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10 Moment generating functions

If X is a random variable, then its moment generating function is

φ(t) = φX(t) = E(etX ) =

{

∑

x e
txP (X = x) in discrete case,

∫∞
−∞ etxfX(x) dx in continuous case.

Example 10.1. Assume that X is Exponential(1) random variable, that is,

fX(x) =

{

e−x x > 0,

0 x ≤ 0.

Then,

φ(t) =

∫ ∞

0
etxe−x dx =

1

1 − t
,

only when t < 1. Otherwise the integral diverges and the moment generating function does not
exist. Have in mind that moment generating function is only meaningful when the integral (or
the sum) converges.

Here is where the name comes from. Writing its Taylor expansion in place of etX and
exchanging the sum and the integral (which can be done in many cases)

E(etX ) = E[1 + tX +
1

2
t2X2 +

1

3!
t3X3 + . . .]

= 1 + tE(X) +
1

2
t2E(X2) +

1

3!
t3E(X3) + . . .

The expectation of the k-th power of X, mk = E(Xk), is called the k-th moment of x. In
combinatorial language, then, φ(t) is the exponential generating function of the sequence mk.
Note also that

d

dt
E(etX )|t=0 = EX,

d2

dt2
E(etX )|t=0 = EX2,

which lets you compute the expectation and variance of a random variable once you know its
moment generating function.

Example 10.2. Compute the moment generating function for a Poisson(λ) random variable.
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By definition,

φ(t) =

∞
∑

n=0

etn · λ
n

n!
e−λ

= e−λ
∞
∑

n=0

(etλ)n

n!

= e−λ+λet

= eλ(et−1).

Example 10.3. Compute the moment generating function for a standard Normal random
variable.

By definition,

φX(t) =
1√
2π

∫ ∞

−∞
etxe−x2/2 dx

=
1√
2π
e

1

2
t2
∫ ∞

−∞
e−

1

2
(x−t)2 dx

= e
1

2
t2 ,

where from the first to the second line we have used, in the exponent,

tx− 1

2
x2 = −1

2
(−2tx+ x2) =

1

2
((x− t)2 − t2).

Lemma 10.1. If X1,X2, . . . ,Xn are independent and Sn = X1 + . . . +Xn, then

φSn
(t) = φX1

(t) . . . φXn
(t).

If Xi is identically distributed as X, then

φSn
(t) = (φX(t))n .

Proof. This follows from multiplicativity of expectation for independent random variables:

E[etSn ] = E[etX1 · etX2 · . . . · etXn ] = E[etX1 ] · E[etX2 ] · . . . · E[etXn ].

Example 10.4. Compute the moment generating functions of a Binomial(n, p) random variable.

Here we have Sn =
∑n

k=1 Ik where Ik are independent and Ik = I{success on kth trial}, so that

φSn
(t) = (etp+ 1 − p)n.
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Why are moment generating functions useful? One reason is the computation of large devia-

tions. Let Sn = X1 + · · ·+Xn, where Xi are independent and identically distributed as X, with
expectation EX = µ and moment generating function φ. At issue is the probability that Sn is
far away from its expectation nµ, more precisely P (Sn > an), where a > µ. We can of course
use Chebyshev’s inequality to get a bound of order 1

n . But it turns out that this probability
tends to be much smaller.

Theorem 10.2. Large deviation bound.

Assume that φ(t) is finite for some t > 0. For any a > µ,

P (Sn ≥ an) ≤ exp(−n I(a)),

where

I(a) = sup{at− log φ(t) : t > 0} > 0.

Proof. For any t > 0, using the Markov’s inequality,

P (Sn ≥ an) = P (etSn−tan ≥ 1) ≤ E[etSn−tan] = e−tanφ(t)n = exp (−n(at− log φ(t))) .

Note that t > 0 is arbitrary, so we can optimize over t to get what the theorem claims. We need
to show that ψ(a) > 0 when a > µ. For this, note that Φ(t) = at − log φ(t) satisfies Φ(0) = 0
and, assuming that one can differentiate under the integral sign (which one can in this case but
proving this requires a bit of abstract analysis beyond our scope),

Φ′(t) = a− φ′(t)

φ(t)
= a− E(XetX )

φ(t)
,

and then
Φ′(0) = a− µ > 0,

so that Φ(t) > 0 for some small enough positive t.

Example 10.5. Roll a fair die n times and let Sn be the sum of the numbers you roll. Estimate
the probability that Sn exceeds its expectation by at least n, for n = 100 and n = 1000.

We fit this into the above theorem: observe that µ = 3.5 and so ESn = 3.5n, and that we
need to find an upper bound on P (Sn ≥ 4.5n), i.e., a = 4.5. Moreover

φ(t) =
1

6

6
∑

i=1

eit =
et(e6t − 1)

6(et − 1)
.

and we need to compute I(4.5), which by definition is the maximum, over t > 0, of the function

4.5 t − log φ(t),

whose graph is in the figure below.
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It would be nice if we could solve this problem by calculus, but unfortunately we cannot (which
is very common in such problems), so we resort to numerical calculations. The maximum is at
t ≈ 0.37105 and as a result I(4.5) is a little larger than 0.178. This gives the upper bound

P (Sn ≥ 4.5n) ≤ e−0.178·n,

which is about 0.17 for n = 10, 1.83 ·10−8 for n = 100, and 4.16 ·10−78 for n = 1000. The bound
35
12n for the same probability, obtained by Chebyshev’s inequality, is much much too large for
large n.

