i = 1, . . . , n (20.1.19)

where γr, γm and Ĥ(t) are given in (13.2.4).
Before considering optimality conditions for inequality constrained

problems we first consider some new optimization applications.

Minimax approximation

One way of fitting a model z = φ(x, t) to a dataset (ti, zi), i = 1, . . . ,m
is to find values of the parameters xi so as to minimize the sum of squared
residuals

m∑

i=1

(zi − φ(x, ti))2.

An alternative approach would be to choose the xi to minimize the
largest residual. This is called the minimax problem which is posed as

Minimize max
1≤i≤m

|zi − φ(x, ti)|. (20.1.20)

Clearly the objective function in (20.1.20) is nonsmooth and is therefore
more difficult to minimize than a sum of squared terms. However, we
can also calculate minimax approximations by solving a differentiable
constrained minimization problem. If there are n parameters xi appea-
ring in the model function φ then a solution to (20.1.20) can be obtained
from Problem MMX(n)

Minimize xn+1 (20.1.21)

subject to xn+1 ≥ zi − φ(x, ti) ≥ −xn+1 i = 1, . . . ,m. (20.1.22)
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Hence, if we were fitting the model z = φ(x, t) = x1t to the data

t1 = 1, z1 = 1; t2 = 2, z2 = 1.5

the minimax solution would be obtained from

Minimize x2

subject to x2 ≥ 1 − x1 ≥ −x2; x2 ≥ 1.5 − 2x1 ≥ −x2.

It is interesting to compare minimax approximation with least squares.
We consider an example involving data from a test on the reliability of
a certain electrical component. For a sample batch of components we
record the fraction, z, still surviving in working order after t months of
continuous operation. The sample originally contained 1000 items and
the number surviving is shown in Table 20.1

Months 0 1 2 3 4 5 6

Survivors 1 0.947 0.894 0.848 0.792 0.740 0.693

Months 7 8 9 10 11 12

Survivors 0.656 0.610 0.572 0.535 0.518 0.514

Table 20.1. Monthly data for component failures.

Suppose we seek to fit a straight line to this data. Solving the minimax
problem (20.1.21), (20.1.22) (by methods described in later chapters) the
best approximation is found to be

z = 0.967 − 0.0405t.

If we fit a straight line to the same data using the least squares approach
then the best approximation is

z = 0.973 − 0.0427t.

Although these two lines are similar, they do represent different ways
of fitting the data. This can be seen in Figure 20.1. The least-squares
line stays closer to the majority of the data points whereas the minimax
line sacrifices this closeness in order to reduce the error at the last point
on the graph. This point (12, 0.514) is the one which deviates most
from the line of the rest of the data. It is quite common for mini-
max approximations to pay more attention to such points which are
sometimes called outliers.
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Figure 20.1. Comparing minimax and least squares fits to failure data.

Worst-case optimization

The minimax approach to data-fitting is also closely related to the
idea of worst-case analysis. If we want to optimize a complex enginee-
ring system we may choose to do so in a way which gives the “best”
performance under “normal” operating conditions. Another approach,
however, would be to configure the system so as to counteract the adverse
consequences of abnormal behaviour. To put it another way, we could
devise an optimal business plan which seeks to maximize manufacturing
profit under the assumption that customer demand and raw material
supply remain more or less constant or we could put the emphasis on
minimizing the losses that would occur if some foreseeable (but fairly
unlikely) worst-case event were to occur such as a major change in
currency exchange rates that damaged export prospects.

This can be illustrated if we consider the optimal control problems
OC1 and OC2. In these problems we seek to optimize a function which
represents an overall measure of the smoothness of the train’s motion.
An alternative would be to seek to minimize the worst instance of non-
smoothness. Thus, instead of minimizing the sum of squared terms

n∑

i=1

(xi − xi−1)2

we could minimize
max

1≤i≤m
|xi − xi−1|.
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Introducing an extra variable as in the previous section, we can use
notation from the relevant Section of chapter 3 and pose Problem OC4(n)

as

Minimize ρ(xn+1 + x2
1 + x2

n) + (s − sf )2 + (u − uf )2

(20.1.23)

subject to − xn+1 ≤ (xi − xi−1) ≤ xn+1 for i = 2, . . . , n.

(20.1.24)

This is an inequality constrained quadratic programming problem. We
can also consider Problem OC5(n) which has nonlinear constraints and
is

Minimize ρ(x2
n+1 + x2

1 + x2
n) + (s − sf )2 + (u − uf )2 (20.1.25)

subject to (xi − xi−1)2 ≤ x2
n+1 for i = 2, . . . , n. (20.1.26)

20.2. Optimality conditions

The problems we have discussed in the previous section are all instances
of the general nonlinear programming problem of finding x1, . . . , xn to
solve

Minimize F (x) (20.2.1)

subject to ci(x) = 0, i = 1, . . . , l (20.2.2)

and ci(x) ≥ 0, i = l + 1, . . . ,m. (20.2.3)

There is no loss of generality in writing constraints in the form (20.2.3)
because an inequality such as x1 + x2 ≤ 1 can also be expressed as
1 − x1 − x2 ≥ 0.

Definition If F and all the ci in (20.2.1)–(20.2.3) are linear functions
then this is a linear programming (LP) problem. Specialised solution
methods for this case can be found in [63].

Definition If, in (20.2.1)–(20.2.3), the function F is quadratic and the
ci are linear then it is a quadratic programming (QP) problem.

Definition If x satisfies the equality and inequality constraints (20.2.2),
(20.2.3) it is said to be feasible. Otherwise it is called infeasible.

First-order optimality conditions at a solution of (20.2.1)–(20.2.3) are
extensions of the KKT conditions already stated for equality constrained
problems.



20.2. Optimality conditions 217

Proposition If x∗ is a local solution to (20.2.1)–(20.2.3) then the
optimality conditions are as follows. The solution x∗ must be feasible,
and so

ci(x∗) = 0, i = 1, . . . , l (20.2.4)

ci(x∗) ≥ 0, i = l + 1, . . . ,m. (20.2.5)

Furthermore, the Lagrange multipliers λ∗
i , i = 1, . . . ,m associated with

the constraints must satisfy

∇L(x∗, λ∗) = ∇F (x∗) −
m∑

i=1

λ∗
i ∇ci(x∗) = 0 (20.2.6)

λ∗
i ci(x∗) = 0, i = l + 1, . . . ,m (20.2.7)

and λ∗
i ≥ 0, i = l + 1, . . . ,m. (20.2.8)

The so-called complementarity condition (20.2.7) states that an inequa-
lity constraint is either satisfied as an equality at x∗ or it has a zero
Lagrange multiplier.

Definition If l+1 ≤ i ≤ m and ci(x∗) = 0 we say that the ith inequality
is binding, and x∗ lies on an edge of the feasible region.

Definition If λ∗
i = 0 when l + 1 ≤ i ≤ m then the ith inequality is said

to be nonbinding and x∗ is inside the ith constraint boundary.

Binding and nonbinding constraints are illustrated in Figure 20.2
which shows the contours of an objective function and three linear
inequality constraints which define the feasible region as the interior and
edges of the triangle ABC. The unconstrained minimum is at
(0, 0) in the centre of the figure and hence the constrained minimum
is at the point X lying on the edge AC. The constraint represented by
AC is binding but those represented by AB and BC are nonbinding.

The nonnegativity condition (20.2.8) on the Lagrange multipliers for
the inequality constraints ensures that the function F will not be reduced
by a move off any of the binding constraints at x∗ to the interior of the
feasible region.

The uniqueness of the Lagrange multipliers depends on the normals
to the binding constraints at x∗ being linearly independent.

Second-order optimality conditions for (20.2.1)–(20.2.3) involve
feasible directions for the binding constraints at x∗. Let I∗ be the set of
indices

I∗ = {i | l + 1 ≤ i ≤ m and ci(x∗) = 0} (20.2.9)
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Figure 20.2. Binding and nonbinding constraints.

and let N be the matrix whose first l rows are ∇c1(x∗)T , . . . ,∇cl(x∗)T

and whose remaining rows are ∇ci(x∗)T for i ∈ I∗. Then a second-order
condition for x∗ to be a solution of (20.2.1)–(20.2.3) is

zT∇2L(x∗, λ∗) ≥ 0 for any z such that Nz = 0. (20.2.10)

This is equivalent to zT∇2F (x∗)z ≥ 0 if all the constraints are linear.

Exercise
Consider the problem

Minimize F (x) subject to c1(x) ≥ 0.

Suppose x∗ and λ∗
1 satisfy optimality condition (20.2.7) and that

c1(x∗) = 0 but that λ∗
1 < 0. Show there is a feasible point x̃ = x∗ + δ for

which F (x̃) < F (x∗). What does this imply about the optimality of x∗?

A worked example

Consider the problem

Minimize F (x) = x2
1 + 3x2

2 (20.2.11)

subject to c1(x) = x1 + 5x2 − 1 ≥ 0 and c2(x) = x1 + 1 ≥ 0.

(20.2.12)

The solution values x∗
1, x∗

2, λ∗
1, λ∗

2 must satisfy

x1 + 5x2 − 1 ≥ 0 and x1 + 1 ≥ 0 (20.2.13)
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2x1 − λ1 − λ2 = 0 and 6x2 − 5λ1 = 0 (20.2.14)

λ1(x1 + 5x2 − 1) = 0 and λ2(x1 + 1) = 0 (20.2.15)

λ1 ≥ 0 and λ2 ≥ 0. (20.2.16)

Rather than attempting to solve this system of equations and inequalities
we simply use it to test the optimality of some candidate solutions.

Suppose first that we try the point x1 = −1, x2 = 2/5 at which both
constraints are binding. From (20.2.14), the corresponding Lagrange
multipliers are

λ1 =
12
25

and λ2 = −62
25

.

This violates (20.2.16) so we deduce that (−1, 2/5) is not a solution.
Next we investigate the possibility of a solution at x1 = −1, x2 = 1

with the second constraint binding but not the first. This implies λ1 = 0.
But if we put λ1 = 0 in the first equation of (20.2.14) then we get
λ2 = 2x1 = −2 which violates (20.2.16). Alternatively, if we consider
the second equation in (20.2.14) it implies that λ1 = 6/5 which conflicts
with the fact that λ1 must be zero. Thus the optimality tests fail on two
counts and so the feasible point (−1, 1) is not a solution.

Finally we consider whether there is a solution with the first constraint
binding but not the second. This will mean that λ2 = 0 and then
(20.2.14) implies

2x1 − λ1 = 0 and 6x2 − 5λ1 = 0.

For these equations to be consistent we need 2x1 = 6x2/5; and combining
this with the first equation in (20.2.13) we get x1 = 3/28, x2 = 5/28. It
then follows that λ1 = 6/28, λ2 = 0 and all the first-order optimality
conditions are satisfied.

Exercises
1. By considering the first-order optimality conditions for the problem

Minimize − 3x1 − 4x2 s.t. x1 ≥ 0; x2 ≥ 0; 1 − x2
1 − x2

2 ≥ 0

determine which (if any) of the following points is a solution:
(i) x1 = x2 = 0; (ii) x1 = 1, x2 = 0; (iii) x1 = 4/5, x2 = 3/5

2. Finding the model φ = x1t which gives a minimax fit to the two data
points (ti, zi) = (1, 1), (2, 1.5) leads to the problem

Minimize x2 s.t. x2 ≥ 1 − x1 ≥ −x2; x2 ≥ 1.5 − 2x1 ≥ −x2.
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Use a rough sketch to show that the solution line must pass below the
first point and above the second. This suggests that the two binding
constraints are

x2 − 1 + x1 ≥ 0 and 1.5 − 2x1 + x2 ≥ 0.

Hence deduce values for the two nonzero Lagrange multipliers at the
solution and check whether all the optimality conditions are satisfied.

20.3. Transforming inequalities to equalities

Before considering methods which handle inequality constraints directly,
we mention briefly an approach which allows Problems (20.2.1)–(20.2.3)
to be tackled by the techniques we have described in the previous three
chapters. A problem with inequality constraints can be transformed
into one with only equalities if we introduce extra variables. Thus the
problem

Minimize F (x) subject to ci(x) ≥ 0, i = 1, . . . ,m (20.3.1)

can be rewritten as

Minimize F (x) subject to ci(x) − w2
i = 0, i = 1, . . . ,m.

(20.3.2)
Here w1, . . . , wm are called squared slack variables. The conversion of
(20.3.1) into (20.3.2) can have certain benefits when both n, the number
of variables, and m, the number of constraints, are quite small. However,
for larger problems, the fact that (20.3.2) involves n + m variables is
usually a disadvantage.

Exercises
1. Solve the problem

Minimize x2
1 + x2 subject to x1 + x2 ≥ 3

by using a squared slack variable to transform it into an equality con-
strained problem. Show that the solution to the transformed problem
satisfies the optimality conditions for the original one.

