More on using the Laplace transform to solve certain second-order equations The second-order equations that we have considered so far with the Laplace transform have been undamped. In order to consider the full range of second-order equations, we need one more property of the transform. Shifting the s-axis. Let Y(s) denote the Laplace transform $\mathcal{L}[y(t)]$. Then $$\mathcal{L}[e^{at}\,y(t)] =$$ **Example 1.** Calculate $\mathcal{L}[e^{-2t}\cos 3t]$. Example 2. Calculate $$\mathcal{L}^{-1}\left[\frac{2s+7}{s^2+4s+7}\right]$$. Let's solve the initial-value problem $$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 7y = 10 u_3(t) \sin 2(t-3), \quad y(0) = 2, \quad y'(0) = -1.$$ Before we get too far into the messy formulas, let's look at the graph of the solution using ${\tt HPGSystemSolver}$: Now for the formulas: 1. Transform both sides of the equation: 2. Solve for $\mathcal{L}[y]$: 3. Calculate the inverse Laplace transform: We calculated $$\mathcal{L}^{-1} \left[\frac{2s+7}{s^2+4s+7} \right] = 2e^{-2t} \cos \sqrt{3} t + \sqrt{3} e^{-2t} \sin \sqrt{3} t$$ in Example 2. To invert the second term, we take advantage of some algebra done before class: (a) Partial fractions decomposition: $$\frac{1}{(s^2+4)(s^2+4s+7)} = \frac{1}{73} \left(\frac{4s+13}{s^2+4s+7} - \frac{4s-3}{s^2+4} \right)$$ (b) Inverse related to the first term: $$\mathcal{L}^{-1} \left[\frac{4s+13}{s^2+4s+7} \right] = 4e^{-2t} \cos \sqrt{3} t + \frac{5\sqrt{3}}{3} e^{-2t} \sin \sqrt{3} t$$ (c) Inverse related to the second term: $$\mathcal{L}^{-1} \left[\frac{4s - 3}{s^2 + 4} \right] = 4\cos 2t - \frac{3}{2}\sin 2t$$ After we put all of this together, we get the solution $$y(t) = 2e^{-2t}\cos\sqrt{3}\,t + \sqrt{3}\,e^{-2t}\sin\sqrt{3}\,t +$$ $$\frac{20}{73}u_3(t)\left(4e^{-2(t-3)}\cos\sqrt{3}(t-3) + \frac{5\sqrt{3}}{3}e^{-2(t-3)}\sin\sqrt{3}(t-3) - 4\cos2(t-3) + \frac{3}{2}\sin2(t-3)\right)$$