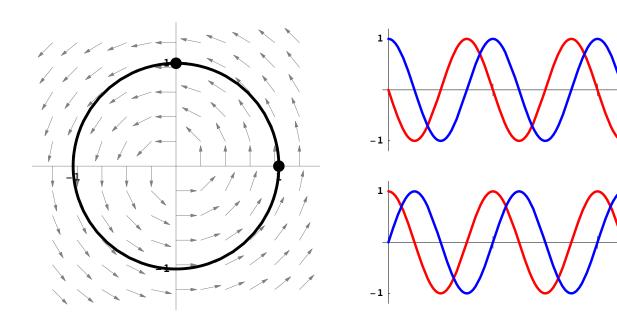
The geometry of complex eigenvalues

Example 1. $\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$ where

$$\mathbf{A} = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right).$$

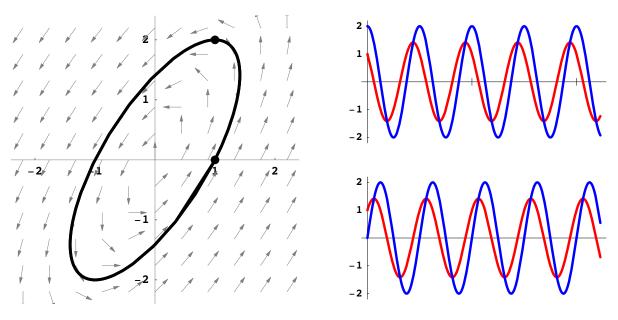

The characteristic polynomial of **A** is $\lambda^2 + 1$, so the eigenvalues are $\lambda = \pm i$. One eigenvector associated to the eigenvalue $\lambda = i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} i \\ 1 \end{array} \right).$$

We obtain a general solution of the form

$$\mathbf{Y}(t) = k_1 \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} + k_2 \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

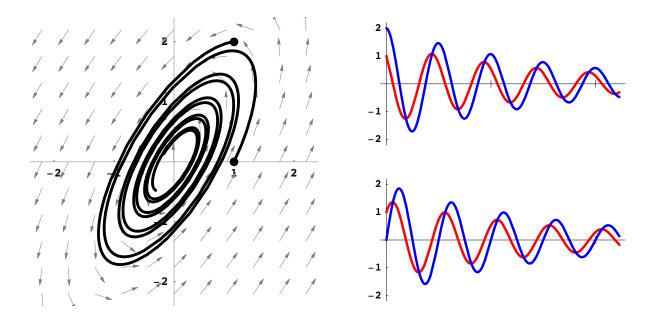
A solution curve and two pairs of x(t)- and y(t)-graphs are shown below.



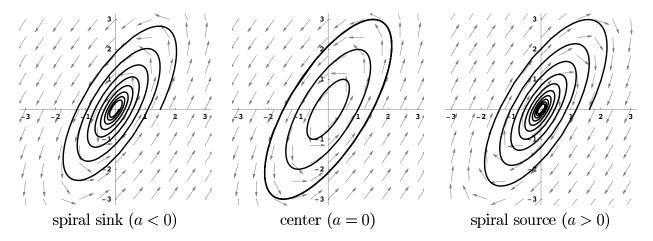
Example 2.
$$\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y}$$
 where $\mathbf{B} = \begin{pmatrix} 2 & -2 \\ 4 & -2 \end{pmatrix}$.

The characteristic polynomial of **B** is $\lambda^2 + 4$, so the eigenvalues are $\lambda = \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = 2i$ is

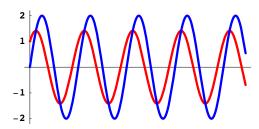
$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$


We get ellipses centered at the origin in the phase plane.

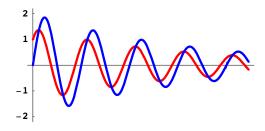
Example 3.
$$\frac{d\mathbf{Y}}{dt} = \mathbf{CY}$$
 where $\mathbf{C} = \begin{pmatrix} 1.9 & -2 \\ 4 & -2.1 \end{pmatrix}$.


The characteristic polynomial of C is $\lambda^2 + 0.2\lambda + 4.01$, so the eigenvalues are $\lambda = -0.1 \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = -0.1 + 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$


Summary: Linear systems with complex eigenvalues $\lambda = a \pm bi$

Here are the possible phase portraits:



What information can you get just from the complex eigenvalue alone?

Recall Example 2. The eigenvalues are $\lambda=\pm 2i$. Here are the x(t)- and y(t)-graphs of a typical solution:

In Example 3, the eigenvalues are $\lambda = -0.1 \pm 2i$. Here are the x(t)- and y(t)-graphs of a typical solution:

Frequency versus period: The solutions in Example 3 are not periodic in the strict sense. There is no time T such that

$$x(t+T) = x(t)$$
 and $y(t+T) = y(t)$

for all t. However, there is a period associated to these solutions. In the text, we call this the **natural period** of the solutions.

Perhaps it is best to think about these solutions as oscillating solutions that are decaying over time and to measure the oscillations in terms of their **frequency**.

Definition. The frequency F of an oscillating function g(t) is the number of cycles that g(t) makes in one unit of time.

Suppose that g(t) is oscillating periodically with "period" T. What is its frequency F?

Example. Consider the standard sinusoidal functions $g(t) = \cos \beta t$ and $g(t) = \sin \beta t$.

Suppose we measure frequency in radians rather than in cycles. This measure of frequency is often called **angular frequency**. Let's denote the angular frequency by f. Then

$$f=2\pi F$$
.

Repeated eigenvalues

Sometimes the characteristic polynomial has the same real root twice. When this happens, we say that the eigenvalues are "repeated."

Example.
$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$
 where $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$.

The characteristic polynomial of **A** is $(\lambda - 3)^2$, so there is only one eigenvalue, $\lambda = 3$. Let's calculate the associated eigenvectors:

But we already know how to solve this system. How?

We obtain the general solution
$$\mathbf{Y}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_0 e^{3t} + 2y_0 t e^{3t} \\ y_0 e^{3t} \end{pmatrix}$$
.