2. Show that, in general, the optimality conditions for (20.3.1) are con-
sistent with those for (20.3.2).

3. Write down an optimization problem which uses squared slack vari-
ables to transform VLS1b into one involving just equality constraints.
What is the relationship between the Lagrange multipliers for the
two problems?
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20.4. Transforming inequalities to simple bounds

The simplest forms of inequality constraint are simple bounds on the
variables. A problem with general inequality constraints can be trans-
formed into one with only equality constraints and simple bounds. Thus
the problem (20.3.1) can be rewritten as

Minimize F (x) (20.4.1)

subject to ci(x) − wi = 0, i = 1, . . . ,m and wi ≥ 0, i = 1, . . . ,m.
(20.4.2)

The quantities w1, . . . , wm in (20.4.2) are called slack variables. The
conversion of (20.3.1) into (20.4.1), (20.4.2) has the advantage that the
inequalities are simple enough to be handled efficiently by the reduced-
gradient approach, as outlined in the next chapter. However, when m is
large, (20.4.1), (20.4.2) has the disadvantage that it involves many more
variables than (20.3.1).

Exercises
1. Solve the problem

Minimize x2
1 + x2 subject to x1 + x2 > 3

using a slack variable to convert the inequality into an equation and
a bound.

2. Show that the optimality conditions for (20.4.1), (20.4.2) are equi-
valent to those for (20.3.1).

20.5. Example problems

We now introduce some specific examples involving inequality
constraints.

Problem TD1b is the tank design problem with simple bounds, given by
(20.1.1), (20.1.2) with V ∗ = 20 and xmin = 1.9. The starting guess
is x1 = x2 = 2, x3 = 5. The solution of the original unconstrained
problem TD1 is not a feasible point for TD1b and so the lower bound on
x1 is binding. The tank dimensions are

x1 = 1.9, x2 = x3 ≈ 3.34 giving surface area S∗ ≈ 35.185.

Problem TD2b comes from (20.1.3), (20.1.4) with xmax = 3.2, xmin = 1.9
and S∗ = 35. The starting guess is x1 = x2 = 2, x3 = 5 and the solution
is

x1 ≈ 1.934, x2 = x3 = 3.2.

Hence the upper bounds on x2 and x3 are binding.
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Problem VLS1b is given by (20.1.5), (20.1.6) with data points

(ti, zi) = (0, 3), (1, 8), (2, 12), (3, 17)

and rmax = 0.275. We use the same starting guess as for the uncon-
strained problem VLS1. The solution is x1 = 3.175, x2 = 4.55. The
binding constraints involve the residuals at the second and third data
points. The optimum value of the sum of squared errors is 0.2125, which
is greater than the minimum value 0.2 which can be obtained if the con-
straints are removed.

Problem VLS2b is given by (20.1.7), (20.1.8) with the data points

(ti, zi) = (0, 1), (1, 0.5), (2, 0.4), (3, 0.3), (4, 0.2)

and rmax = 0.08. We use the same starting guess as for the equality
constrained problem VLS2a. However the solution is different because of
the inequality constraints. The solution of VLS2b is at x1 ≈ 0.924, x2 ≈
−0.466. The binding inequalities are the upper bound on the residual at
the second data point and the lower bound on the residual at the fourth
point. The minimum value of the sum of squared residuals ≈ 0.0218.
This is of course larger than the sum of squared residuals (0.0185) at
the solution of VLS2a when there are no constraints.

Problems OC1b(n) and OC2b(n) are given by (20.1.9)–(20.1.11). We use
the values

τ =
3
n

, u0 = uf = 0, s0 = 0 and sf = 1.5.

The limiting value for the accelerations, xi, is xmin = 0.7. The starting
guess is the same as for the corresponding equality constrained problems
OC1a(n) and OC2a(n). We can tell from the solutions to the unbounded
problem OC1a that this limit on the acceleration will influence the solu-
tion.

Problem OC3a(n) is defined by (20.1.12)–(20.1.17) using the same values
of τ, u0, uf and sf as in OC1b(n) and OC2b(n), and taking umax = 0.8.

Problem PM1a(n) involves (20.1.18), (20.1.19) with data from Section 13.2
and xmin taken as 0.5. The starting guess is xi = 0.6, (i = 1, . . . , n).
Solutions for various values of n are the same as those given in Section
13.2 which were obtained by unconstrained minimization of the function
(13.2.3) with the transformation of variables yi = x2

i .

Problem MMX1 involves fitting a minimax straight line to the dataset
(ti, zi) given by Table 20.1. This is done by solving problem (20.1.21),
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(20.1.22) with n = 3 and φ(x, ti) = x2 + x1ti. The starting guess is
x1 = x2 = x3 = 0. The solution has x1 ≈ 0.967, x2 ≈ 0.0405, x3 ≈
0.033.

Consideration of the graphs in Figure 20.1 shows that a straight line
is not a particularly good choice of model function for the data in
Table 20.1. The data points follow a curve which appears to be flat-
tening out as t increases and therefore a negative exponential model
might be more appropriate. This is done via Problem MMX2 which
solves (20.1.21), (20.1.22) with n = 3 and

φ(x, ti) = x2e
x1ti .

The starting guess is x1 = x2 = x3 = 0 and the solution is

x1 ≈ 0.984, x2 ≈ −0.0574, x3 ≈ 0.01954.

Problem OC4(n) has function and constraints given by (20.1.23) and
(20.1.24). The starting guesses for the accelerations x1, . . . , xn are the
same as for Problem OC1; and the initial value of xn+1 = 1.5. When
n = 6 the solution is

x1 = x3 ≈ 0.398, x2 = −x5 ≈ 1.19, x4 = x6 ≈ −0.393.

These cause the difference xi−xi−1 to have constant magnitude ≈ 0.792
for i = 1, . . . , 6. The related Problem OC5(n) has function and con-
straints given by (20.1.25) and (20.1.26). The starting guess is the same
as that for OC4(n).

Exercises
1. Formulate an inequality constrained problem based on (15.4.1) in

which the objective is to determine the smallest change to the tank
dimensions such that the surface area exceeds 35.5. Also derive a
problem which seeks the largest change in the variables such that the
surface area does not exceed 35.5.

2. In (15.4.1) and the previous question the smallest and largest changes
in the variables are expressed in least-squares form. Formulate
corresponding optimization problems to find the smallest (or largest)
change in either x1 or x2 for which the surface area exceeds (does not
exceed) 35.5.



Preventive maintenance

Regular oiling
of all moving parts is like
turning the clock back

which begs the question
can routine lubrication
keep the clock ticking?



Chapter 21

Extending Equality Constraint
Methods to Inequalities

21.1. Quadratic programming with inequalities

When (20.2.1)–(20.2.3) is an inequality constrained quadratic program-
ming problem (IQP), a solution procedure can be based on repeated use
of the optimality conditions for an EQP. We describe this approach for
an IQP which only has inequality constraints; the extension to a mixed
equality-inequality problem is straightforward. We consider the problem

Minimize
1
2
(xT Gx) + hT x + c (21.1.1)

subject to Âx + b̂ ≥ 0 (21.1.2)

and we assume first that G is positive-definite.
We begin by identifying an active set of constraints. This is an esti-

mate of the ones which are binding at the solution. We might, for
example, simply guess that the first t rows of Â and b̂ correspond to the
active constraints (although we can usually make more informed choices
than this).

We now let A be the matrix and b the vector formed from the rows
of Â and b̂ corresponding to active constraints. If we treat the active
constraints as if they were equalities and ignore all other constraints
then we can obtain a trial solution (x̃, λ̃) by minimizing (21.1.1) subject
to

Ax + b = 0.

We can do this by solving the EQP optimality conditions (17.1.4). If we
find

Âx̃ + b̂ ≥ 0,

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 21, c© Springer Science+Business Media, LLC 2008
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(so that x̃ does not violate any inactive constraints) and if

λ̃T (Âx̃ + b̂) = 0 and λ̃ ≥ 0

then optimality conditions (20.2.4)–(20.2.8) are all satisfied and the IQP
is solved by x∗ = x̃, λ∗ = λ̃. If, however, x̃ and λ̃ are not optimal we
must change the active set and solve another EQP. This process can
be repeated until the active set becomes the binding set for problem
(21.1.1)–(21.1.2).

The choice of a new active set can be based on two considerations. The
first is that any new constraints which are violated at x̃ can be regarded
as candidates for being added to the current active set. Secondly, any
active constraints which correspond to a negative element in λ̃ are can-
didates for deletion from the current active set.

The algorithm given below formalises the ideas just outlined. For
convenience, we use âi to denote the ith row of Â.

Inequality QP algorithm for a positive-definite Hessian

Choose an initial point x and set λ1 = · · · = λm = 0.
Repeat
Identify the active constraints as being those for which

âT
i x + b̂i < 0 or (âT

i x + b̂i = 0 and λi ≥ 0)

Renumber constraints so the active set is i = 1, . . . , t
Set g = Gx + h and bi = âT

i x + b̂i for i = 1, . . . , t
Find p and μ to solve the EQP

Minimize
1
2
(pT Gp) + gT p s.t. âT

i p + bi = 0, i = 1, . . . , t (21.1.3)

Set s = 1 , λi = μi (i = 1, . . . , t) and λi = 0 (i = t + 1, . . . ,m)
Repeat for i = t + 1, . . . ,m (i.e. for all inactive constraints)

if âT
i p < 0 set s = min(s,−(âT

i x + b̂i)
âT

i p
(21.1.4)

Replace x by x + sp
until the optimality conditions

Âx + b̂ ≥ 0 Gx + h − ÂT λ = 0 λ ≥ 0

are all satisfied.

Implementations of this approach may differ in the method of solving
(21.1.3) and also in rules about how many constraints may be added
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to or dropped from the active set in a single iteration. The stepsize
calculation (21.1.4) checks all the inactive constraints that might be
violated by a step along p and ensures that no more than one constraint
can be added to the active set on the current iteration. It may also be
advisable to allow only one constraint at a time to be deleted from the
active set although the algorithm outlined above does not impose such
a restriction. (For a fuller discussion see Fletcher [25].)

We now consider the possibility that G in (21.1.1) may be indefinite.
This complicates the active set approach because, even when the original
problem (21.1.1), (21.1.2) has a unique solution, it may happen that the
EQP (21.1.3) cannot be solved because G is not positive-definite on the
subspace of feasible directions for some choices of the active set. One
way to deal with this difficulty is to use the reduced-gradient method
for solving the EQP subproblem (see Section 17.3). If ZT GZ in (17.3.6)
is not positive-definite then negative diagonal terms will appear during
an attempt to calculate its Cholesky factors. As explained in Chapter 9,
there are variants of the Cholesky method (e.g., [60]) which correct such
negative terms and hence implicitly create a modified reduced-Hessian
which is then used to give a descent direction for the objective function.
Further details of this are outside the scope of this section.

An example

Consider the IQP

Minimize F (x) = x2
1 + 3x2

2

subject to c1(x) = x1 + 5x2 − 1 ≥ 0 and c2(x) = x2 ≥ 0.

In the notation of the general problem (21.1.1), (21.1.2),

G =
(

2 0
0 6

)
, h =

(
0
0

)
, c = 0, Â =

(
1 5
0 1

)
, b̂ =

(
−1
0

)
.

If we choose x = (0, 0)T as the starting point then both constraints are
treated as active and so A = Â and b = b̂. Using the notation in the
IQP algorithm,

g = Gx + h =
(

0
0

)

and we obtain a search direction p by solving the EQP subproblem

Minimize p2
1 + 3p2

2

subject to p1 + 5p2 − 1 = 0 and p2 = 0.
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Here p is determined entirely by the constraints as (1, 0)T and so the new
solution estimate is x+ p = (1, 0)T . We get the Lagrange multipliers for
the subproblem by solving the optimality conditions

2p1 − λ1 = 0; 6p2 − 5λ1 − λ2 = 0

which gives
λ1 = 2, λ2 = −5λ1 = −10.

Hence the first EQP subproblem has yielded a point which is feasible
but is not optimal because λ2 is negative.

For the next iteration we drop the second constraint from the active
set and so A is just the first row of Â and b = Ax + b̂1 = 0. Now
g = Gx + h = (2, 0)T and b = 0 and the EQP subproblem is

Minimize p2
1 + 3p2

2 + 2p1

subject to p1 + 5p2 = 0.

Now p1, p2 and the Lagrange multiplier λ1 must satisfy

p1 + 5p2 = 0; 2p1 + 2 − λ1 = 0; 6p2 − 5λ1 = 0.

Solving these equations by any method gives

p1 = −25
28

, p2 =
5
28

and λ1 =
6
28

.

Hence after the second iteration the estimated solution x + p is

x1 =
3
28

, x2 =
5
28

,

with Lagrange multipliers

λ1 =
6
28

and λ2 = 0.

It is left to the reader to show that this satisfies all the optimality con-
ditions for the original problem.

