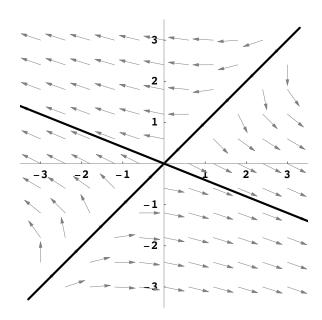
Eigenvalues, eigenvectors, general solutions, and phase portraits

To find the straight-line solutions of the linear system $d\mathbf{Y}/dt = \mathbf{AY}$, we need to find the eigenvalues and associated eigenvectors of the matrix \mathbf{A} . We find the eigenvalues using the characteristic equation $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

Example. Find the general solution to
$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 4 & -5 \\ -2 & 1 \end{pmatrix} \mathbf{Y}$$
.

Using HPGSystemSolver, we plot the phase portrait for this system.



Facts about eigenvalues and eigenvectors: Given a 2×2 matrix **A**,

- 1. The characteristic equation can have two real roots, one real root of multiplicity two, or two complex conjugate roots.
- 2. Given an eigenvector \mathbf{Y}_0 associated to an eigenvalue λ , then any nonzero scalar multiple \mathbf{Y}_0 is also an eigenvector associated to λ .
- 3. Eigenvectors associated to distinct eigenvalues are linearly independent.

Summary of Case of Two Distinct Real Eigenvalues

Suppose **A** is a matrix with two eigenvalues λ_1 and λ_2 . To be consistent, we will assume that $\lambda_1 < \lambda_2$, that \mathbf{V}_1 is an eigenvector associated to λ_1 , and that \mathbf{V}_2 is an eigenvector associated to λ_2 . The general solution of

$$\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$$

is
$$\mathbf{Y}(t) = k_1 e^{\lambda_1 t} \mathbf{V}_1 + k_2 e^{\lambda_2 t} \mathbf{V}_2$$
.

Case 1:
$$\lambda_1 < \lambda_2 < 0$$
.

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}.$$