Another reason why moment generating functions are useful is that they characterize the
distribution, and convergence of distributions. We will state the following theorem without
proof.

Theorem 10.3. Assume that the moment generating functions for random variables X, Y , and

Xn are finite for all t.

1. If φX(t) = φY (t) for all t, then P (X ≤ x) = P (Y ≤ x) for all x.

2. If φXn
(t) → φX(t) for all t, and P (X ≤ x) is continuous in x, then P (Xn ≤ x) → P (X ≤

x) for all x.

Example 10.6. Show that the sum of independent Poisson random variables is Poisson.

Here is the situation, then. We have n independent random variables X1, . . . ,Xn, such that:

X1 is Poisson(λ1), φX1
(t) = eλ1(et−1),

X2 is Poisson(λ2), φX2
(t) = eλ2(et−1),

...

Xn is Poisson(λn), φXn
(t) = eλn(et−1).
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Then
φX1+...+Xn

(t) = e(λ1+...+λn)(et−1)

and so X1 + . . . + Xn is Poisson(λ1 + . . . + λn). Very similarly, one could also prove that the
sum of independent Normal random variables is Normal.

We will now reformulate and prove the Central Limit Theorem in a special case when moment
generating function is finite. This assumption is not needed, and you should apply it as we did
in the previous chapter.

Theorem 10.4. Assume that X is a random variable with EX = µ and Var(X) = σ2, and

assume that φX(t) is finite for all t. Let Sn = X1 + . . .+Xn, where X1, . . . ,Xn are i. i. d., and

distrubuted as X. Let

Tn =
Sn − nµ

σ
√
n

.

Then, for every x,
P (Tn ≤ x) → P (Z ≤ x),

as n→ ∞, where Z is a standard Normal random variable.

Proof. Let Y = X−µ
σ and Yi = Xi−µ

σ . Then Yi are independent, distributed as Y , E(Yi) = 0,
Var(Yi) = 1, and

Tn =
Y1 + . . .+ Yn√

n
.

To finish the proof, we show that φTn
(t) → φZ(t) = exp(t2/2) as n→ ∞:

φTn
(t) = E

[

et Tn

]

= E
[

e
t
√

n
Y1+...+ t

√

n
Yn

]

= E
[

e
t
√

n
Y1

]

· · ·E
[

e
t
√

n
Yn

]

= E
[

e
t
√

n
Y
]n

=

(

1 +
t√
n
EY +

1

2

t2

n
E(Y 2) +

1

6

t3

n3/2
E(Y 3) + . . .

)n

=

(

1 + 0 +
1

2

t2

n
+

1

6

t3

n3/2
E(Y 3) + . . .

)n

≈
(

1 +
t2

2

1

n

)n

→ e
t
2

2 .
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Problems

1. The player pulls three cards at random from a full deck, and collects as many dollars as the
number of red cards among the three. Assume 10 people each play this game once, and let X
be the number of their combined winnings. Compute the moment generating function of X.

2. Compute the moment generating function of a uniform random variable on [0, 1].

3. This exercise was in fact the original motivation for the study of large deviations, by the
Swedish probabilist Harald Cramèr, who was working as an insurance company consultant in
1930’s. Assume that the insurance company receives a steady stream of payments, amounting
to (a deterministic number) λ per day. Also every day, they receive a certain amount in claims;
assume this amount is Normal with expectation µ and variance σ2. Assume also day-to-day
independence of the claims. The regulators require that within a period of n days, the company
must be able to cover its claims by the payments received in the same period, or else. Intimidated
by the fierce regulators, the company wants to fail to satisfy the regulators with probability less
than some small number ǫ. The parameters n, µ, σ and ǫ are fixed, but λ is something the
company controls. Determine λ.

4. Assume that Sn is Binomial(n, p). For every a > p, determine by calculus the large deviation
bound for P (Sn ≥ an).

5. Using the central limit theorem for a sum of Poisson random variables, compute

lim
n→∞

e−n
n
∑

i=0

ni

i!
.

Solutions to problems

1. Compute the moment generating function for a single game, then raise it to the 10th power:

φ(t) =

(

1
(52

3

)

((

26

3

)

+

(

26

1

)(

26

2

)

· et +

(

26

2

)(

26

1

)

· e2t +

(

26

3

)

· e3t

)

)10

.

2. Answer: φ(t) =
∫ 1
0 e

tx dx = 1
t (e

t − 1).

3. By the assumption, a claim Y is Normal N(µ, σ2) and so X = (Y −µ)/σ is standard normal.
Note that then Y = σX + µ. The combined amount of claims thus is σ(X1 + · · · +Xn) + nµ,
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where Xi are i. i. d. standard Normal, so we need to bound

P (X1 + · · · +Xn ≥ λ− µ

σ
n) ≤ e−In.

As log φ(t) = 1
2t

2, we need to maximize, over t > 0,

λ− µ

σ
t− 1

2
t2,

and the maximum equals

I =
1

2

(

λ− µ

σ

)2

.

Finally we solve the equation
e−In = ǫ,

to get

λ = µ+ σ ·
√

−2 log ǫ

n
.

4. After a computation, the answer you should get is

I(a) = a log
a

p
+ (1 − a) log

1 − a

1 − p
.

5. Let Sn be the sum of i. i. d. Poisson(1) random variables. Thus Sn is Poisson(n), and
ESn = n. By the central limit theorem P (Sn ≤ n) → 1

2 , but P (Sn ≤ n) is exactly the
expression in question. So the answer is 1

2 .