Exercise
Use the IQP algorithm to solve the example problem above starting from
the feasible initial guess x = (1, 1)T . Repeat the solution starting from
the infeasible point x = (2.5, −0.2)T .
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21.2. Reduced-gradients for inequality constraints

We can combine an active-set strategy with the reduced-gradient
approach from Section 17.3 to solve problems with a nonquadratic
objective function F (x) and linear inequality constraints Âx + b̂ ≥ 0.
Whenever the active set changes, however, it will necessary to recompute
the Y and Z basis matrices used in (17.3.5)–(17.3.7).

Reduced-gradient algorithm for linear inequality constraints

Choose an initial feasible point x0 and set λ0 = 0
Choose B0 as a positive-definite estimate of ∇2F (x0).
Repeat for k = 0, 1, 2, ..
Set gk = ∇F (xk)
Select active constraints as those with ci(xk) = 0 and λki

≥ 0
Get Ak as the matrix of active constraint normals at xk

Obtain Yk and Zk as basis matrices for the range and null spaces of Ak

Determine z from ZT
k BkZkz = −ZT

k gk and set pk = Zkz
Find λk+1 by solving Y T

k AT
k λ = Y T

k gk + Y T
k Bkpk

Perform a line search to get xk+1 = xk + spk so F (xk+1) < F (xk).
Do a quasi-Newton update of Bk with δ = xk+1 − xk, γ = gk+1 − gk

until ||ZT gk|| is less than a specified tolerance.

Note that the calculation of the line search step in this algorithm
must ensure that no new constraints are violated. Hence the stepsize
s is subject to an upper limit which allows at most one new constraint
to become binding at xk+1. This can be calculated as in (21.1.4) in the
IQP algorithm in the previous section. This means the line search will
in general be weak rather than perfect.

The algorithm given above can be extended to deal with nonlinear
inequalities if a restoration step is included, as described in Section 18.1.

Reduced-gradient methods for simple bounds

One case where Z is easy to calculate (which makes the reduced-gradient
approach very attractive) is when a constrained optimization problem
involves no equalities and all the inequalities are simple bounds on the
variables

li ≤ xi ≤ ui i = 1, . . . , n.

In this situation we can split the variables at the start of each iteration
into those which are “fixed” (i.e., on their bounds) and those which
are “free”. If xk is the solution estimate at the start of iteration k
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then the bound on the ith variable is active if xki
is fixed, which means

that

(xki
= li and gki

> 0) or (xki
= ui and gki

< 0). (21.2.1)

The Z matrix whose columns span the space of the free variables can
then be taken simply as a partition of the identity matrix.

When taking a step from xk to xk+1 along a search direction pk, the
stepsize must ensure that no new bounds are violated. A maximum
stepsize to force each free variable xki

to stay within its bounds can be
calculated as

σi =

{
(ui − xki

)/pki
if pki

> 0
(li − xki

)/pki
if pki

< 0.
(21.2.2)

Reduced-gradient algorithm for simple bounds

Choose an initial feasible point x0

Choose B0 as a positive definite estimate of ∇2F (x0).
Repeat for k = 0, 1, 2, . . .
Set gk = ∇F (xk)
Set Zk to be the n × n identity matrix
Repeat for i = 1, . . . , n
If xki

is such that (21.2.1) holds delete ith column of Zk.
Solve ZT

k BkZkz = −ZT
k gk and set pk = Zkz

Use a line search to find s so that F (xk + spk) < F (xk)
Repeat for each free variable xki

calculate σi from (21.2.2) and set s = min(s, σi)
Set xk+1 = xk + spk

Update Bk using δ = xk+1 − xk and γ = gk+1 − gk

until ||ZT
k gk|| < specified tolerance.

Exercise
Consider the problem

Minimize F (y) = yT Qy + 100(eT y − 1)2

subject to yi ≥ 0, i = 1, . . . , n

where n = 3, e = (1, 1, 1)T and

Q =

⎛

⎜⎝
0.0181 −0.0281 −0.00194
−0.0281 0.0514 0.00528
−0.00194 0.00528 0.0147

⎞

⎟⎠ .

Use the reduced gradient approach to solve this problem, starting from
the guess y1 = y2 = 0, y3 = 1 and taking B as the true Hessian ∇2F .
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Numerical results with SOLVER

The GRG reduced-gradient method [43] implemented in SOLVER [29, 48]
can be applied to inequality constrained QPs and also to more general
problems with inequality constraints. As mentioned before, SOLVER is
more flexible than the reduced-gradient algorithm given above and it
can be started at an infeasible point. The first few iterations locate a
feasible point and then the algorithm proceeds as outlined in the previous
section. SOLVER can also deal with nonlinear inequality constraints by
means of a restoration step strategy of the kind described in section 18.1.

Table 21.1 shows the number of iterations needed by SOLVER to con-
verge for some of the problems listed at the end of the previous chapter.
(The bracketed figures show how many iterations are needed to give a
feasible point.)

TD1b TD2b VLS1b VLS2b OC1b(6) OC2b(6) OC3a(6)

8(2) 4(2) 4(2) 6(4) 7(2) 7(2) 15(1)

PM1a(15) MMX1 MMX2 OC4(6) OC5(6)

14(0) 10(3) 12(2) 16(0) 16(0)

Table 21.1. Iteration counts for SOLVER on Problems TD1b–OC5.

Exercises
1. Obtain the Lagrange multipliers at the SOLVER solution of Problem

TD1b and hence estimate the minimum surface area if the lower bound
xmin is increased to 2.

2. Transform Problem TD2b into equality-constrained form using the
squared slack variables and then apply SOLVER to find a solution.

3. Explain what happens when SOLVER is applied to VLS2b with rmax

increased to 0.1. What happens if rmax is reduced to 0.07?
4. For the problems included in Table 21.1 determine how many SOLVER

iterations are needed before the binding set of constraints has been
identified.

21.3. Penalty functions for inequality constraints

The P-SUMT approach can be applied to inequality constrained opti-
mization problems if we use a modified form of the penalty function
(18.2.1).
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Definition A version of penalty function (18.2.1) for (20.2.1)–(20.2.3)
is

P (x, r) = F (x) +
1
r

{
l∑

i=1

ci(x)2 +
m∑

i=l+1

min[0, ci(x)]2
}

. (21.3.1)

The first penalty term treats the equalities in the same way as in (18.2.1)
but the second involves only the violated inequalities. We can use
(21.3.1) in an algorithm which is very similar to P-SUMT and which does
not need to identify active constraints on every iteration. This algorithm
is based on the following result.

Proposition Suppose (20.2.1)–(20.2.3) has a unique solution x∗, λ∗ and
that F (x) is bounded below for all x. Suppose also that ρ is a positive
constant and that, for all rk < ρ, the Hessian matrix ∇2P (x, rk) of
(21.3.1) is positive-definite for all x. If xk denotes the solution of the
unconstrained problem

Minimize P (x, rk) (21.3.2)

then xk → x∗ as rk → 0. Furthermore, if ci(xk) ≤ 0 as rk → 0,

λ∗
i = lim

rk→0

{
− 2

rk
ci(xk)

}
. (21.3.3)

If ci(xk) > 0 as rk → 0 then λ∗
i = 0.

In essentials, the proof of (21.3.3) is similar to that for (18.2.3),
(18.2.4) for equality constraints. For more details and stronger results
see [20].

A worked example

Consider the problem

Minimize x2
1 + 2x2

2 subject to x1 + x2 ≥ 2.

The penalty function for this problem is

P (x, r) = x2
1 + 2x2

2 +
1
r
[min(0, x1 + x2 − 2)]2.

We need to consider whether P (x, r) can have a minimum at a feasible
point. If this is the case then the penalty term is zero and we must have

∂P

∂x1
= 2x1 = 0 and

∂P

∂x2
= 4x2 = 0.
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But this implies x1 = x2 = 0 which is not a feasible point. This
contradiction means that the minimum of P must be at an infeasible
point and

∂P

∂x1
= 2x1 +

2
r
(x1 + x2 − 2) = 0 and

∂P

∂x2
= 4x2 +

2
r
(x1+ x2 − 2) = 0.

This implies that x1 = 2x2 and therefore

4x2 +
2
r
(3x2 − 2) = 0.

and hence
x2 =

2
2r + 3

, x1 =
4

2r + 3
.

In the limit, as r → 0, the solution of the original problem is at
x = (4

3 , 2
3 ).

Exercises
1. Write down expressions for the gradient and Hessian of the function

(21.3.1). Explain why (21.3.1) may be harder to minimize than the
penalty function (18.2.1) for equality constraints only, even when F
is quadratic and all the ci are linear.

2. Use the penalty function (21.3.1) to solve the problem

Minimize x2
1 + x2

2 − 2x1 + 1 subject to x1 ≥ 2.

How would the solution change if the constraint were x1 ≥ 0?

21.4. AL-SUMT for inequality constraints

The penalty function (21.3.1) can be difficult to minimize when r is
very small for the reasons discussed in Section 18.3. However, the
augmented Lagrangian function can be extended to deal with inequality
constraints and leads to a SUMT approach which does not require the
penalty parameter to tend to zero.

Definition The augmented Lagrangian function M(x, v, r) for use
with inequality constraints has the following form [59]

F (x) +
1
r

{
l∑

i=1

(
ci(x) − r

2
vi

)2
+

m∑

i=l+1

[
min

(
0, ci(x) − r

2
vi

)]2
}

.

(21.4.1)
This function has a stationary point at x∗ and it can be used in the
AL-SUMT approach. There are only two alterations to the algorithm in
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Section 18.3. The initial choices of the parameters vl+1, . . . , vm (i.e.,
those for the inequality constraints) must be non-negative and the rule
for updating vk,i (i = l + 1, . . . ,m) is

vk+1,i =

{
vk,i − 2

rk
ci(xk) if ci(xk) < rk

2 vk,i

0 otherwise
. (21.4.2)

Formula (21.4.2) will cause vk → λ∗ as c(xk) → 0. The justification for
these changes is fairly straightforward [59].

Exercises

1. Apply AL-SUMT to the problem

Minimize x2
1 + 2x2

2 subject to x1 + x2 ≥ 2

using v = 1 as the initial guess for the multiplier parameter.
2. There is an exact penalty function for the inequality constrained

problem similar to the one given in Chapter 18 for equality con-
strained problems. It is

E(x, r) = F (x) +
1
r

{
l∑

i=1

|ci(x)| +
m∑

i=l+1

|min(0, ci(x))|
}

. (21.4.3)

Use this function to solve the problem in the previous question.

21.5. SQP for inequality constraints

The ideas in Chapter 19 can be extended to deal with (20.2.1)–(20.2.3)
simply by including the inequality constraints (in linearised form) in the
QP subproblem. Thus, in WHP-SQP, the calculation which gives the
search direction and new trial Lagrange multipliers is
Obtain pk and λk+1 by solving the QP subproblem

Minimize
1
2
pTBkp + ∇F (xk)T p

subject to ci(xk) + ∇ci(xk)T p = 0, i = 1, . . . , l

ci(xk) + ∇ci(xk)T p ≥ 0, i = l + 1, . . . ,m.

The rest of the algorithm WHP-SQP is essentially the same as in
Section 19.1. The line search along pk will involve a function such as
(21.4.1) or (21.4.3) which handles inequality constraints.
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Similarly, in AL-SQP, pk and uk are obtained by solving the QP
subproblem

Minimize
1
2
pT H−1

k p + pT∇F (x)

subject to ci(xk) + ∇ci(xk)T p = −rk

2
(uki

− λki
), i = 1, . . . , l

and ci(xk) + ∇ci(xk)T p ≥ −rk

2
(uki

− λki
), i = l + 1, . . . ,m

where Hk is an estimate of the inverse Hessian of the Lagrangian. This
subproblem approximates the Newton direction towards the minimum
of the augmented Lagrangian (21.4.1) (see [8]). The line search in
the inequality-constraint version of AL-SQP is also based on obtaining
a reduction in (21.4.1).

The IQP subproblems in both algorithms can be solved by an active-
set approach as outlined in Section 21.1. This strategy is simplified if
we ensure that the Hessian approximations Bk or Hk remain positive-
definite throughout.

21.6. Results with P-SUMT, AL-SUMT and AL-SQP

Table 21.2 shows the numbers of iterations and function values needed
by the OPTIMA implementations of P-SUMT, AL-SUMT and AL-SQP on
test problems from Section 20.5.

Method TD1b TD2b VLS1b VLS2b OC1b(6) OC2b(6) OC3a(6)

P-SUMT 46/112 48/134 26/74 21/50 104/247 106/281 106/273

AL-SUMT 33/62 33/67 11/25 10/18 63/141 63/147 68/158

AL-SQP 14/27 8/8 6/6 4/4 12/13 11/13 11/11

Method PM1a(15) MMX1 MMX2 OC4(6) OC5(6)

P-SUMT 95/283 74/261 74/250 59/160 51/177

AL-SUMT 56/139 52/152 55/165 50/128 45/145

AL-SQP 13/15 5/5 7/7 17/26 20/27

Table 21.2. Performance of SUMT and SQP on Problems TD1b–OC5.

