More on the guessing technique for the damped harmonic oscillator

Example. Last class we applied a guessing technique to produce two solutions for the

harmonic oscillator equation
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Using the characteristic equation, we obtained
pi(t)=e and yy(t) =",
The corresponding velocity functions are
vi(t) = —2¢7% and wy(t) = —e .

In vector form, these solutions are written as

and

Let’s plot these solutions with HPGSystemSolver. What are the corresponding solution
curves and component graphs?
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Euler’s method for a system

We can use the vector field for a system to produce numerical approximations for the
solutions.

Example. Consider the initial-value problem

dx
— _y
dy (w0, 40) = (2,0).

ar Y
The EulersMethodForSystems tool demonstrates the method. We pick a large step size
At = 0.5 so that we can see the method in action.
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Now let’s derive the general equations for Euler’s method for an autonomous initial-value
problem of the form

dx
& (e(t0), y(t0)) = (20, 30).
pri g(x,y)



Euler’s method for systems is just as easy to program as Euler’s method for equations.
Once again here’s how we can program it with a spreadsheet.
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There are two spreadsheets posted on the course web site—one for the example above
and one for the following example.

Example. Consider the predator-prey system
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along with the initial condition (Ro, Fy) = (1,2). Using the spreadsheet on the web site, we
see that Euler’s method has trouble approximating periodic solutions.

HPGSystemSolver uses a more sophisticated fixed-step-size algorithm called the Runge-
Kutta method. It usually works better than Euler’s method, but there are equations for
which any fixed-step-size algorithm is not appropriate.



Existence and Uniqueness Theory for Systems

There is an existence and uniqueness theorem for systems just like the theorem for equa-
tions.

Existence and Uniqueness Theorem. Let

dY
— =F(,Y
o = FtY)
be a system of differential equations. Suppose that ¢y is an initial time and Y is an initial
value. Suppose also that the function F is continuously differentiable. Then there is an € > 0

and a function Y (¢) defined for ¢y — e < t < t( + € such that

Y

= F(t,Y(t)) and Y(t) = Yo.

In other words, Y (t) satisfies the initial-value problem. Moreover, for ¢ in this interval, this
solution is unique.

There is an important consequence of the Uniqueness Theorem for autonomous systems:
Consider the metaphor of the parking lot.

Given the autonomous system

dY
— =F(Y).
o = F(Y)

Let Yy be an initial condition such that Y;(¢) is a solution that satisfies Y (¢;) = Y, and
Y(t) is another solution that satisfies Y (t3) = Y. Then

Yo(t) =Yi(t — (ta — t1)).



Example. Consider the second-order equation

which is equivalent to the system

Note that

cost sint
Ya(t) = ( —sint ) and - Ya(t) = ( cost )

are both solutions to the system. How are Y;(¢) and Y,(t) related?

There is an animation on the web site that illustrates this phenomenon.
Here is an informal restatement of this consequence of uniqueness:

For an autonomous system, if two solution curves in the phase plane touch, then
they are identical.



