More on the consequences of uniqueness for autonomous systems
Recall the metaphor of the corn field.

Given the autonomous system $d \mathbf{Y} / d t=\mathbf{F}(\mathbf{Y})$. Let \mathbf{Y}_{0} be an initial condition such that $\mathbf{Y}_{1}(t)$ is a solution that satisfies $\mathbf{Y}\left(t_{1}\right)=\mathbf{Y}_{0}$ and $\mathbf{Y}_{2}(t)$ is another solution that satisfies $\mathbf{Y}\left(t_{2}\right)=\mathbf{Y}_{0}$. Then

$$
\mathbf{Y}_{2}(t)=\mathbf{Y}_{1}\left(t-\left(t_{2}-t_{1}\right)\right)
$$

Example. Consider the second-order equation $\frac{d^{2} y}{d t^{2}}+y=0$ and its equivalent system

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-y .
\end{aligned}
$$

Note that

$$
\mathbf{Y}_{1}(t)=\binom{\cos t}{-\sin t} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{\sin t}{\cos t}
$$

are both solutions to the system. How are $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ related?

There is an animation on the web site that illustrates this phenomenon.

Here is an informal restatement of this consequence of uniqueness:
For an autonomous system, if two solution curves in the phase plane touch, then they are identical.

Linear systems
Linear systems and second-order linear equations are the most important systems we study in this course.
What is a linear system with two dependent variables?

What is a second-order, homogeneous, linear equation?

Linear systems written in vector notation suggest the use of matrix multiplication:

Recall two examples that we have already discussed.
Example 1. We have already calculated the general solution to the partially decoupled system

$$
\begin{aligned}
& \frac{d x}{d t}=2 y-x \\
& \frac{d y}{d t}=y .
\end{aligned}
$$

It is

$$
\begin{aligned}
& x(t)=y_{0} e^{t}+\left(x_{0}-y_{0}\right) e^{-t} \\
& y(t)=y_{0} e^{t} .
\end{aligned}
$$

Example 2. For the damped harmonic oscillator

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0
$$

and its equivalent system

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-2 y-3 v
\end{aligned}
$$

we used a guessing technique to find two (scalar) solutions $y_{1}(t)=e^{-t}$ and $y_{2}(t)=e^{-2 t}$. In vector form, these solutions are written as

$$
\mathbf{Y}_{1}(t)=\binom{e^{-2 t}}{-2 e^{-2 t}}=e^{-2 t}\binom{1}{-2} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{e^{-t}}{-e^{-t}}=e^{-t}\binom{1}{-1}
$$

Given a linear system $\frac{d \mathbf{Y}}{d t}=\mathbf{A Y}$, how do we calculate the vector in the vector field at any given point \mathbf{Y}_{0} ?

How do we calculate the equilibrium points of $\frac{d \mathbf{Y}}{d t}=\mathbf{A Y}$?

Example. Let $\mathbf{A}_{1}=\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$.

Example. Let $\mathbf{A}_{2}=\left(\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right)$.

Theorem. The origin is always an equilibrium point of a linear system. It is the only equilibrium point if and only if $\operatorname{det} \mathbf{A} \neq 0$.