By comparing Table 21.2 with Table 21.1, we see that AL-SQP and
SOLVER give comparable performance on many of the problems. AL-SQP

also does much better than either of the SUMT methods in terms of the
numbers of iterations and function calls needed for convergence.

When dealing with inequality constrained problems, the fact that
AL-SQP uses fewer iterations than the SUMT methods must be interpreted
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with some caution. Each iteration of a SUMT method merely does the
work of computing a search direction and updating an inverse-Hessian
estimate (and this is true whether the problem has equality or inequa-
lity constraints). When SUMT uses quasi-Newton minimizations, each
search direction costs only a matrix-vector multiplication. An iteration
of AL-SQP, however, may be much more expensive than this. An SQP

search direction is obtained by solving an IQP subproblem which may,
in turn, require a number of EQP solutions if an active-set approach is
used. For instance, if an iteration starts from a feasible point and if the
IQP subproblem has t binding constraints then at least t EQP problems
will be solved. Each one of these subproblems involves the solution of a
system of equations of the form (17.1.4).

In practice, the early iterations of AL-SQP are usually more expensive
than the later ones. Once the iterates are fairly close to x∗, the IQP
subproblem will have a “warm start” with the initial active set being
the same (or nearly the same) as the binding set and only one or two
EQP steps will be needed. Even then, however, an iteration of AL-SQP

may involve more linear algebra calculations than an iteration of P-SUMT

or AL-SUMT. Hence the runtimes for an AL-SQP solution may not be so
much less than those for an AL-SUMT solution as might be suggested by
the counts of iterations and function calls in Table 21.2.

Exercises
1. Construct a table similar to 18.2 and 19.1 to compare the progress

of SUMT and SQP approaches on Problems TD1b and TD2b.
2. The figures in Table 21.2 were obtained using weak line searches in

the unconstrained minimizations. Construct a similar table for the
case when P-SUMT and AL-SUMT use QNp rather than QNw.

3. Repeat the tests in Table 21.2 using both low- and high-accuracy
convergence tests and comment on the results. Can you draw any
conclusions about whether the ultimate rates of convergence of the
methods are linear or superlinear?

4. Re-write TD1b and TD2b as equality-constrained problems using
squared slack variables. Solve these problems using SUMT and SQP

approaches and discuss the results.
5. Use the SUMT and SQP methods to solve modified versions of TD1b

and TD2b in which the bounds on the tank dimensions are xmax =
3.6, xmin = 1.8.

6. Use the SUMT and SQP methods to solve modified versions of VLS1b

in which rmax is increased to 0.28. What happens is rmax is reduced
to 0.27?

7. Extend the comparison in Table 21.2 to include the problems OC4(n)

and OC5(n) for n = 10, 20, . . . , 50. If possible, compare the runtimes
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for these solutions and use them as the basis for a discussion similar
to that in Section 19.3.

8. Implement a spreadsheet version of the penalty function SUMT

approach for inequality constraints, using SOLVER as the
unconstrained minimizer and test its performance on Problems TD1b

and VLS2b.
9. Compare the results from the previous question with those from a

similar spreadsheet implementation of augmented Lagrangian SUMT.



The British aircraft industry circa 1966 (Part 1) [4]

Donald’s involved in a government contract
about slender deltas and laminar flow;
he’s busy with transforms and multiple integrals –
equations and formulae row upon row.

Gerald is dozing and dreaming of Wimbledon
(his sister gets tickets from someone at work);
he’s meant to be checking some data with Ronald
who spots a mistake, wakes him up with a jerk.



Chapter 22

Barrier Function Methods

22.1. Problems with inequality constraints only

Throughout this chapter, we consider the following problem in which all
the constraints are inequalities:

Minimize F (x) (22.1.1)

subject to ci(x) ≥ 0, i = 1, . . . ,m. (22.1.2)

When applied to problems of this form, penalty function methods usually
produce a sequence of points {xk} which lie outside the region defined
by the inequalities and only approach the boundary as the iterations
converge. By contrast, barrier function methods – which can only be
applied to problems of the form (22.1.1), (22.1.2) – generate points inside
the feasible region.

Among the example problems we have considered, those which feature
only inequality constraints are VLS1b,VLS2b, PM1a, MMX1, MMX2, OC4 and
OC5. To these we add one further example, based on a problem given
by Hersom [34] which involves optimizing the cost of operating a cutting
tool.

The machine tool problem

A machine tool consists of a cutting wheel which rotates with speed v
at the circumference. The workpiece moves past the wheel with speed
u. The motor driving the wheel also acts through a gearbox to move the
workpiece and so u = φv where φ is the gear-ratio. The depth of cut
is d. Operating constraints include a limit on gear-ratio φ of the form
φmaxv ≥ u ≥ φminv. Other conditions are as follows:

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 22, c© Springer Science+Business Media, LLC 2008
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Limits on motor power v0.2u0.8d0.8v ≤ Pmax

Limit on shear stress in drive shaft uv ≤ Smax

Bounds on cutting speed and depth vmax ≥ v ≥ 0; dmax ≥ d ≥ 0.

The operating cost is made up of fixed components (such as labour
costs) plus the replacement cost of the cutting wheel, Cr. If Cf denotes
fixed hourly costs and if TL is the lifetime of the wheel then the lifetime
cost is CfTL + Cr. We can also say that the amount of material removed
from the workpiece during the life of the wheel is proportional to vudTL.
The performance measure that we want to minimize is

Total operating cost
Total material removed

.

If the life of the wheel is estimated by an expression of the form

TL =
κ

v1.3u1.7d0.6
(22.1.3)

then the performance function becomes

1
vudTL

(CfTL + Cr) =
1

vud

(
Cf +

Cr

TL

)
=

1
vud

(
Cf +

Cr

κ
(d0.6u1.7v1.3)

)
.

To give some numerical values to the parameters in this problem we
suppose the cutting wheel has radius 1/6 metres so that a rotational
speed of R r.p.m. corresponds to a value v ≈ R/60metres/sec at
the circumference. We let the rotational speed be limited by vmax =
10metres/sec. If the workpiece maximum speed umax = 2.5 cm/sec and
the maximum depth of cut is dmax = 2cm then a value κ = 0.1 in
(22.1.3) implies that the cutting wheel has a life of about 8 hours when
v, u and d are at their maximum values.

The values in the previous paragraph are used in Problem MT1 in
which we let x1 = v (metres/sec), x2 = u (cm/sec) and x3 = d (cm).
(This choice of units causes the values of the variables to be of broadly
similar magnitudes. It is worth paying attention to the relative sizes of
variables because the numerical solution of badly-scaled problems can
sometimes be difficult.)

If Crf denotes the ratio Cr/Cf then the problem is

Minimize
1

x1x2x3
(1 + Crfx1.3

1 x1.7
2 x0.6

3 ) (22.1.4)

subject to

10 ≥ x1 ≥ 0; 2 ≥ x3 ≥ 0; 0.25x1 ≥ x2 ≥ 0.1x1 (22.1.5)
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x0.2
1 x0.8

2 x0.8
3 ≤ Pmax; x1x2 ≤ Smax. (22.1.6)

In (22.1.6) Pmax and Smax are figures for power and stress limits. If we
take Crf = 10, Pmax = 1.5 and Smax = 5 then the solution to (22.1.4)–
(22.1.6) has x1 ≈ 7.1, x2 ≈ 0.71, x3 ≈ 1.44 giving a function value of
0.15.

Exercises
1. Use SOLVER to compute solutions of problem (22.1.4)–(22.1.6) for

values of Crf in the range 10 ≤ Crf ≤ 500 and comment on the
way the results change as the fixed costs increase relative to the tool
replacement costs.

2. Plot contours and constraints of a reduced version of the machine
tool problem in which d is fixed as 1.

22.2. Barrier functions

Definition One form of barrier function for the problem (22.1.1),
(22.1.2) is

B(x, r) = F (x) + r

m∑

i=1

1
ci(x)

. (22.2.1)

Because the barrier term includes reciprocals of the constraints, B will
be much greater than F when x is a feasible point near an edge of the
feasible region, causing some of the ci(x) to be near zero. On the other
hand, B ≈ F when x is inside the feasible region and all the ci(x) are
much greater than zero.

Definition A more widely used barrier function for (22.1.1), (22.1.2)
is

B(x, r) = F (x) − r

m∑

i=1

log(ci(x)). (22.2.2)

When 1 > ci(x) > 0 then log(ci(x)) < 0. Hence the second term on the
right of (22.2.2) implies B � F when any of the constraint functions is
small and positive. Note, however, that (22.2.2) is undefined when any
ci(x) are negative.

There is a relationship, similar to that for penalty functions, between
unconstrained minima of B(x, r) and the solution of (22.1.1), (22.1.2).

Proposition Suppose that (22.1.1), (22.1.2) has a unique solution
x,∗ , λ∗. Suppose also that ρ is a positive constant and, for all rk < ρ, the
Hessian matrix ∇2B(x, rk) of the barrier functions (22.2.1) or (22.2.2)
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is positive-definite for all feasible x. If xk denotes the solution of the
unconstrained problem

Minimize B(x, rk) (22.2.3)

then xk → x∗ as rk → 0. Moreover,
rk

ci(xk)2
→ λ∗

i as rk → 0 if B is defined by (22.2.1) (22.2.4)

rk

ci(xk)
→ λ∗

i as rk → 0 if B is defined by (22.2.2). (22.2.5)

We omit the main part of the proof of this result. However it is easy to
justify (22.2.4) because differentiating (22.2.1) gives

∇B(xk, rk) = ∇F (xk) −
m∑

i=1

rk

ci(xk)2
∇ci(xk) = 0. (22.2.6)

By comparing (22.2.6) with the Lagrangian stationarity condition (16.2.4)
as rk → 0 we deduce (22.2.4). A similar argument justifies (22.2.5).

This proposition is the basis of the B-SUMT algorithm, stated below.
(A fuller theoretical background can be found in [20].) B-SUMT can
often be used successfully, in practice, for problems of the form (22.1.1),
(22.1.2) even when the conditions in the proposition cannot be verified.

Barrier function SUMT (B-SUMT)

Choose an initial guessed solution x0

Choose a penalty parameter r1 and a constant β(< 1)
Repeat for k = 1, 2, . . .
starting from xk−1 use an iterative method to find xk to solve (22.2.3)
set rk+1 = βrk

if B is defined by (22.2.1) then

λ̂i =
rk

ci(xk)2
for i = 1, . . . ,m

else, if B is defined by (22.2.2) then

λ̂i =
rk

ci(xk)
for i = 1, . . . ,m

until λ̂1c1(xk), . . . , λ̂mcm(xk) are all sufficiently small.

The convergence test for the algorithm is based on satisfying the com-
plementarity condition (20.2.7), using the estimated Lagrange multi-
pliers implied by (22.2.4) or (22.2.5).
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Exercises
1. Obtain expressions for the Hessian matrices of barrier functions

(22.2.1) and (22.2.2). Hence find an expression for the Newton search
direction for (22.2.2). How could this expression be modified if
(∇2F (x))−1 were available?

2. Discuss other possible stopping rules for the B-SUMT algorithm.

An example

As an example of the use of the log-barrier function we consider the
problem

Minimize F (x) = x2
1 + 3x2

2 (22.2.7)

subject to c1(x) = x1 + 5x2 − 1 ≥ 0. (22.2.8)

The corresponding barrier function is

B(x, r) = x2
1 + 3x2

2 − r log(x1 + 5x2 − 1)

and hence the minimum of B(x, r) satisfies

∂B

∂x1
= 2x1 −

r

(x1 + 5x2 − 1)
= 0 (22.2.9)

∂B

∂x2
= 6x2 −

5r
(x1 + 5x2 − 1)

= 0. (22.2.10)

Eliminating the term involving r between these two equations we get

x2 =
5
3
x1. (22.2.11)

Substitution in (22.2.9) then gives

2x1

(
x1 +

25
3

x1 − 1
)
− r = 0.

This simplifies to
56
3

x2
1 − 2x1 − r = 0 (22.2.12)

so that

x1 =
3

112

(
2 ±

√
4 +

224r
3

)
.
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Using (22.2.11) we get

x2 =
5

112

(
2 ±

√
4 +

224r
3

)
.

In the expressions for x1 and x2, the quantity under the square root
is greater than 4 when r > 0. Hence (22.2.12) gives one positive and
one negative value for x1. But (22.2.11) means that x2 must have the
same sign as x1. However, a solution with both x1 and x2 negative
cannot satisfy (22.2.8). Therefore the feasible unconstrained minimum
of B(x, r) is at

x1 =
3

112

(
2 +

√
4 +

224r
3

)
, x2 =

5
112

(
2 +

√
4 +

224r
3

)
.

Hence, as r → 0 we have x1 → 3/28 and x2 → 5/28. The reader can
verify that these values satisfy the optimality conditions for problem
(22.2.7), (22.2.8).

Exercises
1. Deduce the Lagrange multiplier for the worked example above.
2. Use a log-barrier function approach to solve the problem

Minimize x1 + x2 subject to x2
1 + x2

2 ≤ 2.

