Last class we studied an example with complex eigenvalues.
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Example. Consider T AY where A = ( _? _f ) .

Its eigenvalues are A = —2 + 4, and by solving the eigenvector equation AY, = (-2 + 7)Y,
we derived the “straight-line solution”
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— (—2+4)t
Y.(t)=e ( L4i ) .

There are lots of questions that come with this formula. First, what does the formula
mean? Second, what good is it given that we are interested in real-valued solutions to our
linear systems?

Once again Euler comes to the rescue: Remember the power series for the exponential
function? It is
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Let’s use this series where x = bs.



We use Euler’s formula

e” = cosb + isinb

applied to the complex-valued function e(®+¥)t,

But why does this help us solve our differential equation?

Theorem. Consider dY /dt = AY, where A is a matrix with real entries. If Y (¢) is a
complex-valued solution, then both

ReY,.(t) and ImY.(t)

are real-valued solutions, and they are linearly independent.



Now we can derive the general solution to
dY -3 2
dat ( -1 -1 )Y
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using the complex-valued solution Y,(t) = e{~2+9 ( L4 )



Three examples to illustrate the geometry of complex eigenvalues:
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Example 1. e AY where A = ( 0 -1 ) .

1 0
The characteristic polynomial of A is A2 + 1, so the eigenvalues are A = +i. One
eigenvector associated to the eigenvalue A =17 is
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dY
Example 2. P BY where B = 4 _9

The characteristic polynomial of B is A? + 4, so the eigenvalues are A\ = +2i. One
eigenvector associated to the eigenvalue A = 2i is
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