Autonomous Differential Equations

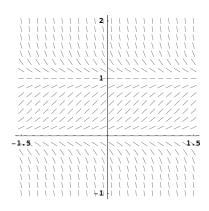
A first-order differential equation with independent variable t and dependent variable y is **autonomous** if

$$\frac{dy}{dt} = f(y).$$

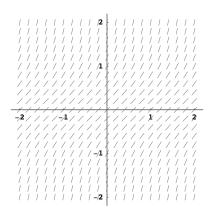
The rate of change of y(t) depends only on the value of y.

Examples of autonomous equations: exponential growth model, radioactive decay, logistic population model

Example.
$$\frac{dv}{dt} = -kv + a\sin bt$$

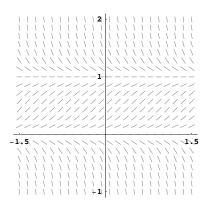

This is a nonautonomous linear differential equation that is related to simple models of voltage in an electric circuit (k, a, a) and b are parameters).

Comments:


- 1. Many interesting models in science and engineering are autonomous (but not every model).
- 2. Every autonomous equation is separable, but the integrals may be impossible to calculate in terms of standard functions.

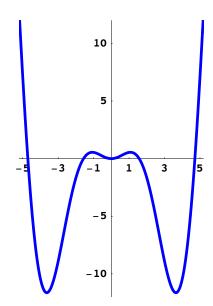
Basic Fact: Given the graph of one solution to an autonomous equation, we can get the graphs of many other solutions by translating that graph left or right.

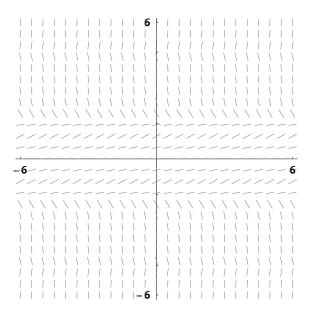
Example 1.
$$\frac{dy}{dt} = 4y(1-y)$$



Example 2. $\frac{dy}{dt} = 1 + y^2$

The slope field has so much redundant information that we can replace it with the **phase** line. Here's the phase line for our standard example:

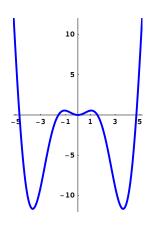

Example.
$$\frac{dy}{dt} = 4y(1-y)$$

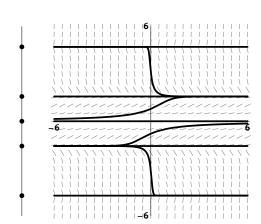


Building phase lines

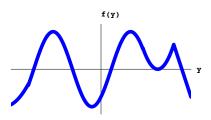
How do we go about building a phase line from a differential equation?

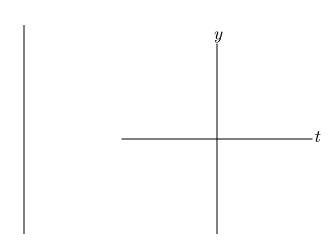
Example
$$\frac{dy}{dt} = y^2 \cos y$$





A little more about phase lines


At the end of last class we discussed the following example.


Example 1. $\frac{dy}{dt} = y^2 \cos y$

Example 2. $\frac{dy}{dt} = f(y)$ where f(y) is given by the graph