3. A log-barrier approach is used to solve the problem

Minimize − cT y subject to yT Qy ≤ Va.

Suppose that the barrier parameter r is chosen so the minimum of
B(y, r) occurs where yT Qy = kVa, where k < 1. Obtain an expression
for y(r) which minimizes the barrier function and hence find r in
terms of c, Q, and Va.

4. Solve

Minimize x1 + 2x2 subject to x1 ≥ 0, x2 ≥ 1

using the barrier function (22.2.1).

22.3. Results with B-SUMT

B-SUMT is the OPTIMA implementation of the barrier SUMT algorithm
using the log-barrier function (22.2.2). In B-SUMT the unconstrained
minimizations are done by QNw or QNp.
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A safeguard is needed in the line search for the unconstrained mini-
mization technique in B-SUMT. The log-barrier function is undefined if
any of the constraints ci(x) are nonpositive and therefore the linesearch
must reject trial points where this occurs. This can be done within an
Armijo line-search by setting B(x, r) to a very large value at any point
x which is infeasible.

B-SUMT must be started with a feasible point and so we may have
to use different initial guesses from those in the problem definitions in
Section 20.5. For some problems, it is relatively easy to obtain a feasible
point by inspection (e.g., when the constraints are simple bounds on
the variables). It is also quite straightforward to choose a feasible point
for problem OC4 by making all the variables x1, . . . , xn equal (so that
all the constraint functions are zero) or by using the standard values
of x1, . . . , xn and simply choosing xn+1 large enough to ensure that the
inequalities are all satisfied. For other problems, such as VLS1b and
VLS2b, it is not at all easy to pick feasible values of x1 and x2. In such
cases we may have to use a more general approach based on solving the
unconstrained problem

Minimize F (x) =
m∑

i=1

{min[0, ci(x)]}2. (22.3.1)

This will have an optimum value of zero at any point which satisfies the
constraints (22.1.2). In the case of problems VLS1b and VLS2b the interior
of the feasible region is quite small because the inequality constraints are
not satisfied for a wide range of values of the variables. In such cases
it may be almost as difficult to solve (22.3.1) as to solve the original
problem.

The feasible starting points used for the test problems in this section
are as follows:

For VLS1b: x1 = 3.22, x2 = 4.52
for VLS2b: x1 = 0.925, x2 = −0.4712
for PM1a(n): xi = 0.6, i = 1, . . . , n
for MMX1 and MMX2: x1 = x2 = 0, x3 = 1.1
for OC4(n) and OC5(n) (n assumed to be even):
x1 . . . xν = 0.66; xν+1 . . . xn = −0.66; xn+1 = 1.5 where ν = n/2.

for MT1: x1 = 5, x2 = 0.9, x3 = 1.9.

The progress made by B-SUMT on problem VLS1b is shown in
Table 22.1. For comparison, this table also summarises the behaviour of
P-SUMT from the same starting point. In both cases the unconstrained
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B-SUMT P-SUMT
k F (xk) rk QNp Cost F (xk) ||c(xk)|| QNp Cost

1 2.33 × 10−1 1.0 × 10−1 2/13 2.03 × 10−1 1.8 × 10−2 4/15

2 2.29 × 10−1 2.5 × 10−2 5/30 2.08 × 10−1 7.1 × 10−3 6/25

3 2.21 × 10−1 6.3 × 10−3 9/57 2.11 × 10−1 2.1 × 10−3 8/36

4 2.15 × 10−1 1.6 × 10−3 13/88 2.12 × 10−1 5.4 × 10−4 10/50

5 2.13 × 10−1 3.9 × 10−4 17/119 2.12 × 10−1 1.4 × 10−4 12/65

6 2.13 × 10−1 9.8 × 10−5 19/147 2.12 × 10−1 3.4 × 10−5 14/82

7 2.13 × 10−1 2.4 × 10−5 21/175 2.12 × 10−1 8.6 × 10−6 16/101

8 2.13 × 10−1 6.1 × 10−6 23/204

Table 22.1. B-SUMT and P-SUMT solutions to Problem VLS1b.

minimizer is QNp and the initial penalty parameter and rate of reduction
are r0 = 0.1, β = 0.25.

The penalty and barrier methods both use a similar number of uncon-
strained minimizations to solve VLS1b. However B-SUMT requires around
30% more quasi-Newton iterations and about twice as many function
evaluations. This suggests that the log-barrier function is harder to
minimize than the classical penalty function. In particular, doing a
perfect line search in terms of B(x, r) seems much more difficult than
it is for P (x, r). This is, at least in part, due to the requirement that
B(x, r) can only accept feasible points and so some trial steps during
the line search have to be rejected.

If we use a weak line search by performing the unconstrained mini-
mizations with QNw then B-SUMT converges in 39 iterations and 115
function calls and P-SUMT takes 24 iterations and 96 function calls.

Table 22.2 gives a broader comparison between the SUMT and SQP

methods on a range of inequality constrained problems. Because B-SUMT

appears in this table, the counts of iterations and function values are
based on a feasible starting guess for each problem and so some of the
entries for P-SUMT, AL-SUMT and AL-SQP differ from those in Table 21.2.

Method VLS1b VLS2b PM1a(15) MMX1 MMX2

B-SUMT/QNw 39/115 43/119 154/402 80/225 76/229

P-SUMT/QNw 24/96 21/57 95/283 54/222 52/225

AL-SUMT/QNw 16/64 10/20 56/139 30/106 34/129

AL-SQP 8/8 4/4 13/15 6/11 7/12

Method OC4(6) OC5(6) MT1

B-SUMT/QNw 203/289 236/409 97/178

P-SUMT/QNw 59/160 51/177 47/161

AL-SUMT/QNw 50/128 45/145 32/94

AL-SQP 17/26 20/27 10/16

Table 22.2. Performance of SUMT and SQP on Problems VLS1b–MT1.
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We can see that the barrier function approach is usually the least
competitive of the SUMT methods. Hence, in the form described in this
chapter, its practical usefulness is normally confined to those problems
where the function cannot be calculated at some infeasible points.
A simple example would be if the expression for F (x) included terms
involving

√
xi because these are noncomputable if a constraint such as

xi ≥ 0 is violated. In such situations it is important to use a method
whose iterates stay inside the constraint boundaries.

In spite of the relatively poor performance of B-SUMT, the ideas behind
the method are important because they are the foundation for the
interior point methods described in the next chapter.

Exercises
1. Repeat the calculations in Table 22.2 using both low- and high-

accuracy convergence tests and comment on the results, particularly
in relation to the evidence of linear or superlinear convergence of the
methods.

2. Use B-SUMT and other methods from Table 22.2 to solve a modified
version of Problem TD1b in which xmax = 3.5 and xmin = 1.8.

3. Use B-SUMT with both a perfect and a weak line search to solve a
version of Problem VLS1b in which rmax = 0.28.

4. Implement a version of B-SUMT which uses the reciprocal barrier func-
tion and investigate its performance on Problems TD1b and VLS2b.

5. Consider the Lagrange multiplier estimates provided by B-SUMT,
P-SUMT and AL-SUMT at the solutions to MT1 and comment on any
differences you observe.

6. Experiment with different choices of initial barrier parameter r1 and
scaling factor β in order to obtain the best performance of B-SUMT

on Problems MT1 and PM1a(15).
7. Using any unconstrained minimization method, form and solve

(22.3.1) to obtain feasible points for Problems TD2b, VLS2b and MT1.
8. Implement a spreadsheet version of the barrier SUMT method which

uses SOLVER as the unconstrained minimizer and test it on Problems
TD1b and VLS1b.



The British aircraft industry circa 1966 (Part 2) [4]

Oswald’s a draughtsman with red hair and glasses
and a check shirt and beard and he’s gone a bit soft
on the charms and the shape of the blonde buxom tracer
who lays out the spars and the ribs in the loft.

Recently made up to manager, Reginald
wears a black homburg, but you’d never guess
this big honey-bear man in crumpled blue trousers
is head of the office that calculates stress.



Chapter 23

Interior Point Methods

23.1. Forming the transformed problem B-NLP

Interior point methods are related to barrier functions. They are widely
used for nonlinear programming, following their introduction and con-
tinuing popularity as techniques for linear programming [40]. Consider
the problem

Minimize F (x) subject to ci(x) ≥ 0, i = 1, . . . ,m. (23.1.1)

We can introduce additional slack variables to reformulate the inequali-
ties as equalities and hence obtain a solution to (23.1.1) by finding x
and w to solve

Minimize F (x) (23.1.2)
s.t. ci(x) − wi = 0, i = 1, . . . ,m and wi ≥ 0, i = 1, . . . ,m.

(23.1.3)
If we deal with bounds on the wi by a barrier term we obtain Problem
B-NLP which involves a positive parameter, r.

Minimize F (x) − r
m∑

i=1

log(wi) (23.1.4)

subject to ci(x) − wi = 0, i = 1, . . . ,m. (23.1.5)

The following result depends on fairly mild assumptions about F and
the ci.

Proposition Suppose {x∗, w∗, λ∗} solves (23.1.3). If, for all r less
than a constant ρ, Problem B-NLP has a unique solution x̂(r), ŵ(r)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 23, c© Springer Science+Business Media, LLC 2008
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with Lagrange multipliers λ̂(r) then

{x̂(r), ŵ(r), λ̂(r)} → {x∗, w∗, λ∗} as r → 0.

A sequential constrained minimization technique could be devised
which solves B-NLP for a decreasing sequence of r-value in order to
approach the solution of (23.1.3). However – as in AL-SQP – we would
like to avoid the cost of complete minimizations by simply approximating
solutions of B-NLP in a way that causes them to become more accurate
as r approaches zero.

Exercises
1. Show that if (x∗, w∗) is a solution of (23.1.2), (23.1.3) then x∗ is also

a solution of (23.1.1).
2. Form the problem B-NLP corresponding to problem VLS2b and solve

it (e.g., by using SOLVER) for a decreasing sequence of values of the
parameter r.

3. Derive an extension of problem B-NLP to deal with nonlinear pro-
gramming problems that include both equality and inequality con-
straints.

23.2. Approximate solutions of Problem B-NLP

The Lagrangian function associated with B-NLP is

L(x,w, λ) = F (x) − r

m∑

i=1

log(wi) −
m∑

i=1

λi(ci(x) − wi). (23.2.1)

The first-order optimality conditions at the solution (x̂, ŵ, λ̂) are:

ci(x̂) − ŵi = 0, i = 1, . . . ,m; (23.2.2)

∇xL = ∇F (x̂) −
m∑

i=1

λ̂i ∇ci(x̂) = 0; (23.2.3)

∂L

∂wi
= − r

ŵi
+ λ̂i = 0, i = 1, . . . ,m. (23.2.4)

Equation (23.2.2) ensures feasibility. Equations (23.2.3) and (23.2.4)
are stationarity conditions for the original variables and the slacks. In
what follows, ∇ and ∇2 operators without subscripts always relate to
differentiation with respect to the original x variables only.

Suppose (x, w, λ) is an approximate solution of B-NLP and we want
to find δx, δw, δλ so that x̂ = x + δx, ŵ = w + δw and λ̂ = λ + δλ.
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From (23.2.2)

ci(x + δx) − wi − δwi = 0, i = 1, . . . ,m

and a first-order Taylor approximation to ci(x + δx) gives

∇ci(x)δx − δwi = wi − ci(x), i = 1, . . . ,m. (23.2.5)

From (23.2.3),

∇F (x + δx) −
m∑

i=1

(λi + δλi)∇ci(x + δx) = 0

and by using first-order Taylor approximations of the gradient terms we
get

∇F (x) +∇2F (x)δx −
m∑

i=1

(λi + δλi)(∇ci(x) +∇2ci(x)δx) = 0. (23.2.6)

If we combine the terms in (23.2.6) which involve ∇2F and ∇2ci and
then ignore the second-order terms which feature the product δλi δx we
get

G̃ = ∇2F (x) −
m∑

i=1

λi∇2ci(x).

From (23.2.6) we then obtain

∇F (x) + G̃δx −
m∑

i=1

(λi + δλi)∇ci(x) = 0

which rearranges as

G̃δx −
m∑

i=1

δλi ∇ci(x) =
m∑

i=1

λi ∇ci(x) −∇F (x). (23.2.7)

Finally, from (23.2.4),

(wi + δwi)(λi + δλi) = r, i = 1, . . . ,m.

Dropping the second-order term δwiδλi and rearranging we obtain

δwi =
r

λi
− wi − wi

δλi

λi
, i = 1, . . . ,m. (23.2.8)

Substituting for δwi in (23.2.5) yields

∇ci(x)δx + wi
δλi

λi
= −ci(x) +

r

λi
, i = 1, . . . ,m. (23.2.9)
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We now write g = ∇F (x) and let A denote the Jacobian matrix whose
rows are ∇ci(x), i = 1, . . . ,m. As usual, e denotes the m-vector with
elements ei = 1 and we let W , Λ be diagonal matrices whose elements
are wi and λi respectively. Then we can express (23.2.7) and (23.2.9)
as a symmetric system of equations for δx and δλ. (These equations
are somewhat similar to (19.2.9) and (19.2.10) which give δx and δλ in
augmented Lagrangian SQP.)

