The Laplace transform

For the remainder of the semester, we are going to take a somewhat different approach to
the solution of differential equations. We are going to study a way of transforming differential
equations into algebraic equations.

We begin with a little review of improper integrals.

Example. Consider the improper integral
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Example. Consider the improper integrals
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for various values of s.

Definition. The Laplace transform of the function y(¢) is the function

Y(s) = /0 T y(t) et dt.

This transform is an “operator” (a function on functions). It transforms the function y(t)
into the function Y(s).



Notation: We often represent this operator using the script letter £. In other words,
Lyl =Y.
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For example, L[1] = —.

s
Note that, even if y(¢) is defined for all ¢, the Laplace transform Y (s) may not be defined
for all s.

Example. Let’s compute L[e?] using the definition and the improper integrals we have
already computed:

Examples. Using Mathematica to calculate the improper integrals, we see that:

Llsint] = o for s>0
L[e* sin 3t] = 3 for s>2
s?2 —4s+13
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L[t = s for s>0
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L[sin 2t] = ) for s>0,
s
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ﬁ[t COS \/it] = m fOI' s>0
iwt 1
L[e™'] = — for s>0
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Properties of the Laplace transform There are two properties of the Laplace transform
that make it well suited for solving linear differential equations:
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2. L is a linear transform

Both of these properties are extremely important, but the surprising one is #1. Let’s

consider g .
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In fact, before we consider the improper integral, let’s apply the method of integration by

parts to the indefinite integral
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Now let’s see how we can use the Laplace transform to solve an initial-value problem.
Example. Solve the IVP

- —3y=e’, y(0) =4

1. Transform both sides of the equation:

2. Solve for L]y]:

3. Calculate the inverse Laplace transform:

Is this the right answer? Do we need Laplace transforms to calculate it?