G̃δx − AT δλ = −g + AT λ (23.2.10)

−Aδx − WΛ−1δλ = c − rΛ−1e. (23.2.11)

Once δx and δλ have been found by solving (23.2.10), (23.2.11) we can
recover δw from a rearrangement of (23.2.8)

δw = rΛ−1e − w − WΛ−1δλ. (23.2.12)

Later in this chapter we describe an algorithm based on (23.2.10)–
(23.2.12) in which (δx, δw) is regarded as a search direction along which
an acceptable step must be determined.

An example

We consider the problem

Minimize x2
1 + 3x2

2

subject to

x1 + 5x − 2 − 1 ≥ 0, 5x1 − x2 − 0.25 ≥ 0.

We start an iteration from x = (0.25, 0.2)T where g = (0.5, 1.2)T and
c = (0.25, 0.8)T . The Hessian and Jacobian matrices are

G̃ =
(

2 0
0 6

)
and A =

(
1 5
5 −1

)
.

We take λ = (0.23, 0.054)T as a starting guess because this gives g ≈
AT λ. A suitable choice for w can be based on the observation that, at
a solution of B-NLP, r = λiwi, for i = 1, . . . ,m. Therefore, if we set
r = 0.005 we can take

wi =
0.005

λi
, giving w = (0.0217, 0.0926)T .

Because

W =
(

0.0217 0
0 0.0926

)
and Λ =

(
0.23 0
0 0.054

)
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the equations (23.2.10), (23.2.11) for δx and δλ are
⎛

⎜⎜⎜⎝

2 0 −1 −5
0 6 −5 1
−1 −5 −0.0945 0
−5 1 0 −1.7147

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

δx1

δx2

δλ1

δλ2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0
−0.1040
0.2283
0.7074

⎞

⎟⎟⎟⎠ .

Solving this system gives

δx1 ≈ −0.129, δx2 ≈ −0.0197, δλ1 ≈ −0.0126, δλ2 ≈ −0.0489.

Hence the new point is x ≈ (0.1214, 0.1803)T and the revised multipliers
are λ ≈ (0.2174, 0.0051)T . Now from (23.2.12) we get

δw = 0.005
(

4.348
18.52

)
−
(

0.0217
0.0926

)
−
(

0.0943 0
0 1.715

)( −0.0126
−0.0489

)
.

This simplifies to δw1 ≈ 0.0012, δw2 ≈ 0.0839 and so the corrected slack
variables are w ≈ (0.0229, 0.1765)T .

The solution of the original problem is at x∗ ≈ (0.1071, 0.1786)T

with the first constraint binding but not the second. Hence the iteration
has moved the variables appreciably closer to x∗ and has also moved λ2

closer to zero.

Exercises
1. Use (23.2.8) to eliminate δλ instead of δw and obtain equations

similar to (23.2.10), (23.2.11) with δx and δw as unknowns. By
performing a suitable change of variable show that this can be made
into a symmetric system.

2. If the inverse G̃−1 is available, show that values of δx and δλ which
solve (23.2.10), (23.2.11) can be obtained from

δλ = (AG̃−1AT + WΛ−1)−1(AG̃−1g + rΛ−1e − c − AG̃AT λ)

δx = G̃−1(−g + AT (λ + δλ)).

3. Do a second iteration of the worked example given above. What
would have happened on the first iteration if we had chosen r =
0.0025?

4. Form and solve equations (23.2.10), (23.2.11) to obtain δx, δw and
δλ for the problem

Minimize x2
1 + 2x2

2 s.t. x1 + x2 ≥ 1

starting from the values x1 = x2 = 1, w1 = 0.1, λ1 = 1, r = 0.1.
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23.3. An interior point algorithm

We can now give an outline of an interior point algorithm. The new
values x, w obtained on iteration k will be of the form

xk+1 = xk + sδxk, wk+1 = wk + sδwk

where δxk and δwk are obtained by solving (23.2.10), (23.2.11) with all
the coefficients and right-hand side values evaluated at (xk, wk, λk).
The steplength s must be small enough for wk + sδwk to be positive
because we are only interested in feasible points of subproblem B-NLP.
We can find an upper limit s̄ on the stepsize from a formula such as

s̄ = min
(
−0.9

wki

δwki

)
(23.3.1)

where the minimum is taken over all i such that δwki
< 0. (There is no

upper limit on stepsize if all the elements of δwk are nonnegative.)
We also need to choose s (less than s̄) so that (xk +sδxk, wk +sδwk) is

a better solution estimate than (xk, wk). We could, for example, perform
a line search in terms of an augmented Lagrangian for problem B-NLP,
namely

M̂(x,w, v, r) = F (x) − r
m∑

i=1

log(wi) − (c(x) − w)T v +
||c(x) − w)||22

r

(23.3.2)
where v is a vector of Lagrange multiplier approximations. If δλk is
obtained by solving (23.2.10), (23.2.11) then it can be shown (under
certain circumstances) that the choice v = λk + δλk ensures (δxk, δwk)
is a descent direction for (23.3.2) at (xk, wk). This can be expressed as

δxT
k ∇xM̂(xk, wk, v, r) + δwT

k ∇wM̂(xk, wk, v, r) < 0. (23.3.3)

However, when xk is far from x∗, it is not clear that

v = λk+1 = λk + δλk

is a sufficiently good Lagrange multiplier estimate to ensure that a line
search with respect to (23.3.2) will be helpful for overall convergence. In
fact we must restrict Lagrange multiplier estimates to strictly positive
values, since Λ−1 will not exist if any of the λi is zero. Therefore instead
of using the full correction δλki

to update the ith multiplier we employ
a modified formula

λ+
i = max(λmin, λki

+ δλki
) (23.3.4)

where λmin is a small positive threshold value.
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The algorithm IPM, given below, resembles AL-SQP in that it fixes
“sensible” values for the v appearing in (23.3.2) and retains them until
tests on the errors in optimality conditions indicate that they can be
replaced. When v 
= λk + δλk the descent property (23.3.3) may be
ensured if r is chosen sufficiently small on each iteration.

Algorithm IPM uses a quasi-Newton approach to update a matrix Bk

to approximate G̃ (which is an estimate of the Hessian of the Lagrangian
function). Revision of λ and r is done as in AL-SQP using an error
function based on the optimality conditions (23.2.2)–(23.2.4), namely

τ(x,w, λ, r) = ||c(x) − w||2 + ||g − AT λ||2 + ||WΛe − re||2. (23.3.5)

When τ is sufficiently small we can assume we are close enough to a
solution of Problem B-NLP to permit the penalty parameter r to be
reduced.

Interior point algorithm (IPM)

Choose initial values x0, w0(> 0), λ0(> 0), B0, r0 and v0

Choose a scaling factor β < 1 and set τ−
r = τ(x0, w0, λ0, r0)

Repeat for k = 0, 1, 2, . . .
Obtain δxk and δλk by solving

Bkδx − AT
k δλ = −gk + AT

k λk

−Akδx − WkΛ−1
k δλ = ck − rkΛ−1

k e

Set δwk = rkΛ−1
k e − wk − WkΛ−1

k δλk, and s̄ = 1
Find s̄ using (23.3.1) and λ+ using (23.3.4).
Get xk+1 = xk + sδxk, wk+1 = wk + sδwk (s ≤ s̄), by a line search to

give
M̂(xk+1, wk+1, vk, rk) < M̂(xk, wk, vk, rk)

Obtain Bk+1 by a quasi-Newton update of Bk

Set λk+1 = λk, rk+1 = rk and vk+1 = vk

If τ(xk+1, wk+1, λ
+, rk) < τ−

r then
set τ−

r = τ(xk+1, wk+1, λ
+, rk), λk+1 = λ+, rk+1 = βrk, vk+1 = λk+1

until ||τ(xk+1, wk+1, λk+1, 0)|| is sufficiently small.

Each iteration of IPM is based on estimating a solution of Problem
B-NLP. Many variations of this one central idea have been suggested,
leading to algorithms which get δx, δw and δλ from equations which
are somewhat different from (23.2.10)–(23.2.12) and which perform line-
searches using merit functions other than (23.3.2). Discussion of such
alternative algorithms can be found in [26] and [67], for instance.
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Exercises
1. Suppose δx, δw, δλ are obtained by solving (23.2.10)–(23.2.12). In

order for (δx, δw) to be a descent direction for the augmented
Lagrangian M̂ given by (23.3.2) we require

δxT∇xM̂ + δwT∇wM̂ < 0

where ∇xM̂ = g +
2
r
AT {2(c − w) − v}

and ∇wM̂ = −rW−1e + v − 2
r
(c − w).

Show that δxT∇xM̂ + δwT∇wM̂ is equivalent to the expression

−δxT G̃δx − δwT ΛW−1δw − 2
r
(c − w)T (c − w) − (c − w)T (λ+ − v)

where λ+ = λ + δλ.
2. Use the result of the previous exercise to show that, if G̃ is positive-

definite and if W−1Λ is positive semi-definite then (δx, δw) is a
descent direction with respect to (23.3.2) for any value of r if v = λ+.
Show also that if v 
= λ+ the descent property with respect to M̂
may be ensured if r is chosen sufficiently small on each iteration.

3. Explain why (23.2.4) implies that, when the parameter rk is replaced
by βrk, a good way to adjust the values of the slack variables w and
the multipliers λ might be to use one of the following formulae for
each i = 1, . . . ,m.

if λki
< wki

then λ(k+1)i
= βλki

and w(k+1)i
= wki

else w(k+1)i
= βwki

and λ(k+1)i
= λki

.

23.4. Results with IPM

The OPTIMA implementation of the interior point approach is called IPM

and is based on a variation [7] of the algorithm given in the previous
section. Table 23.1 shows progress of IPM iterations on Problem VLS1b

when r1 = 0.1 and β = 0.25. Comparison with Table 22.1 shows that IPM

converges more quickly than both B-SUMT and P-SUMT. This happens
because IPM avoids explicit minimizations of the subproblems for each
value of barrier parameter r.

Table 23.2 compares the number of iterations and function calls needed
by IPM and B-SUMT on a number of test problems. The unconstrained
minimizations in B-SUMT use a weak line search. Clearly IPM is much
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k F (xk) rk itns/function calls

1 3.71 × 10−1 1.0 × 10−1 1/2

2 2.59 × 10−1 2.5 × 10−2 3/4

3 2.18 × 10−1 6.25 × 10−6 6/8

4 2.15 × 10−1 1.56 × 10−3 10/13

5 2.13 × 10−1 3.91 × 10−4 14/17

6 2.13 × 10−1 9.5 × 10−5 18/21

Table 23.1. IPM solution to Problem VLS1b.

Method VLS1b VLS2b PM1a(15) MMX1 MMX2

IPM 18/21 27/37 15/18 19/21 20/24

B-SUMT 39/115 43/119 154/402 80/225 76/229

Method OC4(6) OC5(6) MT1

IPM 29/30 58/80 25/26

B-SUMT 203/289 236/409 97/178

Table 23.2. Performance of IPM and B-SUMT on Problems VLS1b–MT1.

more efficient than B-SUMT in all cases and we can conclude that the
basic idea of proceeding via approximate solutions of Problem B-NLP is
better than performing a sequence of accurate minimizations of a barrier
function B(x, r).

The entries in Table 23.2 show that the OPTIMA implementation of
IPM is sometimes – but by no means always – competitive with AL-SQP

and SOLVER. It is important not to draw too sweeping a conclusion from
this regarding the general merits of interior point and SQP methods.
Since the 1980s, interior point methods have been the subject of much
research and many algorithms have been proposed. Some are designed
for special situations such as LP or QP problems. Those intended for the
general (possibly nonconvex) nonlinear programming problem include
[13] and [28]. Some of these implementations of interior point methods
are more sophisticated than IPM and include features for accelerating
convergence which make them much more competitive with the SQP
approach. Hence it still seems an open question which of these two
techniques is “better”.

The computational cost of an IPM iteration can be similar to that
for AL-SQP, because both methods get a search direction by solving a
linear system obtained by approximating the optimality conditions for a
perturbed form of the original minimization problem. The IPM system
will include all the inequality constraints and so will usually be larger
than the system used by AL-SQP which only involves constraints in the
current active set. On the other hand, AL-SQP may have to solve several
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systems on each iteration until the correct active set is established. It is
suggested in [31] that IPM and SQP can co-exist because IP algorithms
can be an efficient way to solve the QP subproblems in SQP methods.

Exercises
1. Investigate the sensitivity of IPM to changes in the choices of r1 and

β.
2. By choosing starting guesses which differ by only 1%, 5%, . . . from

the exact solutions of the problems in Table 23.2, determine how
competitive IPM can be with AL-SQP in the neighbourhood of x∗.

3. Apply IPM to a variant of Problem TD1b in which the constraint on
volume is expressed as x1x2x3 ≥ V ∗.

4. Apply IPM to a variant of Problem MT1 in which the cutting depth
is fixed as d = 1.

5. Extend the comparison in Table 23.2 to include OC4(n) and OC5(n) for
values of n > 6 and compare the execution times of IPM and B-SUMT.
Does B-SUMT become more or less competitive if perfect line searches
are used?



Chapter 24

A Summary of Constrained Methods

To summarise the work covered in the preceding chapters we give a
checklist of the properties of the constrained optimization methods that
have been described.

Quadratic programming
Only used for quadratic F with linear ci.
Simply solves the KKT equations when constraints are equalities.
Uses active set approach for inequality constraints, which means it solves
a sequence of equality constrained problems.
Approaches solution via a sequence of feasible points.

Reduced-gradients
Works best for linear constraints.
Uses constraints to eliminate t variables and then does an unconstrained
step in the other n − t variables.
Can also work for nonlinear constraints but then needs restoration steps
to regain feasibility.
Implemented in Excel SOLVER.
Approaches solution via a sequence of feasible points.

Penalty function SUMT

P (x, r) adds squared constraint violations to F .
P is minimized for a decreasing sequence of r-values.
Minima of P converge to constrained solution and approach solution via
sequence of infeasible points.
Can be better than reduced-gradients for nonlinear constraints.
Can have numerical difficulties as r → 0.

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 24, c© Springer Science+Business Media, LLC 2008
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Augmented Lagrangian SUMT

M(x, v, r) is formed from P (x, r) by including extra linear term involving
violated constraints.
M is minimized for a sequence of values of parameters r and v.
Minima of M → constrained solution if the v → Lagrange multipliers
No need for r → 0 so M does not have the same numerical difficulties
as P .
Approaches solution via a sequence of infeasible points.
Usually more efficient than penalty function SUMT.

Sequential quadratic programming
Makes a QP on every iteration with a quadratic model of F and
linearised ci.
Solves this QP subproblem to get a search direction.
Chooses a new point by a weak line search in terms of the augmented
Lagrangian or other penalty function.
Approaches solution via a sequence of infeasible points.
More efficient than reduced-gradients or SUMT when constraints are non-
linear.
Competitive with reduced gradients for linear ci.

Barrier function SUMT

Works for problems with inequality constraints only.
B(x, r) includes barrier term involving reciprocals (or logs) of constraints.
B is minimized for a decreasing sequence of r-values.
Minima of B tend to constrained solution.
Approaches solution via a sequence of feasible points.
Usually less efficient than other SUMT methods but is still useful if F is
not computable at infeasible points.

Interior point method
Uses slack variables to turn inequalities to equalities.
Handles slack-variable positivity by a barrier term.
Avoids cost of SUMT by only approximating minima of barrier function.
Can be competitive with SQP for nonlinear constraints.
Competitive with reduced-gradients for linear ci.
Is an alternative to active-set approach for inequality constrained QP.



Chapter 25

The OPTIMA Software

25.1. Accessing OPTIMA

The OPTIMA fortran90 codes can be obtained from the Web via the
ftp site ftp.feis.herts.ac.uk/pub/matqmb/OPTIMA. The codes can also be
obtained by anonymous ftp using a UNIX dialogue as in the following
example for getting the problem TD1 (user inputs are underlined).

ftp ftp.feis.herts.ac.uk

Connected to ftp.feis.herts.ac.uk.

Welcome to EIS at the University of Hertfordshire.

Name (ftp.feis.herts.ac.uk:comqmb): ftp

331 Please specify the password.

Password: ftp

... University of Hertfordshire logo and welcome appears here ...

230 Login successful.

ftp> cd pub/matqmb/OPTIMA

250 Directory successfully changed.

ftp> ls

... a list of the available codes appears here ...

ftp> get TD1.f90

local: TD1.f90 remote: TD1.f90

200 PORT command successful.

150 Opening BINARY mode data connection for VLS2.f90 (1505 bytes).

226 File send OK.

1505 bytes received in 0.00 secs (1595.8 kB/s)

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 25, c© Springer Science+Business Media, LLC 2008
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25.2. Running OPTIMA

The OPTIMA software has been developed on a Sun workstation and it
also runs on a PC under Visual Fortran. The code is intended to be
portable but minor changes may be needed before it will compile and
run on other systems.

In order to run, for example, the tank design problem TD1 it is necess-
ary to compile and link the program file TD1.f90 and the file OPTIMA.f90

which includes modules MINPAC and OPFAD. These contain, respectively, the
procedures for optimization and automatic differentiation. On running
the resulting executable file, the user will be able to make choices about
the solution technique as illustrated by the following dialogue. (User
inputs appear slightly to the left of program output text.)

Problem TD1

Choose optimization method:

univariate search (1); DIRECT(2)

Steepest descent(3); Newton(4); quasi-Newton(5); conjugate gradients(6)

5

Use weak line search (y/n)?

y

Solution accuracy? Low(L); Standard(S); High(H)

s

Quasi-Newton (weak search and mid tolerance)

Converged after 9 iterations and 13 function calls

Solution x =

0.170997E+01 0.341997E+01

with function value F = 0.350882E+02

25.3. Modifying and creating test problems

It is expected that many users will simply compile and run the example
programs using the built-in choices illustrated in the previous section.
Useful experience can be obtained by treating the given codes as “black
boxes” for demonstrating the behaviour of different methods. (Note that
the quoted figures for numbers of iterations and function calls may not
be exactly replicated when a user runs a particular example because
OPTIMA software may undergo periodic revisions.)

Some readers, however, may wish to make small modifications such
as changing a starting guess or altering some of the parameters in a
problem. Such minor changes can be probably be made by those with
no previous Fortran experience. A few, more ambitious, users may wish
to formulate and solve their own problems. In order to facilitate both
possibilities we give below some program listings to serve as templates
for those who wish to pose their own example problems.
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An unconstrained problem

The first listing is for the solution of Problem TD1. The routine OPTIMIZE1

provides the interface to the optimization routine which offers some user
choices about the solution technique. Comments in the listing show
where changes could be made to alter the starting guess or the target
volume of the tank.

PROGRAM TD1

! *** Main program for tank design problem ***

USE minpac

IMPLICIT NONE

REAL*8, DIMENSION(:), ALLOCATABLE :: x

INTEGER :: n, method

INTERFACE

SUBROUTINE calfun(n,x,f,g)

INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:n) :: g

END SUBROUTINE calfun

END INTERFACE

PRINT"(’ Problem TD1’)"

! *** set number of variables and starting point ***

n = 2; ALLOCATE(x(1:n)); x= (/2.0D0, 2.0D0/)

CALL suppress_minpac_history; CALL set_minpac_iterations(5000);

CALL OPTIMIZE1(n,x,method,calfun); DEALLOCATE(x)

END PROGRAM TD1

SUBROUTINE TD1fg(x,f,g)

! *** user-supplied function and gradient for tank design problem ***

USE opfad

REAL*8, DIMENSION(1:2), INTENT(in) :: x

REAL*8, INTENT(out) :: f

REAL*8, DIMENSION(1:2), INTENT(out) :: g

TYPE(doublet) :: xx(2), ff

REAL*8 :: Vstar

Vstar = 20.0D0 ! *** set target volume ***

CALL INITIALIZE(2,x,xx) ! *** convert real variables to doublet form ***

ff = 2.0D0*xx(1)*xx(2) + 2.0D0*vstar/xx(2) + Vstar/xx(1)

f = VALUE(ff); g = GRADIENT(ff) ! *** extract function value and gradient ***

END SUBROUTINE TD1fg

! *** General-purpose interface routines ***

SUBROUTINE calfun(n,x,f,g)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:n) :: g

CALL TD1fg(x,f,g)

END SUBROUTINE calfun

FUNCTION funval(n, x)

IMPLICIT NONE
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INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8 :: funval, f

REAL*8, DIMENSION(1:2) :: g

CALL TD1fg(x,f,g); funval = f

END FUNCTION funval

Much of the above listing could remain unaltered if the reader wanted
to pose a different unconstrained minimization problem. A different
expression for the objective function would have to appear in the body
of the function TD1fg. There might also have to be changes to the value
of n and the starting values for the variables.

An equality constrained problem

A second example shows a program to set up Problem TD1a which has
only equality constraints. Note that the interface with OPTIMA is now
through the subroutine OPTIMIZE3. As with the previous example, the
comments in the listing show where changes to the problem might be
made. To generate a new problem it would be necessary to put new
expressions for the function and constraints in the body of TD1cfg. The
dimension statements in the main program and in the subroutine Sumtfun

need to be in agreement with the numbers of variables and constraints
in the new problem

PROGRAM TD1a

USE minpac

IMPLICIT NONE

REAL*8, DIMENSION(:), ALLOCATABLE :: x

INTEGER :: n, method, m, me

COMMON/sumt/method

INTERFACE

SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

END SUBROUTINE Sumtfun

END INTERFACE

PRINT"(’ Problem TD1a’)"

! *** Set number of variables and total number of constraints ***



25.3. Modifying and creating test problems 265

n = 3; m=1

! *** Set number of equality constraints ***

me = 1

! *** Set starting guess ***

ALLOCATE(x(1:n)); x= (/2.0D0, 2.0D0, 5.0D0/)

CALL print_minpac_history; CALL set_minpac_iterations(5000);

CALL set_initial_penalty(0.1D0); CALL set_penalty_scaling(0.25D0)

CALL OPTIMIZE3(n,x,m,me,method,Sumtfun,calfun); DEALLOCATE(x)

END PROGRAM TD1a

SUBROUTINE TD1cfg(x,f,c,g,A)

! *** user-supplied function and constraints for tank design problem TD1a ***

USE opfad

REAL*8, DIMENSION(1:3), INTENT(in) :: x

REAL*8, INTENT(out) :: f

REAL*8, DIMENSION(1:1), INTENT(out) :: c

REAL*8, DIMENSION(1:3), INTENT(out) :: g

REAL*8, DIMENSION(1:1,1:3), INTENT(out) :: A

TYPE(doublet) :: xx(3), ff, cc(1)

REAL*8 :: Vstar

Vstar = 20.0D0; ! *** target value for volume ***

CALL INITIALIZE(3,x,xx) ! *** convert real variables to doublet form ***

! *** evaluate function in doublet form ***

ff = 2.0D0*xx(1)*xx(2) + 2.0D0*xx(1)*xx(3) + xx(2)*xx(3)

! *** evaluate constraint in doublet form ***

cc(1) = xx(1)*xx(2)*xx(3) - Vstar

f = VALUE(ff); g =GRADIENT(ff) ! *** extract function values and gradients ***

c = VALUES(cc,1); A = NORMALS(cc,1) ! *** extract constraints and Jacobian ***

END SUBROUTINE TD1cfg

SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

REAL*8, DIMENSION(1:n) :: gdum

REAL*8, DIMENSION(1:m,1:n) :: Adum

CALL TD1cfg(x,f,c,gdum,Adum)

IF(PRESENT(g))g=gdum; IF(PRESENT(A))A=Adum

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

REAL*8 :: f

REAL*8, DIMENSION(1:n) :: g

! *** NB dimension of c and first dimension of A must be number of

constraints ***

REAL*8, DIMENSION(1:1) :: c

REAL*8, DIMENSION(1:1,1:n) :: A
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INTEGER :: method

COMMON/sumt/method

CALL TD1cfg(x,f,c,g,A)

! *** Parameter 5 of Make_P and Make_AL must be number of equality

constraints ***

IF (method == 1)CALL Make_P(f,g,c,A,1,P,gradP)

IF (method == 2)CALL Make_AL(f,g,c,A,1,P,gradP)

END SUBROUTINE Sumtfun

FUNCTION funval(n,y)

funval = 0.0

END FUNCTION funval

An equality and inequality constrained problem

The third code listing is for TD1b which is a problem with a mixture
of equality and inequality constraints. This also uses OPTIMIZE3 as the
interface to OPTIMA. In order to generate new problems of this type,
a user would need to write a new body for the subroutine TD1cfg and
ensure that correct values are assigned to the variables representing n,
m (the total number of constraints) and me (the number of equality
constraints). Note that the constraints must be numbered so that the
equalities are the first me elements in the vector c1, . . . , cm. Note also
that the dimension statements in the subroutine Sumtfun must agree with
the actual number of constraints.

PROGRAM TD1b

! *** Main program for tank design problem with inequality constraints ***

USE minpac

IMPLICIT NONE

REAL*8, DIMENSION(:), ALLOCATABLE :: x

INTEGER :: n, method, m, me

COMMON/sumt/method

INTERFACE

SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

END SUBROUTINE Sumtfun

END INTERFACE

PRINT"(’ Problem TD1b’)"

! *** Set number of variables and total number of constraints ***



25.3. Modifying and creating test problems 267

n = 3; m=4

! *** Set number of equality constraints ***

me = 1

! *** Set starting guess ***

ALLOCATE(x(1:n)); x= (/2.0D0, 2.0D0, 5.0D0/)

CALL print_minpac_history; CALL set_minpac_iterations(5000);

CALL set_initial_penalty(0.1D0); CALL set_penalty_scaling(0.25D0)

CALL OPTIMIZE3(n,x,m,me,method,Sumtfun,calfun); DEALLOCATE(x)

END PROGRAM TD1b

SUBROUTINE TD1cfg(x,f,c,g,A)

! *** user-supplied function and constraints for tank design problem with

bounds ***

USE opfad

REAL*8, DIMENSION(1:3), INTENT(in) :: x

REAL*8, INTENT(out) :: f

REAL*8, DIMENSION(1:4), INTENT(out) :: c

REAL*8, DIMENSION(1:3), INTENT(out) :: g

REAL*8, DIMENSION(1:4,1:3), INTENT(out) :: A

TYPE(doublet) :: xx(3), ff, cc(4)

REAL*8 :: Vstar

Vstar = 20.0D0; ! *** target volume ***

CALL INITIALIZE(3,x,xx) ! *** convert real variables to doublet form ***

! *** evaluate function in doublet form ***

ff = 2.0D0*xx(1)*xx(2) + 2.0D0*xx(1)*xx(3) + xx(2)*xx(3)

! *** evaluate constraints in doublet form (equalities always first) ***

cc(1) = xx(1)*xx(2)*xx(3) - Vstar

do k = 1,3

cc(k+1) = xx(k) - 1.9D0

end do

f = VALUE(ff); g = GRADIENT(ff)! *** extract function and gradient ***

c = VALUES(cc,4); A = NORMALS(cc,4) ! *** extract constraints and Jacobian ***

END SUBROUTINE TD1cfg

SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

REAL*8, DIMENSION(1:n) :: gdum

REAL*8, DIMENSION(1:m,1:n) :: Adum

CALL TD1cfg(x,f,c,gdum,Adum)

IF(PRESENT(g))g=gdum; IF(PRESENT(A))A=Adum

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

REAL*8 :: f

REAL*8, DIMENSION(1:n) :: g
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! *** dimension of c and first dimension of A must be total number of

constraints ***

REAL*8, DIMENSION(1:4) :: c

REAL*8, DIMENSION(1:4,1:n) :: A

INTEGER :: method

COMMON/sumt/method

CALL TD1cfg(x,f,c,g,A)

! *** Parameter 5 of make_P and Make_AL must be number of equality

constraints ***

IF (method == 1)CALL Make_P(f,g,c,A,1,P,gradP)

IF (method == 2)CALL Make_AL(f,g,c,A,1,P,gradP)

END SUBROUTINE Sumtfun

FUNCTION funval(n,y)

funval = 0.0

END FUNCTION funval

A sum-of-squares problem

The next listing shows how to set up the sum-of-squares unconstrained
problem VLS2. This differs from the code for the general unconstrained
example TD1 in that the user-supplied routine (VLS2fg) must calculate
both the gradient of F and also the Jacobian matrix of the subfunc-
tions. The interface to OPTIMA is via the routine OPTIMIZE2 which offers
the Gauss–Newton method as an additional solver option. Coding of a
new problem would require the replacement of data and expressions in
subroutine VLS2fg.

PROGRAM VLS2

! *** Main program for data-fitting problem VLS2 ***

USE minpac

IMPLICIT NONE

REAL*8, DIMENSION(:), ALLOCATABLE :: x

INTEGER :: n, method, m

INTERFACE

SUBROUTINE calfun(n,x,f,g)

INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:n) :: g

END SUBROUTINE calfun

END INTERFACE

PRINT"(’ Problem VLS2’)"

! *** Set number of variables and number of terms in sum-of-squares ***

n = 2; m=5

! *** Set starting guess ***

ALLOCATE(x(1:n)); x= (/0.0D0, 0.0D0/)

CALL suppress_minpac_history; CALL set_minpac_iterations(5000);

CALL OPTIMIZE2(n,m,x,method,calfun); DEALLOCATE(x)

END PROGRAM VLS2

SUBROUTINE VLS2fg(x,f,g)

! user-supplied function gradient and Jacobian evaluation for problem VLS2

USE opfad; USE minpac

REAL*8, DIMENSION(1:2), INTENT(in) :: x
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REAL*8, INTENT(out) :: f

REAL*8, DIMENSION(1:2), INTENT(out) :: g

TYPE(doublet) :: xx(2), ff, ss(5)

REAL*8 :: t(5),z(5)

INTEGER :: k

t = (/0.0,1.0,2.0,3.0,4.0/); z = (/1.0,0.5,0.4,0.3,0.2/)

! *** set data values ***

CALL INITIALIZE(2,x,xx) ! *** convert real variables to doublet form ***

ff = 0.0D0

! *** evaluate terms of sum of squares and accumulate their sum ***

DO k = 1,5

ss(k) = (xx(1)*exp(xx(2)*t(k)) - z(k)); ff = ff + ss(k)**2

END DO

! *** extract function value and gradient and Jacobian of subfunctions ***

f = VALUE(ff); g = GRADIENT(ff); Jac = normals(ss,5)

END SUBROUTINE VLS2fg

SUBROUTINE calfun(n,x,f,g)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:n) :: g

CALL VLS2fg(x,f,g)

END SUBROUTINE calfun

FUNCTION funval(n, x)

IMPLICIT NONE

INTEGER, INTENT(in) :: n

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8 :: funval, f

REAL*8, DIMENSION(1:2) :: g

CALL VLS2fg(x,f,g); funval = f

END FUNCTION funval

An inequality constrained problem

Finally we give an example of a problem which has inequality constraints
only. This is VLS2b and it uses OPTIMIZE4 as the interface to the OPTIMA

procedures. Unlike OPTIMIZE3 this permits the use of the feasible-point
methods B-SUMT and IPM. Any changes to be made to this example code
should be done in the light of comments made in connection with the
mixed equality-inequality constrained problem above.

PROGRAM VLS2b

! *** Main program for problem VLS2b ***

USE minpac

IMPLICIT NONE

REAL*8, DIMENSION(:), ALLOCATABLE :: x

CHARACTER*1 :: ans

INTEGER :: n, method, m, me, i

REAL*8:: t(5), z(5)

COMMON/sumt/method

INTERFACE
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SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

END SUBROUTINE Sumtfun

END INTERFACE

PRINT"(’ Problem VLS2b with inequalities only’)"

! *** number of variables, total number of constraints, number of equality

constraints ***

n = 2; m=10; me = 0

! *** Set starting guess ***

ALLOCATE(x(1:n)); x= (/0.0, 0.0/);

PRINT"(’ Feasible starting point (y/n)?’)"; READ*, ans

IF(ans == ’y’)x = (/0.925, -0.4712/)

CALL print_minpac_history; CALL set_minpac_iterations(5000);

CALL set_initial_penalty(0.1D0); CALL set_penalty_scaling(0.25D0)

CALL OPTIMIZE4(n,x,m,me,method,Sumtfun,calfun); DEALLOCATE(x)

END PROGRAM VLS2b

SUBROUTINE VLS2cfg(x,f,c,g,A)

! *** user-supplied function and constraints for problem VLS2b ***

USE opfad

REAL*8, DIMENSION(1:2), INTENT(in) :: x

REAL*8, INTENT(out) :: f

REAL*8, DIMENSION(1:10), INTENT(out) :: c

REAL*8, DIMENSION(1:2), INTENT(out) :: g

REAL*8, DIMENSION(1:10,1:2), INTENT(out) :: A

TYPE(doublet) :: xx(2), ff, ss(5), cc(10)

REAL*8 :: t(5),z(5)

INTEGER :: k

t = (/0.0,1.0,2.0,3.0,4.0/); z = (/1.0,0.5,0.4,0.3,0.2/) ! *** data points ***

CALL INITIALIZE(2,x,xx) ! *** convert real variables to doublet form ***

ff = 0.0D0

! *** evaluate residuals and sum-of-squares function ***

DO k = 1,5

ss(k) = (xx(1)*exp(xx(2)*t(k)) - z(k)); ff = ff + ss(k)**2

END DO

! *** calculate inequality constraints (upper and lower bounds on residuals)

DO k = 1,5

cc(k) = ss(k) + 0.08D0; cc(k+5) = 0.08D0 - ss(k)

END DO

f = VALUE(ff); g = GRADIENT(ff); ! *** extract function and gradient ***

c = VALUES(cc,10); A = NORMALS(cc,10) ! *** extract constraints and Jacobian

END SUBROUTINE VLS2cfg
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SUBROUTINE calfun(x,n,m,f,c,g,A)

USE opfad;

IMPLICIT NONE

INTEGER, INTENT(in) :: n,m

REAL*8, INTENT(in), DIMENSION(1:n) :: x

REAL*8, INTENT(out) :: f

REAL*8, INTENT(out), DIMENSION(1:m) :: c

REAL*8, INTENT(out), DIMENSION(1:n), OPTIONAL :: g

REAL*8, INTENT(out), DIMENSION(1:m,1:n), OPTIONAL :: A

REAL*8, DIMENSION(1:n) :: gdum

REAL*8, DIMENSION(1:m,1:n) :: Adum

CALL VLS2cfg(x,f,c,gdum,Adum)

IF(PRESENT(g))g=gdum; IF(PRESENT(A))A=Adum

END SUBROUTINE calfun

SUBROUTINE Sumtfun(n,x,P,gradP)

USE minpac

INTEGER, INTENT(in) :: n

REAL*8, DIMENSION(1:n), INTENT(in) :: x

REAL*8, INTENT(out) :: P

REAL*8, DIMENSION(1:n), INTENT(out) :: gradP

REAL*8 :: f

REAL*8, DIMENSION(1:n) :: g

! *** dimension of c and first dimension of A must be total number of

constraints ***

REAL*8, DIMENSION(1:10) :: c

REAL*8, DIMENSION(1:10,1:n) :: A

INTEGER :: method

COMMON/sumt/method

CALL VLS2cfg(x,f,c,g,A)

! *** parameter 5 of Make_P and Make_AL must be number of equality

constraints ***

IF (method == 1)CALL Make_P(f,g,c,A,0,P,gradP)

IF (method == 2)CALL Make_AL(f,g,c,A,0,P,gradP)

IF (method == 4)CALL Make_B(f,g,c,A,P,gradP)

END SUBROUTINE Sumtfun

FUNCTION funval(n,y)

funval = 0.0

END FUNCTION funval

25.4. Modifying optimization methods

Some of the exercises in the main text invite the reader to make changes
to one of the OPTIMA algorithms. An example would be replacement
of the BFGS updating formula with the DFP one. Such tasks are not
particularly difficult but probably require a user to be a fairly confident
Fortran programmer. We give a few illustrations to help the reader
make some of the possible changes to algorithms that are suggested in
the text. With these illustrations as a guide, an enthusiastic reader with
a knowledge of Fortran should be able to identify other possibilities for
modifying – and possibly improving – the OPTIMA implementations.
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Changing the update in a quasi-Newton method

This particular change can be made by adding a subroutine DFP to the
module MINPAC which is similar to the existing BFGS routine listed below.
The other change needed is the replacement of the CALL BFGS statement in
the subroutine quasi-Newton with the corresponding CALL DFP statement.

SUBROUTINE BFGS(n,H,p,g,gold)

! BFGS update for inverse Hessian

INTEGER, INTENT (in) :: n

REAL*8, INTENT(inout), DIMENSION(1:n,1:n) :: H

REAL*8, INTENT(in), DIMENSION(1:n) :: p,g,gold

REAL*8, DIMENSION(1:n) :: y, Hy

REAL*8 :: dy, yHy, temp, dnm, ynm

INTEGER :: i,j

y = g - gold; dy = DOT_PRODUCT(p,y)

dnm = SQRT(DOT_PRODUCT(p,p)); ynm = SQRT(DOT_PRODUCT(y,y))

IF (dy <= 0.01*dnm*ynm) RETURN

Hy = MATMUL(H,y); yHy = DOT_PRODUCT(y,Hy); temp = (1.0D0 + yHy/dy)/dy

DO i = 1,n

DO j = i,n

H(i,j) = H(i,j) - (Hy(i)*p(j) + Hy(j)*p(i))/dy + temp*p(i)*p(j)

H(j,i) = H(i,j)

END DO

END DO

END SUBROUTINE BFGS

Changing the conjugate gradient search direction

We can produce a version of the conjugate gradient method which uses
the Polak-Ribiere form of recurrence relation to obtain the search direc-
tions. In the OPTIMA subroutine Conjugate_Gradient we can replace the
statement beta = dot_product(g,g)/dot_product(gold,gold) by one which
calculates β using (11.2.1).

Changing the form of the barrier function

If we wish to change the B-SUMT method to use the reciprocal, rather
than the logarithmic, barrier term then, in the subroutine Make_B, it
is sufficient simply to replace the statement B = B - rbar*log(c(i)) by
B = B + rbar/c(i).
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